SGS Thomson Microelectronics ST72F321AR9, ST72F321AR7, ST72F321AR6, ST72F321R9, ST72F321R7 Datasheet

...
0 (0)
Rev. 1.9
August 2003 1/185
ST72321
8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC ,
FIVE TIMERS, SPI, SCI, I
2
Memories
– 32K to 60K dual voltage High De nsity Flash
(HDFlash) or ROM with read-out protection capability. In-Application Programming and
In-Circuit Programming for HDFlash devices – 1K to 2K RAM – HDFlash endurance: 100 cycles, data reten-
tion: 20 years at 55°C
Clock , Res et And Supp ly M a nagement
– Enhanced low voltage supervisor (LVD) for
main supply and auxiliary voltage detector
(AVD) with interrupt capability – Clock sources: crystal/ceramic res onator os-
cillators , internal RC osci llator, clock secu rity
system and bypass for external clock – PLL for 2x frequency multiplication – Four Power Saving Modes: Halt, Active-Halt,
Wait and Slow
Interrupt Management
– Nested interrupt controller – 14 interrupt vectors plus TRAP and RESET – Top Level Interrupt (TLI) pin on 64-pin devices – 15 external interrupt lines (on 4 vectors)
Up to 48 I/O Ports
– 48/32 multifunctional bidirectional I/O lines – 34/22 alternate function lines – 16/12 high sink outputs
5 Timers
– Main Clock Controller with: Real time base,
Beep and Clock-out capab ilities – Configurable watchdog timer – Two 16-bit timers with: 2 input captures, 2 out-
put compares, external clock input on one tim-
er, PWM and pulse generator modes – 8-bit PWM Auto-reload timer with: 2 input cap-
tures, 4 PWM outputs, output compare and
time base interrupt, external clock with event detector
3 Communications Interfaces
– SPI synchronous serial interface – SCI asynchronous serial interface (LIN com-
patible)
–I
2
C multimaster interface
1 Analog peripheral
– 10-bit ADC with up to 16 input pins
Instruction Set
– 8-bit Data Manipulation – 63 Basic Instructions – 17 main Addressing Modes – 8 x 8 Unsigned Multiply Instruction
Development Tools
– Full hardware/software development package – In-Circuit Testing capability
Device Summary
TQFP64
10 x 10
TQFP64
14 x 14
Features ST72321(R/AR/J)9 ST72321(R/AR/J)7 ST72321(R/AR)6
Program memory - byte s 60K 48K 32K RAM (stack) - bytes 2048 (256) 1536 (256) 1024 (256) Operat ing Voltage 3.8V to 5.5V Temp. Range up to -40°C to +125°C Package TQFP64 14x14 (R), TQFP64 10x10 (AR), TQ F P 44 10x10 (J)
1
Table of Cont ents
185
2/185
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.2 As ynchronous External RES ET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.3 External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.4 Internal Low Voltage Detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.5 Inte rnal Watchdog RE SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.1 Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.2 Aux iliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.3 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 39
8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2
Table of Cont ents
3/185
8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2.1 I nput Mode s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2.3 Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5.1 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 55
10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 57
10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2.3 Real Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.3 PWM AUTO-RELOAD TIMER (ART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.3.3 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.4.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.4.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1
Table of Cont ents
185
4/185
10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.5.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.5.4 Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.5.5 Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.5.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.5.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.6.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.6.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.6.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.7 I2C BUS INTERFACE (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.7.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.7.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.7.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.7.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.8 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.8.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.8.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.8.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.8.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.1.1 Minimum and Maximum v alues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
1
Table of Cont ents
5/185
12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.3.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.3.2 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . 139
12.3.3 Auxiliary Voltage Detector (AVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.3.4 External Voltage Detector (EVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.4.1 RUN and SLOW Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.4.2 WAIT and SLOW WAIT Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.4.3 RUN and SLOW Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.4.4 WAIT and SLOW WAIT Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.4.5 HALT and ACTIVE-HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
12.4.6 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
12.4.7 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.5.1 General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.5.2 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.5.3 Crystal and Ceramic Resonat or Os cillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.5.4 RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.5.5 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.5.6 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.6.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.6.2 FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.7.1 Functional EMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.7.3 Absolute Electrical Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.7.4 ESD Pin Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.8.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.8.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.9.1 Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.9.2 ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.10.18-Bit PWM-ART A uto-R eload Time r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.10.216-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.11 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 162
12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.11.2I2C - Inter IC Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.12 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.12.1Analog Power Supply and Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.12.2General PCB Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
1
Table of Cont ents
6/185
12.12.3ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
13.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
14 ST72321 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . 172
14.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 174
14.2.1 Version-Specific Sales Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3.1 Socket and Emulator Adapter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15 IMPORTANT NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.1 SILICON IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2 ALL FLASH AND ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.1 External RC option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.2 CSS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.3 Safe Connection of OSC1/OSC2 P ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.4 Unexpected Reset Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.5 Internal RC Oscillator with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.6 Read-out protection with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.7 16-bit Timer PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.3 FLASH REV “S” AND ALL ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
15.3.1 External clock source with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
15.3.2 LVD Startup behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
15.4 FLASH REV “S” AND ROM REV “Y” DEVICES ONLY . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.4.1 I/O Port D Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.5 ALL ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.5.1 LVD Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.5.2 AVD not supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.5.3 Internal RC oscillator operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
16 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
1
To obtain the most recent version of this datasheet,
please check at www.st.com>products>technical literature>datasheet. Please also pay special attention to the Section “IMPORTANT NOTES” on page 180
ST72321
7/185
1 INTRODUCTION
The ST72321R, ST72321AR and ST72321J de­vices are members of the ST7 microcontroller fam­ily designed for mid-range applications
All devices are based on a common industry­standard 8-bit core, featuring an enhanced instruc­tion set and are available with FLASH or ROM pro­gram memory.
Under software control, all devices c an be place d in WAIT, SLOW, ACTIVE-HALT or HALT mode,
reducing power consumption when the application is in idle or stand-by state.
The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 micro­controllers feature true bit manipulation, 8x8 un­signed multiplication and indirect addressing modes.
