ON Semiconductor MC34071, MC34072, MC34074, MC3407A, MC33071 Technical data

...
0 (0)
Semiconductor Components Industries, LLC, 1999
October, 1999 – Rev. 2
1 Publication Order Number:
MC34071/D
MC34071,2,4,A
MC33071,2,4,A
High Slew Rate, Wide
Bandwidth, Single Supply
Operational Amplifiers
employed for the MC33071/72/74, MC34071/72/74 series of
monolithic operational amplifiers. This series of operational
amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/µs slew rate
and fast setting time without the use of JFET device technology.
Although this series can be operated from split supplies, it is
particularly suited for single supply operation, since the common
mode input voltage range includes ground potential (V
EE
). With A
Darlington input stage, this series exhibits high input resistance, low
input offset voltage and high gain. The all NPN output stage,
characterized by no deadband crossover distortion and large output
voltage swing, provides high capacitance drive capability, excellent
phase and gain margins, low open loop high frequency output
impedance and symmetrical source/sink AC frequency response.
The MC33071/72/74, MC34071/72/74 series of devices are
available in standard or prime performance (A Suffix) grades and are
specified over the commercial, industrial/vehicular or military
temperature ranges. The complete series of single, dual and quad
operational amplifiers are available in plastic DIP, SOIC and TSSOP
surface mount packages.
Wide Bandwidth: 4.5 MHz
High Slew Rate: 13 V/µs
Fast Settling Time: 1.1 µs to 0.1%
Wide Single Supply Operation: 3.0 V to 44 V
Wide Input Common Mode Voltage Range: Includes Ground (V
EE)
Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
Large Output Voltage Swing: –14.7 V to +14 V (with ±15 V
Supplies)
Large Capacitance Drive Capability: 0 pF to 10,000 pF
Low Total Harmonic Distortion: 0.02%
Excellent Phase Margin: 60°
Excellent Gain Margin: 12 dB
Output Short Circuit Protection
ESD Diodes/Clamps Provide Input Protection for Dual and Quad
P SUFFIX
CASE 626
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 17 of this data sheet.
ORDERING INFORMATION
PIN CONNECTIONS
(Single, Top View)
(Dual, Top View)
Offset Null
V
EE
NC
V
CC
Output
Offset Null
Inputs
V
EE
Inputs 1
Inputs 2
Output 2
Output 1 V
CC
1
2
3
4
8
7
6
5
+
+
1
2
3
4
8
7
6
5
+
1
8
1
8
SO–8
D SUFFIX
CASE 751
Inputs 1
Output 1
V
CC
Inputs 2
Output 2
Output 4
Inputs 4
V
EE
Inputs 3
Output 3
(Quad, T op View)
4
2
3
1
PIN CONNECTIONS
1
2
3
4
5
6
78
9
10
11
12
13
14
+
+
+
+
14
1
14
1
14
1
P SUFFIX
CASE 646
SO–14
D SUFFIX
CASE 751A
TSSOP–14
DTB SUFFIX
CASE 948G
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
2
Offset Null
(MC33071, MC34071 only)
Q1
Q2
Q3 Q4
Q5
Q6
Q7
Q17
Q18
D2
C2
D3
R6 R7
R8
R5
Q15 Q16
Q14
Q13
Q11
Q10
R2
C1
R1
Q9
Q8
Q12
D1
R3 R4
Inputs
V
CC
Output
Current
Limit
V
EE
/Gnd
Base
Current
Cancellation
+
Q19
Bias
Representative Schematic Diagram
(Each Amplifier)
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (from V
EE
to V
CC
) V
S
+44 V
Input Differential Voltage Range V
IDR
Note 1 V
Input Voltage Range V
IR
Note 1 V
Output Short Circuit Duration (Note 2) t
SC
Indefinite sec
Operating Junction Temperature T
J
+150 °C
Storage Temperature Range T
stg
–60 to +150 °C
NOTES: 1.Either or both input voltages should not exceed the magnitude of V
CC
or V
EE
.
2.Power dissipation must be considered to ensure maximum junction temperature (T
J
) is not
exceeded (see Figure 1).
