SGS Thomson Microelectronics ST72T311N4, ST72T311N2, ST72T311J4, ST72T311J2, ST72311 Datasheet

...
0 (0)
ST72E311
ST72T311
8-BIT MCU WITH 8 TO 16K OTP/EPROM,
384 TO 512 BYTES RAM, ADC, WDG, SCI, SPI AND 2 TIMERS
DATASHEET
User Program Memory (OTP/EPROM):
8 to16K bytes
of stack
Master Resetand Power-On ResetLow Voltage Detector Reset optionRun andPower Saving modes44 or32 multifunctional bidirectional I/O lines:
– 15 or 9 programmable interrupt inputs
PSDIP42
– 8 or 4 high sink outputs – 8 or 6 analog alternate inputs – 13 alternate functions – EMI filtering
Software or Hardware Watchdog (WDG)Two 16-bit Timers, each featuring:
– 2 Input Captures – 2 Output Compares – External Clock input (on Timer A)
1)
1)
PSDIP56
– PWM and Pulse Generator modes
Synchronous Serial Peripheral Interface (SPI)Asynchronous Serial Communications Interface
(SCI)
8-bit ADC with 8 channels8-bit Data Manipulation63 basic Instructions and 17 main Addressing
2)
TQFP64
Modes
8 x8 Unsigned Multiply InstructionTrue BitManipulationComplete Development Support on DOS/
WINDOWSTMReal-Time Emulator
Full Software Package on DOS/WINDOWS
TM
(C-Compiler, Cross-Assembler, Debugger)
(See ordering information at the end of datasheet)
Notes:
1. One only on Timer A.
2. Six channels only for ST72T311J.
Device Summary
Features ST72T311J2 ST72T311J4 ST72T311N2 ST72T311N4
Program Memory - bytes 8K 16K 8K 16K RAM (stack) - bytes 384 (256) 512 (256) 384 (256) 512 (256) Peripherals Watchdog, Timers, SPI, SCI, ADC and optional Low Voltage Detector Reset Operating Supply 3 to 5.5 V CPU Frequency 8MHz max (16MHz oscillator) - 4MHz max over 85°C Temperature Range - 40°C to + 125°C
Package TQFP44 -SDIP42 TQFP64 -SDIP56
Note: The ROM versions are supportedby the ST72314 family.
CSDIP42W
CSDIP56W
TQFP44
Rev. 1.7
September 1999 1/100
1
Table of Contents
1 GENERAL DESCRIPTION . . . . . . ................................................ 4
1.1 INTRODUCTION . . . . . . . . . . . . . ............................................4
1.2 PIN DESCRIPTION . . ..................................................... 5
1.3 EXTERNAL CONNECTIONS . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . ......... 9
1.4 MEMORY MAP . . . .. . . . . . ............................................... 10
1.5 OPTION BYTE . . . . .. .................................................... 13
2 CENTRAL PROCESSING UNIT . . ............................................... 14
2.1 INTRODUCTION . . . . . . . . . . . . . ...........................................14
2.2 MAIN FEATURES . . . .. . . . . . . . . . . .. .. . . . . . . .............................. 14
2.3 CPU REGISTERS . . . .................................................... 14
3 CLOCKS, RESET, INTERRUPTS & POWER SAVING MODES . . . . . . . . . . . . . ...........17
3.1 CLOCK SYSTEM . . . . . .. . . . . . ............................................17
3.1.1 General Description . . . .. ............................................17
3.1.2 External Clock . . . . . . . . . . . . . ........................................17
3.2 RESET . . . . .. . . . . . . .. . . . . . . . . . . . . .. . . . .. ............................... 18
3.2.1 Introduction . . . .................................................... 18
3.2.2 External Reset . . . . . . ...............................................18
3.2.3 Reset Operation . . . . . . . . . . . . . . .. . . . .. . . . . ........................... 18
3.2.4 Low Voltage DetectorReset . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . .. .. . . . . 19
3.3 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . ........ 23
3.4.1 Introduction . . . .................................................... 23
3.4.2 Slow Mode . . .. . . . . . . . . . . . . . . . . . . . ................................. 23
3.4.3 Wait Mode . . . . . . . . . . . . . . . . ........................................23
3.4.4 Halt Mode . . . . . .................................................... 24
3.5 MISCELLANEOUS REGISTER . . . . . . . . . . . ..................................25
4 ON-CHIP PERIPHERALS . . . . . . . . . . . ........................................... 26
4.1 I/O PORTS . . . . . . . . . . .. . . . . . . ........................................... 26
4.1.1 Introduction . . . .................................................... 26
4.1.2 Functional Description . . . . ........................................... 26
4.1.3 I/O Port Implementation . . . . . . . . . . . . . . . . . . . ........................... 27
4.1.4 Register Description . . . . . . ........................................... 30
4.2 WATCHDOG TIMER (WDG) . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . .. .. . . . . . . . . . . . 32
4.2.1 Introduction . . . .................................................... 32
4.2.2 Main Features . .. . . . ...............................................32
4.2.3 Functional Description . . . . ........................................... 32
4.2.4 Hardware Watchdog Option . .. . . . . . . . ................................. 33
4.2.5 Low Power Modes . . . ............................................... 33
4.2.6 Interrupts . . . . . .. . . . . . . . . . . . .. . . . . ................................. 33
4.2.7 Register Description . . . . . . ........................................... 33
4.3 16-BIT TIMER . . . . . . . .. . . . .. . . . . ........................................ 35
4.3.1 Introduction . . . .................................................... 35
4.3.2 Main Features . .. . . . ...............................................35
4.3.3 Functional Description . . . . ........................................... 35
4.3.4 Low Power Modes . . ............................................... 46
4.3.5 Interrupts . . .. . ....................................................46
4.3.6 Register Description . . . . . . ........................................... 47
4.4 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 52
4.4.1 Introduction . . . .................................................... 52
100
2/100
2
Table of Contents
4.4.2 Main Features . .. . . . ...............................................52
4.4.3 General Description . . . .. ............................................ 52
4.4.4 Functional Description . . . . ........................................... 54
4.4.5 Low Power Modes . . . ............................................... 59
4.4.6 Interrupts . . . . . .. . . . . . . . . . . . .. . . . . ................................. 59