Figure 1. Device Block Diagram
8-BI T CO RE
ALU
ADDRESS AND DATA BUS
OSC1
V
PP
CONTROL
PROGRAM
(16K - 60K B ytes)
V
DD
RESET
PORT F
PF7:0
(8-bits )
TIM E R A
BEEP
PORT A
RAM
(512 - 2048 Bytes)
PORT C
10-BIT ADC
V
AREF
V
SSA
PORT B
PB7:0
(8-bits)
PWM ART
PORT E
PE7:0 (8-bits)
SCI
TIMER B
PA7:0
(8-bits)
PORT D
PD7:0
(8-bits)
SPI
PC7:0
(8-bits)
V
SS
WATCHDOG
TLI
OSC
LVD
OSC2
MEMORY
MCC/RTC/BEEP
EVD
AVD
I2C
3
ST72321
8/185
2 PIN DESCRIPTION
Figure 2. 64-Pin TQFP 14x14 and 10x10 Package Pinout
V
AREF
V
SSA
V
DD_3
V
SS_3
MCO / AIN8 / PF0
BEEP / (HS) PF1
(HS) PF2
OCMP2_A / AIN9 / PF3
OCMP1_A / AIN10 / PF4
ICAP2_A / AIN11 / PF5
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
AIN4 / PD4
AIN5 / PD5
AIN6 / PD6
AIN7 / PD7
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47 46 45 44 43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ei2
ei3
ei0
ei1
PWM3 / PB0 PWM2 / PB1 PWM1 / PB2
PWM0 /PB3
ARTCLK /(HS) PB4
ARTIC1 / PB5 ARTIC2 / PB6
PB7 AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 AIN3 / PD3
(HS) PE4 (HS) PE5 (HS) PE6 (HS) PE7
PA1 PA0 PC7 / SS
/ AIN15
PC6 / SCK / ICCCLK PC5 / MOSI / AIN14 PC4 / MISO / ICCDATA PC3 (HS) / ICAP1_B PC2 (HS) / ICAP2_B PC1 / OCMP1_B / AIN13 PC0 / OCMP2_B / AIN12 V
SS_0
V
DD_0
V
SS_1
V
DD_1
PA3 (HS) PA2
V
DD
_2
OSC1
OSC2
V
SS
_2
TLI
EVD
RESET
V
PP
/ ICCSEL
PA7 (HS) / SCLI
PA6 (HS) / SDAI
PA5 (HS)
PA4 (HS)
PE3
PE2
PE1 / RDI
PE0 / TDO
(HS) 20mA high sink capability eix associated external interrupt vector
ST72321
9/185
Figure 3. 44-Pin Device Pinout
MCO / AIN8 / PF0
BEEP / (HS) PF1
(HS) PF 2
OCMP1_A / AI N10 / P F4
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
V
DD_0
V
SS_0
AIN5 / PD5
V
AREF
V
SSA
44 43 42 41 40 39 38 37 36 35 34
33 32 31 30 29 28 27 26 25 24 23
12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11
ei2
ei3
ei0
ei1
PWM0 / PB3
ARTCLK / (HS) PB4
AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 AIN3 / PD3 AIN4 / PD4
PE1 / RDI
PWM3 /PB0 PWM2 / PB1 PWM1 / PB2
PC6 / SCK / ICCCLK PC5 / MOSI / AIN14 PC4 / MISO / ICCDATA PC3 (HS) / ICAP1_B PC2 (HS) / ICAP2_B PC1 / OCMP1_B / AIN13 PC0 / OCMP2_B / AIN12
V
SS_1
V
DD_1
PA3 (HS) PC7 / SS
/ AIN15
V
SS
_2
RESET
V
PP
/ ICCSEL
PA7 (HS) / SCLI
PA6 (HS) / SDAI
PA5 (HS)
PA4 (HS)
PE0 / TDO
V
DD
_2
OSC1
OSC2
eix associated external interrupt vector
(HS) 20mA high sink capability
ST72321
10/185
PIN DESCRIPTION (Cont’d) For external pin connection guidelines, refer to See “ELECTRICAL CHARACTERISTICS” on page 136.
Legend / Abbreviations for Table 1:
Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3V
DD
/0.7V
DD
CT= CMOS 0.3VDD/0.7VDD with input trigger T
T
= TTL 0.8V / 2V with Schmitt trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration:
– Input: float = floating, wpu = weak pull-up, int = interrupt
1)
, ana = analog
– Output: OD = open drain
2)
, PP = push-pull Refer to “I/O PORTS” on page 46 for more details on the software configuration of the I/O ports. The RESET con fi g ur at i on of each pin i s sh o wn in bo ld. This config u ra tion is valid as long as the devi ce is
in reset state.