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , V
EE
= –15 V , R
L
= connected to ground, unless otherwise noted. See Note 3 for
T
A
= T
low
to T
high
)
A Suffix Non–Suffix
Characteristics Symbol Min Typ Max Min Typ Max Unit
Input Offset Voltage (R
S
= 100 , V
CM
= 0 V, V
O
= 0 V)
V
CC
= +15 V, V
EE
= –15 V, T
A
= +25°C
V
CC
= +5.0 V, V
EE
= 0 V, T
A
= +25°C
V
CC
= +15 V, V
EE
= –15 V, T
A
= T
low
to T
high
V
IO
0.5
0.5
3.0
3.0
5.0
1.0
1.5
5.0
5.0
7.0
mV
Average Temperature Coefficient of Input Offset Voltage
R
S
= 10 , V
CM
= 0 V, V
O
= 0 V,
T
A
= T
low
to T
high
V
IO
/T 10 10 µV/°C
Input Bias Current (V
CM
= 0 V, V
O
= 0 V)
T
A
= +25°C
T
A
= T
low
to T
high
I
IB
100
500
700
100
500
700
nA
Input Offset Current (V
CM
= 0 V, V
O
= 0V)
T
A
= +25°C
T
A
= T
low
to T
high
I
IO
6.0
50
300
6.0
75
300
nA
Input Common Mode Voltage Range
T
A
= +25°C
T
A
= T
low
to T
high
V
ICR
V
EE
to (V
CC
–1.8)
V
EE
to (V
CC
–2.2)
V
EE
to (V
CC
–1.8)
V
EE
to (V
CC
–2.2)
V
Large Signal Voltage Gain (V
O
= ±10 V, R
L
= 2.0 k)
T
A
= +25°C
T
A
= T
low
to T
high
A
VOL
50
25
100
25
20
100
V/mV
Output Voltage Swing (V
ID
= ±1.0 V)
V
CC
= +5.0 V, V
EE
= 0 V, R
L
= 2.0 k, T
A
= +25°C
V
CC
= +15 V, V
EE
= –15 V, R
L
= 10 k, T
A
= +25°C
V
CC
= +15 V, V
EE
= –15 V, R
L
= 2.0 k,
T
A
= T
low
to T
high
V
OH
3.7
13.6
13.4
4.0
14
3.7
13.6
13.4
4.0
14
V
V
CC
= +5.0 V, V
EE
= 0 V, R
L
= 2.0 k, T
A
= +25°C
V
CC
= +15 V
,
V
EE
= –15 V, R
L
= 10 k, T
A
= +25°C
V
CC
= +15 V, V
EE
= –15 V, R
L
= 2.0 k,
T
A
= T
low
to T
high
V
OL
0.1
–14.7
0.3
–14.3
–13.5
0.1
–14.7
0.3
–14.3
–13.5
V
Output Short Circuit Current (V
ID
= 1.0 V, V
O
= 0 V,
T
A
= 25°C)
Source
Sink
I
SC
10
20
30
30
10
20
30
30
mA
Common Mode Rejection
R
S
10 k, V
CM
= V
ICR
, T
A
= 25°C
CMR 80 97 70 97 dB
Power Supply Rejection (R
S
= 100 )
V
CC
/V
EE
= +16.5 V/–16.5 V to +13.5 V/–13.5 V ,
T
A
= 25°C
PSR 80 97 70 97 dB
Power Supply Current (Per Amplifier, No Load)
V
CC
= +5.0 V, V
EE
= 0 V, V
O
= +2.5 V, T
A
= +25°C
V
CC
= +15 V, V
EE
= –15 V, V
O
= 0 V, T
A
= +25°C
V
CC
= +15 V, V
EE
= –15 V, V
O
= 0 V,
T
A
= T
low
to T
high
I
D
1.6
1.9
2.0
2.5
2.8
1.6
1.9
2.0
2.5
2.8
mA
NOTES: 3.T
low
= –40°C for MC33071, 2, 4, /A T
high
= +85°C for MC33071, 2, 4, /A
=0°C for MC34071, 2, 4, /A = +70°C for MC34071, 2, 4, /A
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
4
AC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V, V
EE
= –15 V, R
L
= connected to ground. T
A
= +25°C, unless otherwise noted.)