4.4.7 Register Description . . . . . . ........................................... 60
4.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . .. . . . .. .. . . . . . . ...........64
4.5.1 Introduction . . . .................................................... 64
4.5.2 Main Features . .. . . . ...............................................64
4.5.3 General description . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 64
4.5.4 Functional Description . . . . ........................................... 66
4.5.5 Low Power Modes . . . ............................................... 73
4.5.6 Interrupts . . .. . ....................................................73
4.5.7 Register Description . . . . . . ........................................... 74
4.6 8-BIT A/D CONVERTER (ADC) . . . . . .. .. . . . . . . . . . ........................... 77
4.6.1 Introduction . . . .................................................... 77
4.6.2 Main Features . .. . . . ...............................................77
4.6.3 Functional Description . . . . ........................................... 78
4.6.4 Low Power Modes . . . ............................................... 78
4.6.5 Interrupts . . . . . .. . . . . . . . . . . . .. . . . . ................................. 78
4.6.6 Register Description . . . . . . ........................................... 79
5 INSTRUCTION SET .. . . . . . . . . . . . . . . . . ........................................ 80
5.1 ST7 ADDRESSING MODES . . . . . . . .. .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . 80
5.1.1 Inherent . . . . . . . . . . . ...............................................81
5.1.2 Immediate . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . .. . . . . . . 81
5.1.3 Direct . ........................................................... 81
5.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . ........................... 81
5.1.5 Indirect (Short, Long) . . . . .. . . . . . . . . . .. .. . . . . . . . . . .. . . . . .. . . . .. . . . . . . . 81
5.1.6 Indirect Indexed (Short,Long) . ........................................ 82
5.1.7 Relative mode (Direct,Indirect) . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 82
5.2 INSTRUCTION GROUPS . . .. . . . . . . . . . . . . .................................83
6 ELECTRICALCHARACTERISTICS . . . . . . . . . . . . . . . . .............................. 86
6.1 ABSOLUTE MAXIMUM RATINGS . . . ........................................86
6.2 RECOMMENDED OPERATING CONDITIONS . . . .............................. 87
6.3 DC ELECTRICAL CHARACTERISTICS . . . . . .. . . . .. . . . .. . . . . . . . . . . ........... 88
6.4 RESET CHARACTERISTICS . . . . . . . . . . .................................... 89
6.5 OSCILLATOR CHARACTERISTICS . . . .. . . . .. ............................... 89
6.6 PERIPHERAL CHARACTERISTICS . . . . . . . .................................. 89
7 GENERAL INFORMATION . . . . . . . . . ............................................ 95
7.1 EPROM ERASURE . . .. . . . . . . . . . . . . . . . . . . . ............................... 95
7.2 PACKAGE MECHANICALDATA . . . . . . .. . . . . . . . .. ........................... 96
7.3 ORDERING INFORMATION . . . . . .. . . . . . . .................................. 99
8 SUMMARY OF CHANGES . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 100
3/100
3
ST72E311 ST72T311
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
The ST72T311 HCMOS Microcontroller Unit (MCU) is a member of the ST7 family.The device is based on an industry-standard 8-bit core and features an enhanced instruction set. The device is normally operated at a 16 MHz oscillator fre­quency. Under software control, the ST72T311 may be placed in either Wait, Slow or Halt modes, thus reducing power consumption. The enhanced instruction set and addressing modes afford real programming potential. In addition to standard 8-bit data management, the ST72T311 features true bit manipulation, 8x8 unsigned multiplication and indirect addressing modeson the whole mem­ory. The device includes a low consumption and
Figure 1. ST72T311 Block Diagram
Internal
OSCIN
OSCOUT
RESET
PF0 -> PF2,4,6,7
OSC
CONTROL
AND LVD
8-BIT CORE
ALU
PROGRAM
MEMORY
(8 - 16K Bytes)
RAM
(384 - 512 Bytes)
PORT F
TIMER A
CLOCK
fast start on-chip oscillator, CPU, program memo­ry (OTP/EPROM versions), RAM, 44 (ST72T311N) or 32 (ST72T311J) I/O lines, a Low Voltage Detector (LVD) and the following on-chip peripherals: Analog-to-Digital converter (ADC) with 8 (ST72T311N)or 6(ST72T311J) multiplexed analog inputs, industry standard synchronous SPI and asynchronous SCI serial interfaces, digital Watchdog, two independent 16-bit Timers, one featuring an External Clock Input, andboth featur­ing Pulse Generatorcapabilities, 2 Input Captures and 2 Output Compares (only1 Input Capture and 1 Output Compare on Timer A).
PA0 -> PA7
(8 bits for ST72T311N)
(5 bits for ST72T311J)
PB0 -> PB7 (8 bits for ST72T311N) (5 bits for ST72T311J)
PC0 -> PC7
(8 bits)
PD0 -> PD7 (8 bits for ST72T311N) (6 bits for ST72T311J)
PE0 -> PE7
(6 bits for ST72T311N)(6 bits)
(2 bits for ST72T311J)
ADDRESS AND DATA BUS
PORT A
PORT B
TIMER B
PORT C
SPI
PORT D
8-BIT ADC
PORT E
SCI
4/100
V
DD
V
SS
POWER SUPPLY
WATCHDOG
V
DDA
V
SSA
4
1.2 PIN DESCRIPTION Figure 2. 64-Pin Thin QFP Package Pinout
1) PP
DD_2
SS_2
OSCIN
OSCOUT
V
NCNCRESET
TEST/V
PA7
PA6
PA5
NCNCPE1/RDI
64 63626160 5958 5756 55545352 51 50 49
PE4
1
PE5
2
PE6
3
PE7
4
(EI2)
PB0
5
(EI2)
PB1
6
(EI2)
PB2
7
(EI2)
PB3
8
(EI3)
PB4
9
(EI3)
PB5
10
(EI3)
11
PB6
(EI3)
12
PB7 AIN0/PD0 AIN1/PD1 AIN2/PD2 AIN3/PD3
13 14 15 16
17 18192021 222324 29 30313225 262728
AIN4/PD4
1. VPPon EPR OM/OTP only
AIN5/PD5
AIN6/PD6
AIN7/PD7
PE0/TDO
V
DDA
V
V
SSA
DD_3
V
V
SS_3
(EI1)
(EI1)
(EI1)
PF1
PF2
CLKOUT/PF0
NC
PA4
48 47
(EI0)
46
(EI0)
45
(EI0)
44
(EI0)
43
42 41 40 39 38 37 36 35 34 33
NC
ICAP1_A/PF6
OCMP1_A/PF4
EXTCLK_A/PF7
V
SS_1
V
DD_1
PA3 PA2 PA1 PA0 PC7/SS PC6/SCK PC5/MOSI PC4/MISO PC3/ICAP1_B PC2/ICAP2_B PC1/OCMP1_B PC0/OCMP2_B V
SS_0
V
DD_0
ST72E311 ST72T311
Figure 4. 44-Pin Thin QFP Package Pinout
1) PP
DD_2
SS_2
V
V
RESET
TEST/V
PA7
PA6
PA5
PE0/TD0
PE1/RDI
PB0 PB1 PB2 PB3
PB4 AIN0/PD0 AIN1/PD1 AIN2/PD2 AIN3/PD3 AIN4/PD4
44 43 42 41 40 39 38 37 36 35 34
1
(EI2)
2
(EI2)
3
(EI2)
4
(EI2)
5
(EI3)
6 7 8 9 10 11
12 13 14 15 16 17 18 19
AIN5/PD5
1. VPPon EPROM/OTP only
V
DDA
OSCIN
SSA
V
OSCOUT
(EI1)
(EI1)
(EI1)
PF1
PF2
CLKOUT/PF0
OCMP1_A/PF4
PA4
33 32
(EI0)
31 30 29 28
27 26 25 24 23
20 21 22
SS_0
DD_0
V
V
ICAP1_A/PF6
EXTCLK_A/PF7
V
SS_1
V
DD_1