Table 1. Device Pin Description
Pin n°
Pin Name
Type
Level Port
Main
function
(after reset)
Alternate function
TQFP64
TQFP44
Input
Output
Input Output
float
wpu
int
ana
OD
PP
1 - PE4 (HS) I/O CTHS X X X X Port E4 2 - PE5 (HS) I/O C
T
HS X X X X Port E5
3 - PE6 (HS) I/O C
T
HS X X X X Port E6
4 - PE7 (HS) I/O C
T
HS X X X X Port E7
5 2 PB0/PWM3 I/O C
T
X ei2 X X Port B0 PWM Output 3
6 3 PB1/PWM2 I/O C
T
X ei2 X X Port B1 PWM Output 2
7 4 PB2/PWM1 I/O C
T
X ei2 X X Port B2 PWM Output 1
8 5 PB3/PWM0 I/O C
T
X ei2 X X Port B3 PWM Output 0
9 6 PB4 (HS)/ARTCLK I/O C
T
HS X ei3 X X Port B4 PWM-ART External Clock
10 - PB5 / ARTIC1 I/O C
T
X ei3 X X Port B5 PWM-ART Input Capture 1
11 - PB6 / ARTIC2 I/O C
T
X ei3 X X Port B6 PWM-ART Input Capture 2
12 - PB7 I/O C
T
X ei3 X X Port B7
13 7 PD0/AIN0 I/O C
T
X X X X X Port D0 ADC Analog Input 0
14 8 PD1/AIN1 I/O C
T
X X X X X Port D1 ADC Analog Input 1
15 9 PD2/AIN2 I/O C
T
X X X X X Port D2 ADC Analog Input 2
16 10 PD3/AIN3 I/O C
T
X X X X X Port D3 ADC Analog Input 3
17 11 PD4/AIN4 I/O C
T
X X X X X Port D4 ADC Analog Input 4
18 12 PD5/AIN5 I/O C
T
X X X X X Port D5 ADC Analog Input 5
19 - PD6/AIN6 I/O C
T
X X X X X Port D6 ADC Analog Input 6
20 - PD7/AIN7 I/O C
T
X X X X X Port D7 ADC Analog Input 7
21 13 V
AREF
I Analog Reference Voltage for ADC
22 14 V
SSA
S Analog Ground Voltage
23 - V
DD_3
S Digital Main Supply Voltage
ST72321
11/185
24 - V
SS_3
S Digital Ground Voltage
25 15 PF0/MCO/AIN8 I/O C
T
X ei1 X X X Port F0
Main clock out (f
OSC
/2)
ADC Analog Input 8
26 16 PF1 (HS)/BEEP I/O C
T
HS X ei1 X X Port F1 Beep signal output
27 17 PF2 (HS) I/O C
T
HS X ei1 X X Port F2
28 - PF3/OCMP2_A/AIN9 I/O C
T
X X X X X Port F3
Timer A Out­put Compare 2
ADC Analog Input 9
29 18 PF4/OCMP1_A/AIN10 I/O C
T
X X X X X Port F4
Timer A Out­put Compare 1
ADC Analog Input 10
30 - PF5/ICAP2_A/AIN11 I/O C
T
X X X X X Port F5
Timer A Input Capture 2
ADC Analog Input 11
31 19 PF6 (HS)/ICAP1_A I/O C
T
HS X X X X Port F6 Timer A Input Capture 1
32 20 PF7 (HS)/EXTCLK_A I/O C
T
HS X X X X Port F7
Timer A External Clock Source
33 21 V
DD_0
S Digital Main Supply Voltage
34 22 V
SS_0
S Digital Ground Voltage
35 23 PC0/OCMP2_B/AIN12 I/O C
T
X X X X X Port C0
Timer B Out­put Compare 2
ADC Analog Input 12
36 24 PC1/OCMP1_B/AIN13 I/O C
T
X X X X X Port C1
Timer B Out­put Compare 1
ADC Analog Input 13
37 25 PC2 (HS)/ICAP2_B I/O C
T
HS X X X X Port C2 Timer B Input Capture 2
38 26 PC3 (HS)/ICAP1_B I/O C
T
HS X X X X Port C3 Timer B Input Capture 1
39 27 PC4/MISO/ICCDATA I/O C
T
X X X X Port C4
SPI Master In / Slave Out Data
ICC Data In­put
40 28 PC5/MOSI/AIN14 I/O C
T
X X X X X Port C5
SPI Master Out / Slave In Data
ADC Analog Input 14
41
29
PC6/SCK/ICCCLK I/O C
T
X X X X Port C6
SPI Serial Clock
ICC Clock Output
30
42 - PC7/SS
/AIN15 I/O C
T
X X X X X Port C7
SPI Slave Select (ac­tive low)
ADC Analog Input 15
43 - PA0 I/O C
T
X ei0 X X Port A0
44 - PA1 I/O C
T
X ei0 X X Port A1
45 31 PA2 I/O C
T
X ei0 X X Port A2
46 32 PA3 (HS) I/O C
T
HS X ei0 X X Port A3
47 33 V
DD_1
S Digital Main Supply Voltage
48 34 V
SS_1
S Digital Ground Voltage
49 35 PA4 (HS) I/O C
T
HS X X X X Port A4
Pin n°
Pin Name
Type
Level Port
Main
function
(after reset)
Alternate function
TQFP64
TQFP44
Input
Output
Input Output
float
wpu
int
ana
OD
PP
ST72321
12/185
Notes:
1. In the interrupt input column, “eiX” def ine s the associate d external in terrupt vecto r. If the weak pul l-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to V
DD
are not implemented). See See “I/O PORTS” on page 46. and Section 12.8 I/O PORT PIN CHARACTER-
ISTICS for more details.
3. OSC1 and OSC2 pins connect a crystal/ceram ic resonator, or an external source t o the on-c hi p osc il­lator; see Section 1 INTRODUCTION and Section 12.5 CLOCK AND TIMING CHARACTERISTICS for more details.
4. On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up con­figuration after reset. The c onfiguration of these pads mu st be kept at reset st at e to av oi d ad ded c urrent consumption.
50 36 PA5 (HS) I/O CTHS X X X X Port A5 51 37 PA6 (HS)/SDAI I/O C
T
HS X T Port A6 I2C Data
1)
52 38 PA7 (HS)/SCLI I/O CTHS X T Port A7 I2C Clock
1)
53 39 VPP/ ICCSEL I
Must be tied low. In flash programming mode, this pin acts as the programming voltage input VPP. See Section 12.9.2 for more details. High voltage must not be applied to ROM devices
54 - RESET
I/O C
T
Top priority non maskable interrupt. 55 - EVD External voltage detector 56 40 TLI I C
T
X Top level interrupt input pin
57 41 V
SS_2
S Digital Ground Voltage
58 42 OSC2
3)
I/O Resonator oscillator inverter output
59 43 OSC1
3)
I
External clock input or Resonator oscil-
lator inverter input 60 44 V
DD_2
S Digital Main Supply Voltage
61 1 PE0/TDO I/O C
T
X X X X Port E0 SCI Transmit Data Out
62 - PE1/RDI I/O C
T
X X X X Port E1 SCI Receive Data In
63 - PE2 I/O C
T
X Port E2
64 - PE3 I/O C
T
X X X X Port E3
Pin n°
Pin Name
Type
Level Port
Main
function
(after reset)
Alternate function
TQFP64
TQFP44
Input
Output
Input Output
float
wpu
int
ana
OD
PP
ST72321
13/185
3 REGISTER & MEMORY MAP
As sho wn i n Figure 4, the MCU is capable of ad- dressing 64K bytes of memories and I/O registers.
The available memory locations consist of 128 bytes of register locations, up to 2Kbytes of RAM and up to 60Kbytes of user program memory. The RAM space includes u p to 256 by t es fo r the stack from 0100h to 01FFh.
The highest address bytes contain the user re set and interrupt vectors.
IMPORTANT: Memory locations marked as “Re­served” must ne ver be accessed. Accessi ng a re­seved area can have u npredictable effects on t he device.