A Suffix Non–Suffix
Characteristics Symbol Min Typ Max Min Typ Max Unit
Slew Rate (V
in
= –10 V to +10 V, R
L
= 2.0 k, C
L
= 500 pF)
A
V
= +1.0
A
V
= –1.0
SR
8.0
10
13
8.0
10
13
V/µs
Setting Time (10 V Step, A
V
= –1.0)
To 0.1% (+1/2 LSB of 9–Bits)
To 0.01% (+1/2 LSB of 12–Bits)
t
s
1.1
2.2
1.1
2.2
µs
Gain Bandwidth Product (f = 100 kHz) GBW 3.5 4.5 3.5 4.5 MHz
Power Bandwidth
A
V
= +1.0, R
L
= 2.0 k, V
O
= 20 V
pp
, THD = 5.0%
BW 160 160 kHz
Phase margin
R
L
= 2.0 k
R
L
= 2.0 k, C
L
= 300 pF
f
m
60
40
60
40
Deg
Gain Margin
R
L
= 2.0 k
R
L
= 2.0 k, C
L
= 300 pF
A
m
12
4.0
12
4.0
dB
Equivalent Input Noise Voltage
R
S
= 100 , f = 1.0 kHz
e
n
32 32
nV/ H
z
Equivalent Input Noise Current
f = 1.0 kHz
i
n
0.22 0.22
pA/ H
z
Differential Input Resistance
V
CM
= 0 V
R
in
150 150 M
Differential Input Capacitance
V
CM
= 0 V
C
in
2.5 2.5 pF
Total Harmonic Distortion
A
V
= +10, R
L
= 2.0 k, 2.0 V
pp
V
O
20 V
pp
, f = 10 kHz
THD 0.02 0.02 %
Channel Separation (f = 10 kHz) 120 120 dB
Open Loop Output Impedance (f = 1.0 MHz) |Z
O
| 30 30 W
Figure 1. Power Supply Configurations Figure 2. Offset Null Circuit
Single Supply Split Supplies
1
2
3
4
V
CC
V
EE
V
CC
V
CC
V
EE
V
EE
1
2
3
4
3.0 V to 44 V V
CC
+|V
EE
|44 V
Offset nulling range is approximately ±80 mV with a 10 k
potentiometer (MC33071, MC34071 only).
V
CC
V
EE
1
2
3
4
5
6
7
10 k
+
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
5
R
L
Connected
to Ground T
A
= 25°C
R
L
= 10 k
R
L
= 2.0 k
V
O
, OUTPUT VOLTAGE SWING (V
pp
)
Figure 3. Maximum Power Dissipation versus
T emperature for Package Types
Figure 4. Input Offset Voltage versus
T emperature for Representative Units
Figure 5. Input Common Mode V oltage
Range versus T emperature
Figure 6. Normalized Input Bias Current
versus T emperature
Figure 7. Normalized Input Bias Current versus
Input Common Mode Voltage
Figure 8. Split Supply Output Voltage
Swing versus Supply V oltage
T
A
, AMBIENT TEMPERATURE (°C)
D
P , MAXIMUM POWER DISSIPATION (mW)
–55 –40 –20 0 20 40 60 80 100 120 140 160
8 & 14 Pin Plastic Pkg
SO–14 Pkg
SO–8 Pkg
T
A
, AMBIENT TEMPERATURE (°C)
IO
V , INPUT OFFSET VOLTAGE (mV)
–55 –25 0 25 50 75 100 12
5
V
CC
= +15 V
V
EE
= –15 V
V
CM
= 0
T
A
, AMBIENT TEMPERATURE (°C)
ICR
V , INPUT COMMON MODE VOLTAGE RANGE (V)
–55 –25 0 25 50 75 100 125
V
CC
V
CC
/V
EE
= +1.5 V/ –1.5 V to +22 V/ –22 V
V
EE
T
A
, AMBIENT TEMPERATURE (°C)
IB
I , INPUT BIAS CURRENT (NORMALIZED)
–55 –25 0 25 50 75 100 125
V
CC
= +15 V
V
EE
= –15 V
V
CM
= 0
V
IC
, INPUT COMMON MODE VOLTAGE (V)
–12 –8.0 –4.0 0 4.0 8.0 12
V
CC
= +15 V
V
EE
= –15 V
T
A
= 25°C
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