PA3 PC7/SS PC6/SCK PC5/MOSI PC4/MISO PC3/ICAP1_B PC2/ICAP2_B PC1/OCMP1_B PC0/OCMP2_B
Figure 3. 56-Pin Shrink DIPPackage Pinout
PB4 PB5 PB6
PB7 AIN0/PD0 AIN1/PD1 AIN2/PD2 AIN3/PD3 AIN4/PD4 AIN5/PD5 AIN6/PD6 AIN7/PD7
V
DDA
V
SSA
CLKOUT/PF0
PF1
OCMP1_A/PF4
EXTCLK_A/PF7
PC0/OCMP2_B PC1/OCMP1_B
1.VPPon EPROM/OTP only
PF2
ICAP1_A/PF6
V
DD_0
V
SS_0
PC2/ICAP2_B PC3/ICAP1_B
PC4/MISO
PC5/MOSI
1 (EI3) 2 (EI3) 3 (EI3) 4 (EI3) 5 6 7 8 9 10 11 12 13 14
15 (EI1) 16 (EI1) 17 (EI1) 18 19 20 21 22 23 24 25 26 27 28 29
(EI2) 56 (EI2) 55 (EI2) 54 (EI2) 53
(EI0) 34 (EI0) 33 (EI0) 32 (EI0) 31
PB3 PB2 PB1
PB0 PE7
52
PE6
51
PE5
50
PE4
49
PE1/RDI
48
PE0/TD0
47
V
46
DD_2
OSCIN
45
OSCOUT
44
V
43
SS_2
42
RESET TEST/V PA7 PA6 PA5 PA4 V
SS_1
V
DD_1
PA3 PA2 PA1 PA0 PC7/SS
1)
PP
41 40 39 38 37 36 35
30
PC6/SCK
Figure 5. 42-Pin Shrink DIP Package Pinout
PB4 AIN0/PD0 AIN1/PD1 AIN2/PD2 AIN3/PD3 AIN4/PD4 AIN5/PD5
V
DDA
V
SSA
CLKOUT/PF0
PF1
OCMP1_A/PF4
EXTCLK_A/PF7
PC0/OCMP2_B PC1/OCMP1_B
1. VPPon EPROM/OTP only
PF2
ICAP1_A/PF6
PC2/ICAP2_B PC3/ICAP1_B
PC4/MISO PC5/MOSI
1
(EI3) 2 3 4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
(EI1) (EI1) (EI1)
(EI2) (EI2) (EI2) (EI2)
(EI0)
42 41 40 39 38 37 36 35 34 33 32 31 30 29
28 27 26 25 24 23 22
PB3 PB2 PB1 PB0 PE1/RDI PE0/TD0
V
DD_2
OSCIN OSCOUT
V
SS_2
RESET TEST/V PA7 PA6 PA5 PA4
V
SS_1
V
DD_1
PA3 PC7/SS PC6/SCK
1)
PP
5/100
5
ST72E311 ST72T311
Table 1. ST72T311Nx Pin Description
Pin n°
QFP64
Pin n°
SDIP56
Pin Name Type Description Remarks
1 49 PE4 I/O Port E4 High Sink 2 50 PE5 I/O Port E5 High Sink 3 51 PE6 I/O Port E6 High Sink 4 52 PE7 I/O Port E7 High Sink 5 53 PB0 I/O Port B0 External Interrupt: EI2 6 54 PB1 I/O Port B1 External Interrupt: EI2 7 55 PB2 I/O Port B2 External Interrupt: EI2 8 56 PB3 I/O Port B3 External Interrupt: EI2
9 1 PB4 I/O Port B4 External Interrupt: EI3 10 2 PB5 I/O Port B5 External Interrupt: EI3 11 3 PB6 I/O Port B6 External Interrupt: EI3 12 4 PB7 I/O Port B7 External Interrupt: EI3 13 5 PD0/AIN0 I/O Port D0 or ADC Analog Input 0 14 6 PD1/AIN1 I/O Port D1 or ADC Analog Input 1 15 7 PD2/AIN2 I/O Port D2 or ADC Analog Input 2 16 8 PD3/AIN3 I/O Port D3 or ADC Analog Input 3 17 9 PD4/AIN4 I/O Port D4 or ADC Analog Input 4 18 10 PD5/AIN5 I/O Port D5 or ADC Analog Input 5 19 11 PD6/AIN6 I/O Port D6 or ADC Analog Input 6 20 12 PD7/AIN7 I/O Port D7 or ADC Analog Input 7 21 13 V 22 14 V 23 V 24 V
DDA SSA DD_3 SS_3
S Power Supply for analog peripheral (ADC) S Ground for analog peripheral (ADC) S Main power supply
S Ground 25 15 PF0/CLKOUT I/O Port F0 or CPU Clock Output External Interrupt: EI1 26 16 PF1 I/O Port F1 External Interrupt: EI1 27 17 PF2 I/O Port F2 External Interrupt: EI1 28 NC Not Connected 29 18 PF4/OCMP1_A I/O Port F4 or Timer A Output Compare 1 30 NC Not Connected 31 19 PF6/ICAP1_A I/O Port F6 or Timer AInput Capture 1 32 20 PF7/EXTCLK_A I/O Port F7 or External Clock on Timer A 33 21 V 34 22 V
DD_0 SS_0
S Main power supply
S Ground 35 23 PC0/OCMP2_B I/O Port C0 or Timer B Output Compare 2 36 24 PC1/OCMP1_B I/O Port C1 or Timer B Output Compare 1 37 25 PC2/ICAP2_B I/O Port C2 or Timer B Input Capture 2 38 26 PC3/ICAP1_B I/O Port C3 or Timer B Input Capture 1 39 27 PC4/MISO I/O Port C4 or SPI Master In/ Slave Out Data 40 28 PC5/MOSI I/O Port C5 or SPI Master Out/ Slave In Data 41 29 PC6/SCK I/O Port C6 or SPI Serial Clock 42 30 PC7/SS I/O Port C7 or SPI Slave Select 43 31 PA0 I/O Port A0 External Interrupt: EI0 44 32 PA1 I/O Port A1 External Interrupt: EI0
6/100
6
ST72E311 ST72T311
Pin n°
QFP64
Pin n°
SDIP56
Pin Name Type Description Remarks
45 33 PA2 I/O Port A2 External Interrupt: EI0 46 34 PA3 I/O Port A3 External Interrupt: EI0 47 35 V 48 36 V
DD_1 SS_1
S Main power supply
S Ground 49 37 PA4 I/O Port A4 High Sink 50 38 PA5 I/O Port A5 High Sink 51 39 PA6 I/O Port A6 High Sink 52 40 PA7 I/O Port A7 High Sink
53 41 TEST/V
PP
1)
S
Test mode pin. In the EPROM programming mode, thispin acts as the programming voltage input V
PP.
This pin must be tied low in user mode
54 42 RESET I/O Bidirectional. Active low. Top priority non maskable interrupt. 55 NC Not Connected 56 NC Not Connected 57 43 V
SS_2
58 44 OSCOUT O 59 45 OSCIN I 60 46 V
DD_2
S Ground
Input/Output Oscillator pin. These pins connect a parallel-resonant crystal, or an external source to theon-chip oscillator.
S Main power supply 61 47 PE0/TDO I/O Port E1 or SCI Transmit Data Out 62 48 PE1/RDI I/O Port E1 or SCI Receive Data In 63 NC Not Connected 64 NC Not Connected
Note 1:VPPon EPROM/OTP only.
Table 2. ST72T311Jx Pin Description
Pin n°
QFP44
Pin n°
SDIP42
Pin Name Type Description Remarks
1 38 PE1/RDI I/O Port E1 or SCI Receive Data In 2 39 PB0 I/O Port B0 External Interrupt: EI2 3 40 PB1 I/O Port B1 External Interrupt: EI2 4 41 PB2 I/O Port B2 External Interrupt: EI2 5 42 PB3 I/O Port B3 External Interrupt: EI2 6 1 PB4 I/O Port B4 External Interrupt: EI3 7 2 PD0/AIN0 I/O Port D0or ADC Analog Input 0 8 3 PD1/AIN1 I/O Port D1or ADC Analog Input 1
9 4 PD2/AIN2 I/O Port D2or ADC Analog Input 2 10 5 PD3/AIN3 I/O Port D3 or ADC Analog Input 3 11 6 PD4/AIN4 I/O Port D4 or ADC Analog Input 4 12 7 PD5/AIN5 I/O Port D5 or ADC Analog Input 5 13 8 V 14 9 V
DDA SSA
S Power Supply for analog peripheral (ADC)
S Ground for analog peripheral (ADC) 15 10 PF0/CLKOUT I/O Port F0 or CPU Clock Output External Interrupt: EI1 16 11 PF1 I/O Port F1 External Interrupt: EI1 17 12 PF2 I/O Port F2 External Interrupt: EI1 18 13 PF4/OCMP1_A I/O Port F4 or Timer A Output Compare 1
7/100
7
ST72E311 ST72T311
Pin n°
QFP44
Pin n°
SDIP42
Pin Name Type Description Remarks
19 14 PF6/ICAP1_A I/O Port F6 or Timer A Input Capture 1 20 15 PF7/EXTCLK_A I/O Port F7 or External Clock on Timer A 21 V 22 V
DD_0 SS_0
S Main power supply
S Ground 23 16 PC0/OCMP2_B I/O Port C0or Timer B Output Compare 2 24 17 PC1/OCMP1_B I/O Port C1or Timer B Output Compare 1 25 18 PC2/ICAP2_B I/O Port C2or Timer B Input Capture 2 26 19 PC3/ICAP1_B I/O Port C3or Timer B Input Capture 1 27 20 PC4/MISO I/O Port C4or SPI Master In / Slave Out Data 28 21 PC5/MOSI I/O Port C5or SPI Master Out / Slave In Data 29 22 PC6/SCK I/O Port C6 or SPI Serial Clock 30 23 PC7/SS I/O Port C7or SPI Slave Select 31 24 PA3 I/O Port A3 External Interrupt: EI0 32 25 V 33 26 V
DD_1 SS_1
S Main power supply
S Ground 34 27 PA4 I/O Port A4 High Sink 35 28 PA5 I/O Port A5 High Sink 36 29 PA6 I/O Port A6 High Sink 37 30 PA7 I/O Port A7 High Sink
38 31 TEST/V
PP
1)
S
Test mode pin. In the EPROM programming mode, this pin acts as the programming voltage input V
PP.