Figure 4. Me m ory M a p
0000h
RAM
Program Memory
(60K, 48K or 32K)
Interrupt & Reset Vectors
HW Registers
0080h
007Fh
0FFFh
(see Table 2)
1000h
FFDFh FFE0h
FFFFh
(see Table 7)
0880h
Reserved
087Fh
Short Addressing RAM (zero page)
256 Bytes Stack
16-bit Addressing
RAM
0100h
01FFh
0080h
0200h
00FFh
or 087Fh
32 KBytes
8000h
60 KBytes
48 KBytes
FFFFh
1000h
4000h
(2048, 1536 or 1024 By tes)
or 067F h
or 047F h
ST72321
14/185
Table 2. Hardware Register Map
Address Block
Register
Label
Register Name
Reset
Status
Remarks
0000h 0001h 0002h
Port A
PADR PADDR PAOR
Port A Data Register Port A Data Direction Register Port A Option Register
00h
1)
00h 00h
R/W R/W R/W
0003h 0004h 0005h
Port B
PBDR PBDDR PBOR
Port B Data Register Port B Data Direction Register Port B Option Register
00h
1)
00h 00h
R/W R/W R/W
0006h 0007h 0008h
Port C
PCDR PCDDR PCOR
Port C Data Register Port C Data Direction Register Port C Option Register
00h
1)
00h 00h
R/W R/W R/W
0009h 000Ah 000Bh
Port D
PDDR PDDDR PDOR
Port D Data Register Port D Data Direction Register Port D Option Register
00h
1)
00h 00h
R/W R/W R/W
000Ch 000Dh 000Eh
Port E
PEDR PEDDR PEOR
Port E Data Register Port E Data Direction Register Port E Option Register
00h
1)
00h 00h
R/W R/W
2)
R/W
2)
000Fh 0010h 0011h
Port F
PFDR PFDDR PFOR
Port F Data Register Port F Data Direction Register Port F Option Register
00h
1)
00h 00h
R/W R/W R/W
0012h
to
0017h
Reserved Area (6 Bytes)
0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh
I
2
C
I2CCR I2CSR1 I2CSR2 I2CCCR I2COAR1 I2COAR2 I2CDR
I
2
C Control Register
I
2
C Status Register 1
I
2
C Status Register 2
I
2
C Clock Control Register
I
2
C Own Address Register 1
I
2
C Own Address Register2
I
2
C Data Register
00h 00h 00h 00h 00h 00h 00h
R/W Read Only Read Only R/W R/W R/W R/W
001Fh 0020h
Reserved Area (2 Bytes)
0021h 0022h 0023h
SPI
SPIDR SPICR SPICSR
SPI Data I/O Register SPI Control Register SPI Control/Status Register
xxh 0xh 00h
R/W R/W R/W
0024h 0025h 0026h 0027h
ITC
ISPR0 ISPR1 ISPR2 ISPR3
Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3
FFh FFh FFh FFh
R/W R/W R/W R/W
0028h EICR External Interrupt Control Register 00h R/W 0029h FLASH FCSR Flash Control/Status Register 00h R/W
ST72321
15/185
002Ah WATCHDOG WDGCR Watchdog Control Register 7Fh R/W
002Bh SICSR System Integrity Control/Status Register 000x 000x b R/W 002Ch
002Dh
MCC
MCCSR MCCBCR
Main Clock Control / Status Register Main Clock Controller: Beep Control Register
00h 00h
R/W R/W
002Eh
to
0030h
Reserved Area (3 Bytes)
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
TIMER A
TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register
00h 00h
xxxx x0xx b
xxh
xxh 80h 00h FFh
FCh FFh FCh
xxh
xxh 80h 00h
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W
R/W 0040h Reserved Area (1 Byte)
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh
TIMER B
TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register
00h 00h
xxxx x0xx b
xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h
SCI
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register
C0h
xxh 00h
x000 0000b
00h 00h
---
00h
Read Only R/W R/W R/W R/W R/W
R/W
Address Block
Register
Label
Register Name
Reset
Status
Remarks
ST72321
16/185
Legend: x=undefined, R/W=read/write Notes:
1. The contents of the I/O port DR registers are read able only i n out put conf iguration. I n i nput conf igura­tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.
0058h
to
006Fh
Reserved Area (24 Bytes)
0070h 0071h 0072h
ADC
ADCCSR ADCDRH ADCDRL
Control/Status Register Data High Register Data Low Register
00h 00h 00h
R/W Read Only Read Only
0073h 0074h 0075h 0076h 0077h
0078h 0079h 007Ah
007Bh 007Ch 007Dh
PWM ART
PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR ARTCSR ARTCAR ARTARR ARTICCSR ARTICR1 ARTICR2
PWM AR Timer Duty Cycle Register 3 PWM AR Timer Duty Cycle Register 2 PWM AR Timer Duty Cycle Register 1 PWM AR Timer Duty Cycle Register 0 PWM AR Timer Control Register Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register AR Timer Input Capture Control/Status Reg. AR Timer Input Capture Register 1 AR Timer Input Capture Register 1
00h 00h 00h 00h 00h 00h 00h 00h
00h 00h 00h
R/W R/W R/W R/W R/W R/W R/W R/W R/W Read Only Read Only
007Eh 007Fh
Reserved Area (2 Bytes)
Address Block
Register
Label
Register Name
Reset
Status
Remarks
ST72321
17/185
4 FLASH PROGRAM ME MORY
4.1 Introduction
The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individu­al sectors and programmed on a Byte-by-Byte ba­sis using an external V
PP
supply.
The HDFlash devices can be programmed and erased off-board (plugge d in a programm ing tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).
The array matrix organ isation allows each sector to be erased and reprogramm ed without affecting other sectors.
4.2 Main Features
Three Flash programming modes :
– Insertion in a programming tool. In this m ode,
all sectors including option bytes can be pro­grammed or erased.
– ICP (In-Circuit Programming). In this mode, all
sectors including option bytes can be pro­grammed or erased without removing the de­vice from the application board.
– IAP (In-Application Programming) In this
mode, all sectors except Sector 0, can be pro­grammed or erased without removing the de­vice from the application board a nd wh ile the application is running.
ICT (In-Circuit Testing) for downloading and
executing user application test patterns in RAM
Read-out protection against piracyRegister Access Security System (RASS) to
prevent accidental programming or erasing
4. 3 S tructure
The Flash memory is organised in sectors and can be used for both code and data storage.
Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flas h memory when only a partial erasing is required.
The first two sectors have a fixed siz e of 4 Kby tes (see Figure 5). They are mapped in the upper part of the ST7 addressing space so t he reset and in­terrupt vectors are located in Sector 0 (F000h­FFFFh).
Table 3. Sectors available in Flash devices
4.3.1 Read-out Protection
Read-out protection, when s elected, makes it im­possible to extract the memory content from the microcontroller, thus preventing piracy. Even ST cannot access the user code.
In flash devices, this protection is removed by re­programming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed.
Read-out protection selection depend s on the de­vice type:
– In Flash devices it is enabled and removed
through the FMP_R bit in the option byte.
– In ROM devices it is enabled by mask option
specified in the Option List.
Note: The LVD is not supported if read-out protec­tion is enabled
Figure 5. Me m ory M a p and Sector Address
Flash Size (bytes) Available Sectors
4K Sector 0 8K Sectors 0,1
> 8K Sectors 0,1, 2
4 Kbytes
4 Kbytes
2Kbytes
SECTOR 1 SECTOR 0
16 Kbytes
SECTOR 2
8K 16K 32K 60K
FLASH
FFFFh
EFFFh
DFFFh
3FFFh 7FFFh
1000h
24 Kbytes
MEMORY SIZE
8Kbytes 40 Kbytes
52 Kbytes
9FFFh BFFFh D7FFh
4K 10K 24K 48K
ST72321
18/185
FLASH PROGRAM MEMORY (Cont’d)
4.4 ICC Interface
ICC needs a m inimum of 4 and u p t o 6 pins to be connected to the programming tool (see Figure 6). These pins are:
– RESET
: device reset
–V
SS
: device power supply ground
– ICCCLK: ICC output serial clock pin – ICCDATA: ICC input/output serial data pin – ICCSEL/V
PP
: programming voltage
– OSC1(or OSCIN): main clock input for exter-
nal source (optional)
–V
DD
: application board power su pply (option-
al, see Figure 6, Note 3)
Figure 6. Typical ICC Interface
Notes:
1. If the ICCCLK or ICCDATA pins are only u sed as outputs in t he ap plication, n o s ign al iso lation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another de­vice forces the signal. Refer to the Programming Tool documentation for recommended resistor val­ues.
2. During the ICC session, the programming tool must control the RESET
pin. This can lead to con­flicts between the programming tool and the appli­cation reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be us ed to iso late the appli­cation RESET circuit in this case. When using a classical RC network with R>1K or a reset man-
agement IC with open drain ou tput and pu ll-up re­sistor>1K, no additional com ponents are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
3. The use of Pin 7 of the ICC con nector de pends on the Programming Tool architecture. This pin must be connected when using most ST Program­ming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.
4. Pin 9 has to be co nnected to the OS C1 or OS­CIN pin of the ST7 when the clock is not available in the application or if the sel ected clock opt ion is not programmed in t he option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.
ICC CONNECTOR
ICCDATA
ICCCLK
RESET
V
DD
HE10 CONNECTOR TYPE
APPLICATION POWER SUPPLY
1
246810
975 3
PROGRAMMING TOOL
ICC CONNECTOR
APPLICATION BOARD
ICC Cab le
OPTIONAL (See No te 3)
10k
V
SS
ICCSEL/VPP
ST7
C
L2
C
L1
OSC1
OSC2
OPTIONAL
See Note 1
See Note 2
APPLICATION RESET SOURCE
APPLICATI ON
I/O
(See No te 4)
ST72321
19/185
FLASH PROGRAM MEMORY (Cont’d)
4.5 ICP (In-Circuit Programming)
To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.
Depending on the ICP code dow nloaded in RAM, Flash memory programming can be fully custom­ized (number of bytes to prog ram, program loca­tions, or selection serial communication interface for downloading).
When using an STMicroelectronics or third-party programming tool that supp orts ICP and the spe­cific microcontroller device, the user needs only to implement the ICP hardware interface on the ap­plication board (see Figure 6). For more details on the pin locations, refer to the device pinout de­scription.
4.6 IA P ( I n-Ap plication P rogramming )
This mode uses a BootLoader program previously stored in Sector 0 by the us er (in ICP mode or by plugging the device in a programming tool).
This mode is fully controlled by user software. This allows it to be adapted to the user application, (us­er-defined strategy for entering programming mode, choice of comm unications protocol used t o fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI, USB
or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, whi ch is write/erase pro­tected to allow recovery in case errors occur dur­ing the programming operation.
4.7 Related Documentation
For details on Flash program ming and ICC proto­col, refer to the ST7 Flash Programming Refer­ence Manual and to the ST7 ICC Protocol Re fer­ence Manual
.
4.7.1 Register Description FLASH CONTROL/STATUS REGISTER (FCSR)
Read/Write Reset Value: 0000 0000 (00h)
This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations. Flash Control/Status Reg­ister Address and Reset Value
70
00000000
Address
(Hex.)
Register
Label
76543210
0029h
FCSR
Reset Value00000000
ST72321
20/185
5 CENTRAL PRO CESSING UNIT
5.1 INTRODUCTION
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.
5.2 MAIN FEATURES
Enable executing 63 basic instructionsFast 8-bit by 8-bit multiply17 main addressing modes (with indirect
addressing mode)
Two 8-bit index registers16-bit stack pointerLow power HALT and WAIT modesPriority maskable hardware interruptsNon-maskable software/hardware interrupts
5.3 CPU REGISTERS
The 6 CPU registers shown in Figure 7 are not present in the memory mapping and are accessed by spec ifi c ins t ru c tio n s .
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operands and the res ults of the arithmetic and logic calculations and to manipulate data.
Index Registers (X and Y)
These 8-bit registers are used to create effective addresses or as tempo rary storage areas f or data manipulation. (The Cross -Assembler generates a precede instruction (PRE) to indicate that the fol­lowing instruction refers to the Y register.)
The Y register is not affected by the interrupt auto­matic procedures.
Program Counter (PC)
The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).
Figure 7. CPU Registers
ACCUMULA TOR
X INDEX REGISTER
Y INDEX REGISTER
STACK POINTER
CONDITION CODE REGISTER
PROGRAM COUNTER
70
1C1I1HI0NZ
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
70
70
70
0
7
15 8
PCH
PCL
15
8
70
RESET VALUE = STACK HIGHER ADDRESS
RESET VALUE =
1X11X1XX
RESET VALUE = XXh
RESET VALUE = XXh
RESET VALUE = XXh
X = Undefined Value
ST72321
21/185
CENTRAL PROC ESSING UNIT (Cont’d) Condition Code Register (CC)
Read/Write Reset Value: 111x1xxx
The 8-bit Condition Code regist er contains the i n­terrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP in­structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Arithmetic Management Bits
Bit 4 = H
Half carry
.
This bit is set by hardware when a carry occurs be­tween bits 3 and 4 of t he ALU during an ADD or ADC instructions. It is reset by hardware during the same instructio n s.
0: No half carry has occurred. 1: A half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tine s .
Bit 2 = N
Negative
.
This bit is set and cleared by hardware. It is repre­sentative of the result sign of the last arithmetic, logical or data manipulation. I t’s a copy of the re­sult 7
th
bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative
(i.e. the most significant bit is a logic 1).
This bit is accesse d by the JRMI and JRPL instruc­tions.
Bit 1 = Z
Zero
.
This bit is set and cleared by hardware. This bit in­dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions. Bit 0 = C
Carry/borrow.
This bit is set and cleared b y hardware and soft­ware. It indicates an overflow or an un derflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It i s also affected by the “bit test and branch”, shift and rotate instructions.
Interrupt Manageme nt B i ts
Bit 5,3 = I1, I0
Interrupt
The combination of the I1 and I0 bits gives the cur­rent interrupt software priority.
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software pri­ority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.
See the interrupt management chapter for more details.
70
11I1HI0NZ
C
Interrupt Software Priorit y I1 I0
Level 0 (main) 1 0 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
ST72321
22/185
CENTRAL PROC ESSING UNIT (Cont’d) Stack Poi nter (SP)
Read/Write Reset Value: 01 FFh
The Stack Pointer is a 16-bit register which is al­ways pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 8).
Since the stack is 256 bytes deep, the 8 most sig­nificant bits are forced by hard ware. Following a n MCU Reset, or after a Reset Stack Pointer instruc­tion (RSP), the Stack Pointer contains its reset val­ue (the SP7 to SP0 bits are set) which is the stack higher address.
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in­struction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, with­out indicating the stack overflow. The previously stored information is then o verwritten and there­fore lost. The stack also wraps in case of an under­flow.
The stack is used to sav e the return address dur­ing a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc­tions. In the case of an interrupt, the PCL is stored at the first location po inted t o by t he SP. Th en t he other registers are stored in the next locations as shown in Figure 8.
– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return from interrupt, the SP is incremented
and the context is popped from the stack.
A subroutine call occupies two locations and an in­terrupt five locat ion s i n the stack ar ea.
Figure 8. Stack Manipulation Example
15 8
00000001
70
SP7 SP6 SP5 SP4 SP3 SP2 SP1
SP0
PCH PCL
SP
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
SP
Y
CALL
Subroutine
Interrupt
Event
PUSH Y POP Y IRET
RET
or RSP
@ 01FFh
@ 0100h
Stack Higher Address = 01FFh Stack Lower Address =
0100h
ST72321
23/185
6 SUPPLY, RESET AND CLO CK MANAGEMENT
The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and re­ducing the number of external components. An overview is shown in Figure 10.
For more details, refer to dedicated parametric section.
Main features
Optional PLL for multiplyi ng the frequency by 2
(not to be used with internal RC oscillator)
Reset Sequence Manager (RSM)Multi-Oscillator Clock Management (MO)
– 5 Crysta l/ C er amic resona tor o sc illa t or s – 1 Interna l RC o s c illat o r
System Integrity Management (SI)
– Main supply Low voltage detection (LVD) – Auxiliary Voltage detector (AVD) with interrupt
capability for monitoring the main supply or the EVD pin
– Clock Security System (CSS) with Cl ock Filte r
and Backup Safe Oscillator (enabled by op-
tion byte)
6.1 PHASE LOCKED LOOP
If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an f
OSC 2
of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then f
OSC2 = fOSC
/2.
Caution: T he PLL is not rec ommended for ap pli­cations where timing accuracy is required. See “PLL Characteristics” on page 150.
Figure 9. PLL Block Diagram
Figure 10. Clock, Reset and Supply Block Diagram
0
1
PLL OPTION BIT
PLL x 2
f
OSC2
/ 2
f
OSC
LOW VOLTAG E
DETECTOR
(LVD)
f
OSC2
AUXILIARY VOLTAGE
DETECTOR
(AVD)
MULTI-
OSCILLATOR
(MO)
OSC1
RESET
V
SS
EVD
V
DD
RESET SEQUENCE
MANAGER
(RSM)
CLOCK FILTER
SAFE
OSC
CLOCK SECURITY SYSTEM
(CSS)
OSC2
MAIN CLOCK
CSS Interrupt Request
AVD Interrupt Requ est
CONTR O LLER
PLL
SYSTEM INTEGRITY MAN AGEMENT
WATCHDOG
SICSR
TIMER (W DG )
WITH REALTIME
CLOCK (MCC/R T C)
AVD
AVD AVD
LVD
RF
CSS
IEIE
CSSDWDG
RF
0
1
f
OSC
f
OSC2
(option)
0
S
F
f
CPU
ST72321
24/185
6.2 MULTI-OSCILLATOR (MO)
The main clock of the ST7 can be generated by three different source types coming from the multi­oscillator block:
an external source4 crystal or ceramic resonator oscillatorsan internal high frequency RC oscillator
Each oscillator is optimized for a given freq uency range in terms of consumption and is selectable through the option byte. The assoc iated hardware configurations are shown in Table 4. Refer to the electrical characteristics section for more details.
Caution: T he OSC1 and/or OSC2 pins must not be left unconnected. F or the purposes o f Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main osc illator m ay sta rt an d, in this con­figuration, could generate an f
OSC
clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. The product behaviour must therefore be considered undefined when the OSC pins are le ft unconnect­ed.
External Clock Source
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.
Note: External clock sou rce is not suppo rted with the PLL enabled.