This pin must be tied low in user mode
39 32 RESET I/O Bidirectional. Active low. Top priority non maskable interrupt. 40 33 V
SS_2
41 34 OSCOUT O 42 35 OSCIN I 43 36 V
DD_2
S Ground
Input/Output Oscillator pin. These pins connect a parallel-resonant crystal, or an external source to the on-chip oscillator.
S Main power supply 44 37 PE0/TDO I/O Port E0 or SCI Transmit Data Out
Note 1:VPPon EPROM/OTP only.
8/100
8
1.3 EXTERNAL CONNECTIONS
ST72E311 ST72T311
The following figure shows the recommended ex­ternal connections for the device.
The VPPpin is only used for programming OTP and EPROM devices and must be tied to ground in user mode.
The 10 nF and 0.1 µF decoupling capacitors on the power supply lines are a suggested EMC per­formance/cost tradeoff.
Figure 6. Recommended External Connections
V
DD
Optional if Low Voltage
Detector (LVD) isused
EXTERNAL RESET CIRCUIT
10nF
+
See A/D Converter Section
V
DD
0.1µF
0.1µF
The external reset network is intended to protect the device against parasitic resets, especially in noisy environments.
Unused I/Os should be tied high to avoid any un­necessary power consumption on floating lines. An alternative solution is to program the unused ports as inputs with pull-up.
V
PP
V
4.7K
DD
V
SS
V
DDA
V
SSA
RESET
0.1µF
See Clocks Section
Or configure unused I/O ports by software as input with pull-up
V
10K
DD
OSCIN
OSCOUT
Unused I/O
9/100
9
ST72E311 ST72T311
1.4 MEMORY MAP Figure 7. Program Memory Map
0000h
007Fh
0080h
01FFh
027Fh
0200h / 0280h
BFFFh C000h
E000h
FFDFh
FFE0h
FFFFh
HW Registers
(see Table 4)
384 Bytes RAM
512 Bytes RAM
Reserved
16K Bytes
Program
8K Bytes
Memoryl
Program
Memory
Interrupt & Reset Vectors
(see Table 3)
0080h
Short Addressing
00FFh
0100h
01FFh
0080h
00FFh
0100h
RAM (zero page)
256 Bytes Stack/
16-bit Addressing RAM
Short Addressing
RAM (zero page)
256 Bytes Stack/
16-bit Addressing RAM
01FFh
0200h
027Fh
16-bit Addressing
RAM
Table 3. Interrupt Vector Map
Vector Address Description Remarks
FFE0-FFE1h FFE2-FFE3h FFE4-FFE5h FFE6-FFE7h
FFE8-FFE9h FFEA-FFEBh FFEC-FFEDh
FFEE-FFEFh
FFF0-FFF1h
FFF2-FFF3h
FFF4-FFF5h
FFF6-FFF7h
FFF8-FFF9h
FFFA-FFFBh
FFFC-FFFDh
FFFE-FFFFh
TIMER B Interrupt Vector TIMER A Interrupt Vector
External Interrupt Vector EI3 External Interrupt Vector EI2 External Interrupt Vector EI1 External Interrupt Vector EI0
TRAP (software) Interrupt Vector
Not Used Not Used Not Used
SCI Interrupt Vector
SPI interrupt vector
Not Used
Not Used Not Used
RESET Vector
10/100
10
Internal Interrupt Internal Interrupt Internal Interrupt Internal Interrupt Internal Interrupt
External Interrupt External Interrupt External Interrupt External Interrupt
CPU Interrupt
ST72E311 ST72T311
Table 4. Hardware Register Memory Map
Address Block
0000h 0001h
Port A
0002h
Register
Label
PADR PADDR PAOR
Register Name
Data Register Data Direction Register
Option Register 0003h Reserved Area (1 byte) 0004h 0005h 0006h
Port C
PCDR PCDDR PCOR
Data Register
Data Direction Register
Option Register 0007h Reserved Area (1 byte) 0008h 0009h
000Ah
Port B
PBDR PBDDR PBOR
Data Register
Data Direction Register
Option Register 000Bh Reserved Area (1 byte) 000Ch
000Dh 000Eh
Port E
PEDR PEDDR PEOR
Data Register
Data Direction Register
Option Register 000Fh Reserved Area (1 byte) 0010h
0011h 0012h
Port D
PDDR PDDDR PDOR
Data Register
Data Direction Register
Option Register 0013h Reserved Area (1 byte) 0014h 0015h 0016h 0017h to 001Fh
Port F
PFDR PFDDR PFOR
Data Register
Data Direction Register
Option Register
Reserved Area (9 bytes)
0020h MISCR Miscellaneous Register 00h 0021h 0022h 0023h 0024h to 0029h 002Ah
002Bh 002Ch to 0030h
SPI
WDG
SPIDR SPICR SPISR
WDGCR WDGSR
SPI Data I/O Register
SPI Control Register
SPI Status Register
Reserved Area (6 bytes)
Watchdog Control Register
Watchdog Status Register
Reserved Area (5 bytes)
Reset
Status
00h 00h 00h
00h 00h 00h
00h 00h 00h
00h 00h
0Ch
00h 00h 00h
00h 00h 28h
xxh xxh
00h
7Fh 00h
Remarks
R/W R/W
1)
R/W
R/W R/W R/W
R/W R/W
1)
R/W
R/W R/W
1)
R/W
R/W R/W
1)
R/W
R/W R/W
1)
R/W
R/W R/W Read Only
R/W
3)
R/W
11
11/100
ST72E311 ST72T311
Address Block
0031h 0032h 0033h 0034h-0035h
0036h-0037h
0038h-0039h
Timer A
003Ah-003Bh
003Ch-003Dh
003Eh-003Fh
Register
Label
TACR2 TACR1 TASR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Register Name
Control Register2
Control Register1
Status Register
Input Capture1 High Register
Input Capture1 Low Register
Output Compare1 High Register
Output Compare1 Low Register
Counter High Register
Counter Low Register
Alternate Counter High Register
Alternate Counter Low Register
Input Capture2 High Register
Input Capture2 Low Register
Output Compare2 High Register
Output Compare2 Low Register
Reset
Status
00h 00h
xxh xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W
R/W 0040h Reserved Area (1 byte) 0041h
0042h 0043h 0044h-0045h
0046h-0047h
0048h-0049h
004Ah-004Bh
004Ch-004Dh
004Eh-004Fh
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h 0058h to 006Fh 0070h 0071h 0072h to 007Fh
Timer B
SCI
ADC
TBCR2 TBCR1 TBSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
ADCDR ADCCSR
Control Register2 Control Register1 Status Register Input Capture1 High Register Input Capture1 Low Register Output Compare1 High Register Output Compare1 Low Register Counter High Register Counter Low Register Alternate Counter High Register Alternate Counter Low Register Input Capture2 High Register Input Capture2 Low Register Output Compare2 High Register Output Compare2 Low Register
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved SCI Extended Transmit Prescaler Register
Reserved Area (24 bytes)
ADC Data Register ADC Control/Status Register
Reserved Area (14 bytes)
00h 00h
xxh xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
C0h
xxh
00x----xb
xxh 00h 00h
---
00h
00h 00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W Read Only R/W R/W R/W R/W R/W Reserved R/W
Read Only R/W
Notes:
1. The bits corresponding to unavailable pins are forcedto 1by hardware, this affects the reset status value.
2. External pin not available.
3. Not used in versions without Low Voltage Detector Reset.
Remarks
2)
2)
2)
2)
12/100
12
1.5 OPTION BYTE
ST72E311 ST72T311
The user has the option to select software watch­dog or hardware watchdog (see description in the Watchdog chapter). When programming EPROM or OTP devices, this option is selected in a menu by the user of the EPROM programmer before burning the EPROM/OTP. The Option Byte is lo­cated in a non-user map. No address has to be specified. TheOption Byte is atFFh after UVeras­ure and must be properly programmed to set de­sired options.
OPTBYTE
70
- - - - b3 b2 - WDG
Bit 7:4 = Not used
Bit 3 = Reserved, must be cleared.
Bit 2 = Reserved, must be set onST72T311N de­vices and mustbe cleared onST72T311J devices.
Bit 1 = Not used
Bit 0 = WDG
Watchdog disable
0: The Watchdog is enabled after reset (Hardware
Watchdog).
1: The Watchdog is not enabled after reset (Soft-
ware Watchdog).
13
13/100
ST72E311 ST72T311
2 CENTRAL PROCESSING UNIT
2.1 INTRODUCTION
This CPU hasa full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.
2.2 MAIN FEATURES
63 basicinstructionsFast 8-bit by 8-bit multiply17 main addressing modes (with indirect
addressing mode)
Two 8-bit index registers16-bit stackpointer8 MHzCPU internal frequencyLow power modesMaskable hardware interruptsNon-maskable software interrupt
2.3 CPU REGISTERS
The 6 CPU registers shown in Figure 8 are not present in thememory mappingand are accessed by specificinstructions.
Figure 8. CPU Registers
70
RESET VALUE = XXh
70
RESET VALUE= XXh
70
RESET VALUE= XXh
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.
Index Registers (Xand Y)
In indexedaddressing modes, these 8-bitregisters are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede in­struction (PRE) to indicate that the following in­struction refers to the Y register.)
The Y register is notaffected by theinterrupt auto­matic procedures (notpushed to and popped from the stack).
Program Counter (PC)
The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program CounterLow which is the LSB) and PCH (Program Counter High which is the MSB).
ACCUMULATOR
X INDEX REGISTER
Y INDEX REGISTER
15 8
RESET VALUE= RESET VECTOR @ FFFEh-FFFFh
15
RESET VALUE = STACKHIGHER ADDRESS
14/100
PCH
RESET VALUE =
7
70
1C11HI NZ
1X11X1XX
87 0
PCL
14
0
PROGRAM COUNTER
CONDITION CODE REGISTER
STACK POINTER
X = Undefined Value
ST72E311 ST72T311
CENTRAL PROCESSING UNIT (Cont’d) CONDITION CODE REGISTER (CC)
Read/Write Reset Value: 111x1xxx
70
ter it and reset by the IRET instruction at the end of the interrupt routine. If the I bit is cleared by soft­ware inthe interrupt routine, pending interrupts are serviced regardless of the priority levelof the cur­rent interrupt routine.
111HINZC
The 8-bit Condition Code register contains the in­terrupt mask and four flags representative of the result of the instruction just executed. Thisregister can also be handled by the PUSH and POP in­structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Bit 4 = H
Half carry
.
This bit isset by hardware when a carry occurs be­tween bits 3 and 4 of the ALU during an ADD or ADC instruction.It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tines.
Bit 3 = I
Interrupt mask
.
This bit is set by hardware when entering in inter­rupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software. 0: Interrupts are enabled. 1: Interrupts are disabled.
This bit is controlled by the RIM, SIM and IRET in­structions andis tested by the JRM and JRNM in­structions.
Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptable because the I bit is set by hardware when youen-
Bit 2 = N
Negative
.
This bit is set and cleared by hardware.It is repre­sentative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the 7 bit of the result. 0:The result of the lastoperation is positive or null. 1: The result of the last operation is negative
(i.e. the most significant bit is a logic 1).
This bit isaccessed bythe JRMIand JRPL instruc­tions.
Bit 1 = Z
Zero
.
This bit is set and clearedby hardware. Thisbit in­dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions.
Bit 0 = C
Carry/borrow.
This bit is set and cleared by hardware and soft­ware. It indicates an overflow or anunderflow has occurred during the last arithmetic operation. 0: No overflowor underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCFand RCFinstructions and tested by theJRC and JRNC instructions. It is also affected by the “bit testand branch”, shift and rotate instructions.
th
15
15/100
ST72E311 ST72T311
CENTRAL PROCESSING UNIT (Cont’d) Stack Pointer (SP)
Read/Write Reset Value: 01FFh
15 8
00000001
70
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
The Stack Pointer is a 16-bit register which is al­ways pointingto the next freelocation in the stack. It isthen decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 9).
Since the stack is 256 bytes deep, the 8th most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer in­struction (RSP), the Stack Pointer contains its re­set value (the SP7 to SP0 bits are set) which is the stack higheraddress.
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in­struction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upperlimit, with­out indicating the stack overflow. The previously stored information is then overwritten and there­fore lost.The stack also wrapsin case of anunder­flow.
The stack is used to save the return address dur­ing a subroutine call and the CPU context during an interrupt.The user may alsodirectly manipulate the stack by means of the PUSH and POP instruc­tions. In the case ofan interrupt,the PCLis stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 9.
– Whenan interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return from interrupt, the SP is incremented
and thecontext ispopped from the stack.
A subroutine call occupies twolocations and anin­terrupt five locations in the stack area.
Figure 9. Stack Manipulation Example
@ 0100h
SP
@ 01FFh
CALL
Subroutine
SP
PCH
PCL
Stack Higher Address = 01FFh Stack Lower Address =
Interrupt
Event
SP
CC
A
X PCH PCL PCH PCL
0100h
PUSH Y POP Y IRET
SP
Y
CC
A X
PCH
PCL
PCH
PCL
CC
A X
PCH
PCL
PCH
PCL
SP
PCH
PCL
RET
or RSP
SP
16/100
16
ST72E311 ST72T311
3 CLOCKS, RESET, INTERRUPTS & POWER SAVING MODES
3.1 CLOCK SYSTEM
3.1.1 General Description
The MCU accepts either a crystal or ceramic reso­nator, or an external clock signal todrive the inter­nal oscillator. The internal clock (f
from the external oscillator frequency (f
) is derived
CPU
OSC).
The
external Oscillator clock is first divided by 2, and an additional divisionfactor of 2, 4, 8, or 16 canbe applied, in Slow Mode, to reduce the frequency of the f
; this clock signal is also routed to the on-
CPU
chip peripherals. TheCPU clock signal consists of a squarewave with a duty cycle of50%.
The internal oscillator is designed to operate with an AT-cut parallel resonant quartz crystal resona­tor in the frequency range specified for f
osc
.The
circuit shown in Figure 11 is recommended when using a crystal, and Table 5 lists the recommend­ed capacitance and feedback resistance values. The crystal and associated componentsshould be mounted as close as possible to the input pins in order to minimize output distortion and start-up stabilisation time.
Use of an external CMOS oscillator is recom­mended when crystals outside the specified fre­quency ranges are to be used.
3.1.2 External Clock
An externalclock maybe applied tothe OSCIN in­put with the OSCOUT pin not connected, as shown onFigure 10.
Figure 10. External Clock Source Connections
OSCIN OSCOUT
NC
EXTERNAL
CLOCK
Figure 11. Crystal/CeramicResonator
OSCIN OSCOUT
C
OSCIN
C
OSCOUT
Table 5 Recommended Values for 16 MHz
Crystal Resonator (C0< 7pF)
R
SMAX
R
SMAX
C
OSCIN
C
OSCOUT
: Parasitic series resistance of the quartz
40 60 150
56pF 47pF 22pF 56pF 47pF 22pF
crystal (upperlimit). C0: Parasitic shunt capacitance of the quartz crys-
tal (upper limit 7pF).
C
OSCOUT,COSCIN
: Maximum total capacitance on
pins OSCIN and OSCOUT (the valueincludes the external capacitance tied to the pin plus the para­sitic capacitance of the board and of the device).