Crystal/Ceramic Oscillators
This family of oscillators has the advantage of pro­ducing a very accurate rate on the main clock of the ST7. The s election within a list of 4 oscillators with different frequency ran ges has to be done by option byte in order to redu ce consumption (refer to Se ction 14.1 on p age 172 for more details on the frequency ranges). In this mode o f the multi­oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscil­lator pins in order to minimize output distortion and start-up stabilization time. The loading capaci­tance values must be adjusted according to the selected osci lla tor .
These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
Internal RC Oscillator
This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resis­tor and capac it or. Int ernal RC oscilla tor mod e has the drawback of a lower frequency accuracy and should not be used in applications that require ac­curate timin g .
In this mode, the two oscillator pins have to be tied to ground.
Table 4. ST7 Clock Sources
Hardware Configuration
External ClockCrystal/Ceramic ResonatorsInternal RC Oscillator
OSC1 OSC2
EXTERNAL
ST7
SOURCE
OSC1 OSC2
LOAD
CAPACITORS
ST7
C
L2
C
L1
OSC1 OSC2
ST7
ST72321
25/185
6.3 RESET SEQUENCE MANAGER (RSM)
6.3.1 Introd uc tion
The reset sequence manager in cludes three RE­SET sources as shown in Figure 12:
External RESET source pulseInternal LVD RESET (Low Voltage Detection)Internal WATCHDOG RESET
These sources act on the RESET
pin and it is al-
ways kept low during the delay phase. The RESET service routine vector is fixed at ad-
dresses FFFEh-FFFFh in the ST7 memory map. The basic RE SET sequence consists o f 3 p has es
as shown in F igure 11:
Active Phase depending on the RESET source256 or 4096 CPU clock cycle delay (selected by
opt ion byte)
RESET vector fetch
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from t he Reset st ate. T he short er or longer clock cycle delay should be selected by option byte to correspond to the stabilization t ime of the external oscillator used in the application (see Section 14.1 on page 172).
The RESET vector fetch phase duration is 2 clock cycles.
Figure 11. RESET Sequence Phases
6.3.2 Async hr onous Extern a l RESET
pin
The RESET
pin is both an input and an open-drain
output with integrated R
ON
weak pull-up resistor. This pull-up has no fixed value but varies in ac­cordance with the input voltage. It
can be pulled low by external circuitry to reset the device. See
“CONTROL PIN CHARACTERISTICS” on page 160 for more details.
A RESET signal originating from an external source must have a duration of at least t
h(RSTL)in
in order to be recognized (see Figure 13). This de­tection is asynchronous and therefore the MCU can enter reset state even in HALT mode.
Figure 12. Reset Block Diagram
RESET
Active Phase
INTERNAL RESET
256 or 4096 CLOCK CYCLES
FETCH
VECTOR
RESET
R
ON
V
DD
WATCHDOG RESET LVD RESET
INTERNAL RESET
PULSE
GENERATOR
Filter
ST72321
26/185
RESET SEQUENCE MANAGER (Cont’d) The RESET
pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the elect rical characteris­tics section.
If the external RESET
pulse is shorter than
t
w(RSTL)out
(see short ext. Reset in Figure 13), the
signal on the RESET
pin may be stretched. Other­wise the delay will not be applied (see long ext. Reset in Figure 13). Starting from the external RE­SET pulse recognition, the device RESET
pin acts as an output that is pulled low during at least t
w(RSTL)out
.
6.3.3 External Power-On RESET
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V
DD
is over the minimum
level specified for the selected f
OSC
frequency.
(see “OPERA TING CONDITIONS” on page 138)
A proper reset signal for a sl ow rising V
DD
supply can generally be p rovided by an e xternal RC ne t­work connected to the RESET
pin.
6.3.4 Internal Low Voltage Detector (LVD) RESET
Two differe nt RESET sequences caused by the in­ternal LVD circuitry can be distinguished:
Power-On RESETVoltage Drop RESET
The device RESET
pin acts as an output that is
pulled low when V
DD<VIT+
(rising edge) or
V
DD<VIT-
(falling edge) as shown in Figure 13.
The LVD filters spikes on V
DD
larger than t
g(VDD)
to
avoid parasitic resets.
6.3.5 Internal Watchdog RESET
The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 13.
Starting from the Watchdog counter underflow, the device RESET
pin acts as an output that is pulled
low during at least t
w(RSTL)out
.
Figure 13. RESET Sequences
V
DD
RUN
RESET PIN
EXTERNAL
WATCHDOG
ACTIVE PHASE
V
IT+(LVD)
V
IT-(LVD)
t
h(RSTL)in
t
w(RSTL)out
RUN
t
h(RSTL)in
ACTIVE
WATCHDOG UNDERFLOW
t
w(RSTL)out
RUN RUN RUN
RESET
RESET SOURCE
SHORT EXT.
RESET
LVD
RESET
LONG EXT.
RESET
WATCHDOG
RESET
INTE RNAL R ES ET (25 6 or 40 96 T
CPU
)
VECTOR FETCH
t
w(RSTL)out
PHASE
ACTIVE
PHASE
ACTIVE
PHASE
DELAY
ST72321
27/185
6.4 SYSTEM INTEGRITY MANAGEMENT (SI)
The System Integrity Mana gement block co ntains the Low Voltage Detector (LVD), Auxiliary Voltage Detector (AVD) functions and Clo ck Security Sys­tem (CSS). It is managed by the SICSR register.
6.4.1 Low Voltage Detector (LVD)
The Low Voltage Dete ctor function (LVD) gener­ates a static reset when the V
DD
supply voltage is
below a V
IT-
reference value. This means that it secures the power-up as well as the power-dow n keeping the ST7 in reset.
The V
IT-
reference value for a voltage drop is lower
than the V
IT+
reference value for power-on in order to avoid a parasitic reset when the MCU starts run­ning and sinks current on the supply (hysteresis).
The LVD Reset circuitry generat es a reset when V
DD
is below:
–V
IT+
when VDD is rising
–V
IT-
when VDD is falling
The LVD func t io n is illustrate d in F igure 14.
Provided the minimum V
DD
value (guaranteed for
the oscillator frequency) is above V
IT-
, the MCU
can only be in two modes:
– under full software control – in static safe reset
In these conditions, secure operation is always en­sured for the application without the need for ex­ternal reset hardware.
During a Low Voltage Detector Reset, the RESET pin is held low, thus p ermitting the MCU to reset other devices.