Figure 12. Clock Prescaler Block Diagram
C
OSCIN
OSCIN
OSCOUT
%2 %2,4,8, 16
C
OSCOUT
f
CPU
to CPU and Peripherals
17
17/100
ST72E311 ST72T311
3.2 RESET
3.2.1 Introduction
There are four sources of Reset: – RESET pin (externalsource) – Power-On Reset (Internal source) – WATCHDOG (Internal Source) – Low Voltage Detection Reset (internal source) The Reset Service Routine vectoris located at ad-
dress FFFEh-FFFFh.
3.2.2 External Reset
The RESET pin is both an input and an open-drain output with integrated pull-up resistor. When one of the internal Reset sources is active, the Reset pin is driven low for a duration of t
RESET
to reset
the whole application.
3.2.3 ResetOperation
The duration of the Reset state is a minimum of 4096 internal CPU Clock cycles. During the Reset state, all I/Os take their reset value.
A Reset signal originating from an externalsource must have a duration ofat least t
PULSE
in orderto
Figure 13. Reset Block Diagram
be recognised. This detection is asynchronous and therefore the MCUcan enter Reset state even in Halt mode.
At the end of the Reset cycle, the MCU may be held in the Reset state by an External Reset sig­nal. The RESET pin may thus be used to ensure VDDhas risen to a point where the MCU can oper­ate correctly before the user program is run. Fol­lowing a Reset event, or after exiting Halt mode, a 4096 CPU Clock cycle delay period is initiated in order to allow the oscillator to stabilise and to en­sure that recovery has taken place from the Reset state.
In the high state, the RESET pin is connected in­ternally to a pull-up resistor (RON). This resistor can be pulled low by external circuitry to reset the device.
The RESET pin is an asynchronous signal which plays a majorrole in EMS performance. In a noisy environment, it is recommended to use the exter­nal connections shown in Figure 6.
RESET
OSCILLATOR
SIGNAL
V
DD
R
ON
TO ST7
RESET
INTERNAL RESET
COUNTER
POWER-ON RESET WATCHDOG RESET LOW VOLTAGE DETECTOR RESET
18/100
18
RESET (Cont’d)
3.2.4 LowVoltage Detector Reset
The on-chip Low Voltage Detector (LVD) gener­ates a static reset when the supply voltage is be-
cases, it is recommended to use devices without the LVD Reset option and to rely on the watchdog function to detect application runaway conditions.
low a reference value. The LVD functions both during power-on as well as when the power supply drops (brown-out). The reference value for a volt-
Figure14.LowVoltage DetectorResetFunction
age drop is lower than the referencevalue for pow­er-on in order to avoid a parasitic reset when the
V
MCU starts running and sinks current on the sup­ply (hysteresis).
DD
DETECTOR RESET
The LVD Reset circuitry generates a reset when VDDis below:
V
LVDUP
V
LVDDOWN
Provided the minimun VDDvalue (guaranteed for the oscillator frequency) is above V MCU can only be in two modes:
- underfull software control or
when VDDis rising
when VDDis falling
LVDDOWN
, the
Figure 15. Low Voltage Detector Reset Signal
V
LVDUP
- instatic safe reset In this condition, secure operation is always en-
V
DD
sured for the application without the need for ex­ternal reset hardware.
RESET
During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.
In noisy environments, the power supplymay drop for short periods and cause the Low Voltage De-
Note: See electrical characteristics for values of V
LVDUP
and V
tector to generate a Reset too frequently. In such
Figure 16. Temporization timing diagram after an internal Reset
LOW VOLTAGE
FROM
WATCHDOG
RESET
LVDDOWN
ST72E311 ST72T311
RESET
V
LVDDOWN
V
DD
Addresses
V
LVDUP
Temporization (4096CPU clock cycles)
$FFFE
19/100
19
ST72E311 ST72T311
3.3 INTERRUPTS
The ST7 coremay be interrupted by one oftwo dif­ferent methods: maskable hardware interrupts as listed in the Interrupt Mapping Table and a non­maskable software interrupt (TRAP). The Interrupt processing flowchartis shown in Figure 17. The maskable interrupts mustbe enabled clearing the I bitin order tobe serviced. However,disabled interrupts may be latched and processed when they are enabled (see external interrupts subsec­tion).
When an interrupt has to be serviced: – Normal processing is suspended at the end of
the current instruction execution.
– The PC, X, A and CC registers are saved onto
the stack.
– The I bit of theCC register is set to prevent addi-
tional interrupts.
– ThePC is thenloaded withthe interrupt vector of
the interrupt to service and the first instructionof the interrupt serviceroutine is fetched (refer to the Interrupt Mapping Table for vector address­es).
The interrupt service routine should finish with the IRET instruction which causes the contents of the saved registersto be recovered from thestack.
Note: As a consequence of the IRET instruction, the I bit will be cleared and the main program will resume.
Priority management
By default, a servicing interrupt can not be inter­rupted because the I bit is set by hardware enter­ing in interrupt routine.
In the case several interrupts are simultaneously pending, an hardware priority defines which one will be serviced first (see the Interrupt Mapping Ta­ble).
Non Maskable Software Interrupts
This interrupt is entered when the TRAP instruc­tion is executed regardless of the state of theI bit. It will be serviced according to the flowchart on Figure 17.
Interrupts and Low power mode
All interrupts allowthe processor to leave the Wait low power mode. Only external and specific men­tioned interrupts allow the processor to leave the
Halt low power mode (refer to the “Exit from HALT“ column in the Interrupt Mapping Table).
External Interrupts
External interrupt vectorscan be loaded in the PC register if the corresponding external interrupt oc­curred and if the I bit is cleared. These interrupts allow the processor to leave the Halt low power mode.
The external interrupt polarity is selected through the miscellaneous register or interrupt register (if available).
External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.
If several input pins, connected to the same inter­rupt vector, are configured as interrupts, their sig­nals are logically ANDed before entering the edge/ level detection block.
Warning: The type of sensitivity defined in the Miscellaneous or Interrupt register (if available) applies to the EI source. In case of an ANDed source (as described on the I/O ports section), a low level on an I/O pin configured as input with in­terrupt, masks the interrupt request even in case of rising-edge sensitivity.
Peripheral Interrupts
Different peripheral interrupt flags in the status register are able to cause an interrupt when they are active if both:
– TheI bit of the CC register is cleared. – The correspondingenable bit is set in the control
register.
If any of these two conditions is false, the interrupt is latched and thus remains pending.
Clearing an interrupt request is done by: – writing “0” to the corresponding bit in the status
register or
– anaccess to the status register while the flag is
set followed bya read or writeof an associated register.
Note: the clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being en­abled) will therefore be lost if the clear sequence is executed.
20/100
20
INTERRUPTS (Cont’d) Figure 17. Interrupt Processing Flowchart
FROM RESET
ST72E311 ST72T311
EXECUTEINSTRUCTION
RESTORE PC,X, A,CC FROM STACK
BIT I SET
Y
FETCH NEXT INSTRUCTION
N
THIS CLEARS I BIT BY DEFAULT
IRET
Y
N
N
BIT I SET
Y
STACK PC, X, A, CC
SET I BIT
LOAD PC FROM INTERRUPT VECTOR
21
21/100
ST72E311 ST72T311
Table 6. Interrupt Mapping
Source
Block
RESET Reset N/A N/A yes FFFEh-FFFFh TRAP Software N/A N/A no FFFCh-FFFDh
EI0 Ext. Interrupt (Ports PA0:PA3) N/A N/A EI1 Ext. Interrupt (Ports PF0:PF2) N/A N/A FFF4h-FFF5h EI2 Ext. Interrupt (Ports PB0:PB3) N/A N/A FFF2h-FFF3h EI3 Ext. Interrupt (Ports PB4:PB7) N/A N/A FFF0h-FFF1h
SPI
TIMER A
TIMER B
SCI
Transfer Complete Mode Fault MODF Input Capture 1 Output Compare 1 OCF1_A Input Capture 2 ICF2_A Output Compare 2 OCF2_A Timer Overflow TOF_A Input Capture 1 Output Compare 1 OCF1_B Input Capture 2 ICF2_B Output Compare 2 OCF2_B Timer Overflow TOF_B Transmit Buffer Empty Transmit Complete TC Receive Buffer Full RDRF Idle Line Detect IDLE Overrun OR
Description
NOT USED FFFAh-FFFBh NOT USED FFF8h-FFF9h
NOT USED FFEEh-FFEFh
NOT USED FFE4h-FFE5h NOT USED FFE2h-FFE3h NOT USED FFE0h-FFE1h
Register
Label
SPISR
TASR
TBSR
SCISR
Flag
SPIF
ICF1_A
ICF1_B
TDRE
Exit
from
HALT
yes
no
Vector
Address
FFF6h-FFF7h
FFECh-FFEDh
FFEAh-FFEBh
FFE8h-FFE9h
FFE6h-FFE7h
Priority
Order
Highest
Priority
Lowest Priority
22/100
22
3.4 POWER SAVING MODES
3.4.1 Introduction
There are threePower Savingmodes. SlowMode is selected by setting the relevant bits in the Mis­cellaneous register. Wait and Halt modes may be entered usingthe WFI and HALT instructions.
ST72E311 ST72T311
Figure 18. WAIT Flow Chart
WFI INSTRUCTION
3.4.2 Slow Mode
In Slow mode, the oscillator frequency can be di­vided by a value defined in the Miscellaneous Register. The CPU and peripherals are clocked at this lower frequency. Slow mode isused to reduce power consumption, and enables the user to adapt clock frequencyto available supply voltage.
3.4.3 Wait Mode
Wait mode places the MCU in a low power con­sumption mode by stoppingthe CPU. Allperipher­als remain active. During Wait mode, the I bit (CC Register) is cleared, so as to enable all interrupts. All otherregisters and memory remain unchanged. The MCU will remain in Wait mode until an Inter­rupt or Reset occurs, whereupon the Program Counter branches to the starting address of the In­terrupt orReset Service Routine. The MCU will remain in Waitmode until a Reset or an Interrupt occurs, causing it to wake up.
Refer to Figure 18 below.
N
INTERRUPT
Y
OSCILLATOR PERIPH. CLOCK CPU CLOCK
I-BIT
N
RESET
OSCILLATOR PERIPH. CLOCK CPU CLOCK
I-BIT
4096 CPU CLOCK
CYCLES DELAY
ON
ON
OFF CLEARED
Y
ON
ON
ON SET
OSCILLATOR PERIPH. CLOCK CPU CLOCK
I-BIT
FETCH RESET VECTOR
OR SERVICE INTERRUPT
Note: Before servicing an interrupt, the CC register is pushed on the stack. The I-Bit is set during the inter­rupt routine and cleared when the CC register is popped.
ON
ON
ON SET
23/100
23
ST72E311 ST72T311
POWER SAVINGMODES (Cont’d)
3.4.4 Halt Mode
The Halt mode is the MCU lowest power con­sumption mode. The Halt mode is entered by exe­cuting theHALT instruction. The internal oscillator is then turned off, causing all internal processing to be stopped, including the operation of the on-chip peripherals. The Halt mode cannot be used when the watchdog isenabled, ifthe HALT instruction is executed while the watchdog systemis enabled,a watchdog reset is generatedthus resetting the en­tire MCU.
When entering Halt mode, the Ibit in the CC Reg­ister is clearedso as to enable External Interrupts. If an interrupt occurs, the CPU becomes active.
The MCU canexit the Halt mode upon receptionof an interrupt or a reset. Refer to the Interrupt Map­ping Table. The oscillator is then turned on and a stabilization time is provided beforereleasing CPU operation. Thestabilization time is 4096 CPU clock cycles.
After the start up delay, the CPU continuesoper­ation byservicing the interrupt which wakes itup or by fetching the reset vector if a resetwakes it up.
Figure 19. HALT Flow Chart
HALT INSTRUCTION
WATCHDOG
RESET
N
EXTERNAL
INTERRUPT
Y
OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT
N
1)
WDG
ENABLED?
N
OFF
OFF
OFF CLEARED
RESET
Y
Y
1) or some specific interrupts
2) if reset PERIPH. CLOCK = ON ; if interrupt PERIPH. CLOCK = OFF
Note: Before servicing an interrupt, the CC register is pushed on the stack. The I-Bit is set during the inter­rupt routine and cleared when the CC register is popped.
OSCILLATOR PERIPH. CLOCK CPU CLOCK
I-BIT
4096 CPU CLOCK
CYCLES DELAY
OSCILLATOR PERIPH. CLOCK
CPU CLOCK I-BIT
FETCH RESET VECTOR
OR SERVICE INTERRUPT
ON
2)
OFF
ON SET
ON
ON
ON SET
24/100
24
3.5 MISCELLANEOUS REGISTER
ST72E311 ST72T311
The Miscellaneous register allows to select the SLOW operatingmode, the polarity of external in­terrupt requestsand to output the internal clock.
Register Address:0020h — Read/Write Reset Value: 0000 0000 (00h)
Bit 4:3 = PEI[1:0]
Polarity Options
External Interrupt EI1 and EI0
. These bits are set and cleared by software. They determine which event on EI0 and EI1 causes the external interrupt according to Table 8.
Table 8. EI0 and EI1 External Interrupt Polarity
70
PEI3 PEI2 MCO PEI1 PEI0 PSM1 PSM0 SMS
Bit 7:6 = PEI[3:2]
Polarity Options
External Interrupt EI3 and EI2
. These bits are set and cleared by software. They determine which event on EI2 and EI3 causes the
Options
MODE PEI1 PEI0
Falling edge and low level
(Reset state)
Falling edge only 1 0
Rising edge only 0 1
Rising and falling edge 1 1
external interrupt according to Table 7.
Table 7. EI2 and EI3 External Interrupt Polarity
Options
Note: Any modification of oneof these two bits re-
sets the interrupt request related to this interrupt vector.
MODE PEI3 PEI2
Falling edge and low level
(Reset state)
Falling edge only 1 0
Rising edge only 0 1
Rising and falling edge 1 1
Note: Any modification of one of these two bits re­sets the interrupt request related to this interrupt vector.
Bit 5 = MCO
Main Clock Out
This bit isset and cleared by software. Whenset, it enables the output of the Internal Clock on the
00
Bit 2:1 = PSM[1:0]
These bits are set and cleared by soft­ware. They determine the CPU clock when the SMS bit is set according to the following table.
Table 9. f
Value in Slow Mode
CPU
f
Value
CPU
f
OSC
f
OSC
f
OSC
f
OSC
Prescaler forSlow Mode
/4 0 0
/16 0 1
/8 1 0
/32 1 1
PPF0 I/O port. 0 -PF0 is a general purpose I/O port. 1 -MCO alternate function (f
is output on PF0
CPU
pin).
Bit 0 = SMS
Slow Mode Select
This bit is set and cleared by software.
0: Normal Mode - f
CPU=fOSC
/2
(Reset state)
1: Slow Mode -the f
valueis determined by the
CPU
PSM[1:0] bits.
00
PSM1 PSM0
25
25/100
ST72E311 ST72T311
4 ON-CHIP PERIPHERALS
4.1 I/O PORTS
4.1.1 Introduction
The I/O ports offer different functional modes: – transferof datathrough digitalinputs and outputs and forspecific pins: – analog signal input (ADC) – alternate signal input/output for the on-chip pe-
ripherals. – external interrupt generation An I/O port is composed of up to 8 pins. Each pin
can be programmedindependently as digital input (with or without interrupt generation) or digital out­put.
4.1.2 Functional Description
Each portis associated to 2 main registers: – Data Register (DR) – Data Direction Register (DDR) and someof them to an optional register: – Option Register(OR) Each I/Opin may be programmed using thecorre-
sponding register bits in DDR and OR registers: bit X corresponding topin Xof the port. The samecor­respondence is used for the DR register.
The following description takes into account the OR register, for specific ports whichdo notprovide this register refer to the I/O Port Implementation Section 4.1.3. The generic I/O block diagram is shown onFigure 21.