Notes: The LVD allows the device to be used without any
external RESET circuitry. If the medium or low thresholds are selected, the
detection may occur outside the specified operat­ing voltage range. Below 3.8V, device operation is not guaranteed.
The LVD is an optional func tion which can be se­lected by option byte.
Figure 14. Low Voltage Detector vs Reset
V
DD
V
IT+
RESET
V
IT-
V
hys
ST72321
28/185
SYSTEM INTEGRITY MANAGEMENT (Cont’d)
6.4.2 Auxiliary Voltage Detector (AVD)
The Voltage Detector function (AVD) is based on an analog comparison between a V
IT-(AVD)
and
V
IT+(AVD)
reference value and the VDD main sup-
ply or the external EVD pin voltage level (V
EVD
).
The V
IT-
reference value for falling voltage is lower
than the V
IT+
reference value for rising voltage in
order to avoid parasitic detection (hysteresis). The output of the AVD comparator is directly read-
able by the application software through a real time status bit (AVDF) in t he S ICS R regi ster. This bit is read only.
Caution: The AVD function is active only if the LVD is enabled through the option byte.
6.4.2.1 Monitoring the V
DD
Main Supply
This mode is selected by clearing the AVDS bit in the SICSR register.
The AVD voltage threshold value is relative to the selected LVD threshold configured by option byt e (see Section 14.1 on page 172).
If the AVD interrupt is enabled, an interrupt is gen­erated when the voltage crosses the V
IT+(AVD )
or
V
IT-(AVD)
threshold (AVDF bit toggles).
In the case of a drop i n v oltage, t he A V D i nterrupt acts as an early warning, allowing software to shut down safely before the LV D resets the microcon­troller. See Fi gure 15.
The interrupt on the rising edge is used to info rm the application that the V
DD
warning state is over.
If the voltage rise time t
rv
is less than 256 or 4 096 CPU cycles (depending on the reset delay select­ed by option byte), no AVD interrupt will be gener­ated when V
IT+(AVD)
is reached.
If t
rv
is greater than 256 or 4096 cycles then:
– If the AVD interrupt is enabled before the
V
IT+(AVD)
threshold is reached, then 2 AVD inter­rupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached.
– If the AVD interrupt is enabled after the V
IT+(AVD)
threshold is reached then only one AVD interrupt will occur.
Figure 15. Using the AVD to Monitor V
DD
(AVDS bit= 0)
V
DD
V
IT+(AVD)
V
IT-(AVD)
AVDF bit 0 0RESET VALUE
IF AVDIE bit = 1
V
hyst
AVD INTERRUPT REQUEST
INTERRUPT PROCESS
INTERRUPT PROCESS
V
IT+(LVD)
V
IT-(LVD)
LVD RESET
Early Warning Interrupt
(Power has dropped, MCU not not yet in reset)
1
1
t
rv
VOLTAGE RISE TIME
ST72321
29/185
SYSTEM INTEGRITY MANAGEMENT (Cont’d)
6.4.2.2 Monitoring a Voltage on the EVD pin
This mode is selected b y setting the AVDS bit in the SICSR register.
The AVD circuitry can generate an interrupt when the AVDIE bit of the SICSR register is set. This in­terrupt is generated on the rising and falling edges
of the comparator output. This means it is generat­ed when either one of these two events occur:
–V
EVD
rises up to V
IT+(EVD)
–V
EVD
falls down to V
IT-(EVD)
The EVD func t io n is illustrated in F igure 16. For more details, refer to t he E lectrical Ch aracter-
istics sect ion.
Figure 16. Using the Voltage Detector to Monitor the EVD pin (AVDS bit=1)
V
EVD
V
IT+(EVD)
V
IT-(EVD)
AVDF 0 01
IF AVDIE = 1
V
hyst
AVD INTERRUPT REQUEST
INTERRUPT PROCESS
INTERRUPT PROCESS
ST72321
30/185
SYSTEM INTEGRITY MANAGEMENT (Cont’d)
6.4.3 Clock Security System (CSS)
The Clock Security System (CSS) protects the ST7 against breakdowns, spikes and overfrequen­cies occurring on the main clock sourc e (f
OSC
). It is based on a clock filter and a clock detection con­trol with an internal safe oscillator (f
SFOSC
).
Caution: The CSS function is not guaranteed. Re­fer to Section 15
6.4.3.1 Clock Filter Control
The PLL has an integrated glitch filtering capability making it possible to protect the internal clock from overfrequencies created by individual spikes. This feature is available only when t he PLL is enabled. If glitches occur on f
OSC
(for example, due to loose connection or noise), the CSS filters t hese auto­matically, so the internal CPU frequency (f
CPU
)
continues deliver a glitch-free signal (see Figure
17).
6.4.3.2 Clock detection Control
If the clock signal disappears (due to a broke n or disconnected resona tor...), the safe os cillator de­livers a low frequency clock signal (f
SFOSC
) whi c h allows the ST7 to perform some rescue opera­tions.
Automatically, the ST7 clock source switches back from the safe o scillator (f
SFOSC
) if the main clock
source (f
OSC
) recovers.
When the internal clock (f
CPU
) is driven by the safe
oscillator (f
SFOSC
), the application software is noti-
fied by hardware setting the CSSD bit in the SI C-
SR register. An interrupt can be generated if the CSSIE bit has been previously set. These two bits are described in the SICSR register description.
6.4.4 Low Power Mo des
6.4.4.1 Interrupts
The CSS or AVD interrupt events g enerate an in­terrupt if the corresponding Enable Control Bit (CSSIE or AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).
Figure 17. Clock Filter Function
Mode Description
WAIT
No effect on SI. CSS and AVD interrupts cause the device to exit from Wait mode.
HALT
The CRSR register is frozen. The CSS (including the safe oscillator) is disabled until HALT mode is exited. The previous CSS configuration resumes when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter reset value when the MCU is woken up by a RESET.
Interrupt Event
Event
Flag
Enable
Control
Bit
Exit from Wait
Exit
from
Halt
CSS event detection (safe oscillator acti­vated as main clock)
CSSD CSSIE Yes No
AVD event AVDF AVDIE Yes No
f
OSC2
f
CPU
f
OSC2
f
CPU
f
SFOSC
PLL ON
Clock Filter Function
Clock Detection Function
Loading...
+ 155 hidden pages