4.1.2.1 Input Modes
The input configuration isselected by clearing the corresponding DDRregister bit.
In this case, reading the DR register returns the digital value applied to the external I/O pin.
Different input modes can be selected by software through theOR register.
Notes:
1. All the inputs are triggered by a Schmitt trigger.
2. When switching from input mode to output mode, the DR register should be written first to output the correct value as soon as the port is con­figured as an output.
Interrupt function
When an I/O is configured in Input with Interrupt, an event on this I/O can generate an external In­terrupt request to theCPU. The interrupt polarity is given independently according to the description mentioned in the Miscellaneous register or in the interrupt register (where available).
Each pin can independently generate an Interrupt request.
Each external interrupt vector is linked to a dedi­cated group of I/O port pins (see Interrupts sec­tion). If several input pins are configured as inputs to the same interrupt vector, their signals are logi­cally ANDed before entering the edge/level detec­tion block. For this reason if one of the interrupt pins is tied low, it masks the other ones.
4.1.2.2 Output Mode
The pin is configuredin output mode by setting the corresponding DDR registerbit.
In this mode, writing “0” or “1” to the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value.
Note: In this mode, the interrupt function is disa­bled.
4.1.2.3 Digital Alternate Function
When an on-chipperipheral is configured to use a pin, the alternate function is automatically select­ed. This alternate function takes priority over standard I/O programming. When the signal is coming from an on-chip peripheral, the I/O pin is automatically configuredin output mode (push-pull or open drain according to the peripheral).
When the signal is going to an on-chip peripheral, the I/O pin has to be configured ininput mode. In this case, the pin’s state is also digitally readable by addressing the DR register.
Notes:
1. Input pull-up configuration can cause an unex­pected value atthe input of the alternate peripher­al input.
2. When the on-chip peripheral uses apin asinput and output, this pin must beconfigured asan input (DDR = 0).
Warning
vated as long as the pin isconfigured as input with interrupt, in order to avoid generating spurious in­terrupts.
: The alternate function must not be acti-
26/100
26
I/O PORTS (Cont’d)
4.1.2.4 Analog Alternate Function
When the pin is used as an ADC input theI/O must be configured as input, floating. The analog multi­plexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.
It isrecommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected an­alog pin.
Warning
: The analog input voltage level must be
4.1.3 I/O Port Implementation
The hardware implementation oneach I/O port de­pends on the settingsin theDDR and OR registers and specific feature of the I/O port such as ADCIn­put (see Figure 21) or true open drain. Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safetransitions are il­lustrated in Figure 20. Other transitions are poten­tially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.
within the limits stated in the Absolute Maximum Ratings.
Figure 20. Recommended I/O State Transition Diagram
ST72E311 ST72T311
INPUT
with interrupt
INPUT
no interrupt
OUTPUT
OUTPUT
push-pullopen-drain
27
27/100
ST72E311 ST72T311
I/O PORTS (Cont’d) Figure 21. I/O BlockDiagram
ALTERNATE OUTPUT
ALTERNATE ENABLE
1
M U
X
0
V
DD
P-BUFFER
(S
EE TABLE BELOW)
DATA BUS
EE TABLE BELOW)
(S
COMMON ANALOG RAIL
DR SEL
ALTERNATE INPUT
DR
LATCH
DDR LATCH
OR
LATCH
ORSEL
DDR SEL
ALTERNATE ENABLE
PULL-UP CONDITION
PULL-UP
V
DD
DIODE
(SEE TABLE BELOW)
PAD
ANALOG ENABLE
(ADC)
ANALOG
GND
SWITCH
(S
EE NOTE BELOW)
N-BUFFER
ALTERNATE
1 M U
X
0
ENABLE
GND
CMOS
SCHMITT TRIGGER
EXTERNAL INTERRUPT
POLARITY
SEL
FROM OTHER BITS
SOURCE (EIx)
Table 10. Port Mode Configuration
Configuration Mode Pull-up P-buffer V
Floating 0 0 1 Pull-up 1 0 1 Push-pull 0 1 1 True Open Drain not present not present not present Open Drain (logic level) 0 0 1
Legend: 0 - present, not activated 1 - present and activated
Notes:
– No OR Register on some ports (see register map). – ADC Switch on ports with analog alternate functions.
28/100
DD
Diode
28
I/O PORTS (Cont’d) Table 11. Port Configuration
ST72E311 ST72T311
Port Pin name
PA0:PA2
Port A
PA3 floating* pull-up with interrupt open-drain push-pull
1)
Input (DDR = 0) Output (DDR = 1)
OR= 0 OR= 1 OR = 0 OR=1
floating* pull-up with interrupt open-drain push-pull
PA4:PA7 floating* true open drain, high sink capability PB0:PB4 floating* pull-up with interrupt open-drain push-pull
Port B
PB5:PB7
1)
floating* pull-up with interrupt open-drain push-pull
Port C PC0:PC7 floating* pull-up open-drain push-pull
PD0:PD5 floating* pull-up open-drain push-pull
Port D
PD6:PD7
1)
floating* pull-up open-drain push-pull
PE0:PE1 floating* pull-up open-drain push-pull
Port E
PE4:PE7
1)
floating*
2)
true open drain,
high sink capability
PF0:PF2 floating* pull-up with interrupt open-drain push-pull
Port F
PF4, PF6,PF7 floating* pull-up open-drain push-pull
Notes:
1. ST72T311N only
2. For OTP/EPROM version, when OR=0: floating & when OR=1: reserved
3. For OTP/EPROM version, when OR=0: open-drain, high sinkcapability & when OR=1: reserved
3)
* Reset state (The bits corresponding to unavailable pins are forced to 1 by hardware, this affects the reset status value).
Warning: Allbits of the DDR register whichcorrespond to unconnected I/Os must be left attheir reset val­ue. They must not be modified by the user otherwise a spurious interruptmay be generated.
29/100
29
ST72E311 ST72T311
I/O PORTS (Cont’d)
4.1.4 Register Description
4.1.4.1 Data registers
Port A Data Register (PADR) Port B Data Register (PBDR) Port C Data Register (PCDR) Port D Data Register (PDDR) Port E Data Register (PEDR) Port F Data Register (PFDR) Read/Write
Reset Value: 0000 0000 (00h)
4.1.4.3 Option registers
Port A OptionRegister (PAOR) Port B OptionRegister (PBOR) Port C Option Register (PBOR) Port D Option Register (PBOR) Port E OptionRegister (PBOR) Port F Option Register (PFOR) Read/Write
Reset Value: see Register Memory Map Table 4
70
D7 D6 D5 D4 D3 D2 D1 D0
Bit 7:0 = D7-D0
Data Register 8 bits.
The DR register has a specific behaviour accord­ing to the selected input/output configuration. Writ­ing the DR register is always taken in account even if the pin is configured as an input. Reading the DR register returns either theDR register latch content (pin configuredas output) or the digital val­ue applied to the I/O pin (pin configured as input).
70
O7 O6 O5 O4 O3 O2 O1 O0
Bit 7:0 = O7-O0
Option Register8 bits.
The OR register allow to distinguish in input mode if the interrupt capability or the floating configura­tion is selected.
In output mode it select push-pull or open-drain capability.
Each bit is set and cleared by software. Input mode:
4.1.4.2 Data direction registers
Port A Data Direction Register (PADDR) Port B Data Direction Register (PBDDR) Port C Data Direction Register (PCDDR)
0: floating input 1: input pull-up with interrupt
Output mode: 0: open-drain configuration
1: push-pull configuration
Port D Data Direction Register (PDDDR) Port E Data Direction Register (PEDDR) Port F Data Direction Register (PFDDR) Read/Write
Reset Value: 0000 0000 (00h) (input mode)
70
DD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0
Bit 7:0 = DD7-DD0
Data Direction Register 8 bits.
The DDR register gives the input/output direction configuration of the pins. Each bits is set and cleared by software.
0: Input mode 1: Output mode
30/100
30
Loading...
+ 70 hidden pages