0 5.0 10 15 20 25
V
IB
I , INPUT BIAS CURRENT (NORMALIZED)
2400
2000
1600
1200
800
400
0
4.0
2.0
0
–2.0
–4.0
V
CC
V
CC
–0.8
V
CC
–1.6
V
CC
–2.4
V
EE
+0.01
V
EE
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.4
1.2
1.0
0.8
0.6
50
40
30
20
10
0
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
6
V
CC
V
CC
= +15 V
R
L
to V
CC
T
A
= 25°C
Gnd
V
CC
V
CC
= +15 V
R
L
= Gnd
T
A
= 25°C
Gnd
V
O
, OUTPUT VOLTAGE SWING (V
pp
)
Figure 9. Single Supply Output Saturation
versus Load Resistance to V
CC
60
Figure 10. Split Supply Output Saturation
versus Load Current
Figure 11. Single Supply Output Saturation
versus Load Resistance to Ground
Figure 12. Output Short Circuit Current
versus T emperature
Figure 13. Output Impedance
versus Frequency
Figure 14. Output Voltage Swing
versus Frequency
0 5.0 10 15 20
I
L,
LOAD CURRENT (±mA)
V
CC
V
EE
Sink
V
CC
/V
EE
= +5.0 V/ –5.0 V to +22 V/ –22 V
T
A
= 25°C
Source
R
L
, LOAD RESISTANCE TO GROUND ()
100 1.0 k 10 k 100 k
sat
V , OUTPUT SATURATION VOLTAGE (V)
R
L
, LOAD RESISTANCE TO V
CC
()
100 1.0 k 10 k 100 k
T
A
, AMBIENT TEMPERATURE (°C)
SC
I , OUTPUT CURRENT (mA)
–55 –25 0 25 50 75 100 125
V
CC
= +15 V
V
EE
= –15 V
R
L
0.1
V
in
= 1.0 V
Sink
Source
f, FREQUENCY (Hz)
O
Z , OUTPUT IMPEDANCE ( )
1.0 k 10 k 100 1.0 M 10 M
A
V
= 1000
A
V
= 100 A
V
= 10 A
V
= 1.0
V
CC
= +15 V
V
EE
= –15 V
V
CM
= 0
V
O
= 0
I
O
= ±0.5 mA
T
A
= 25°C
f, FREQUENCY (Hz)
3.0 k 10 k 30 k 100 k 300 k 1.0 M 3.0 M
V
CC
= +15 V
V
EE
= –15 V
A
V
= +1.0
R
L
= 2.0 k
THD 1.0%
T
A
= 25°C
sat
V , OUTPUT SATURATION VOLTAGE (V)
sat
V , OUTPUT SATURATION VOLTAGE (V)
V
CC
V
CC
–1.0
V
CC
–2.0
V
EE
+2.0
V
EE
+1.0
V
EE
V
CC
–2.0
V
CC
–4.0
V
CC
0.2
0.1
0
0
–0.4
–0.8
2.0
1.0
50
40
30
20
10
0
50
40
30
20
10
0
28
24
20
16
12
8.0
4.0
0
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
7
1. Phase R
L
= 2.0 k
2. Phase R
L
= 2.0 k, C
L
= 300 pF
3. Gain R
L
= 2.0 k
4. Gain R
L
= 2.0 k, C
L
= 300 pF
V
CC
= +15 V
V
EE
= 15 V
V
O
= 0 V T
A
= 25°C
Phase
Margin = 60°
Gain
Margin = 12 dB
3
4
1
2
Gain
V
CC
= +15 V
V
EE
= –15 V
V
O
= 0 V
R
L
= 2.0 k
T
A
= 25°C
Phase
Phase
Margin
= 60°
Figure 15. T otal Harmonic Distortion
versus Frequency
Figure 16. T otal Harmonic Distortion
versus Output Voltage Swing
Figure 17. Open Loop Voltage Gain
versus T emperature
Figure 18. Open Loop Voltage Gain and
Phase versus Frequency
Figure 19. Open Loop Voltage Gain and
Phase versus Frequency
Figure 20. Normalized Gain Bandwidth
Product versus T emperature
f, FREQUENCY (Hz)
10 100 1.0 k 10 k 100 k
A
V
= 1000
A
V
= 100
A
V
= 10
A
V
= 1.0
V
CC
= +15 V
V
EE
= –15 V
V
O
= 2.0 V
pp
R
L
= 2.0 k
T
A
= 25°C
V
O
, OUTPUT VOLTAGE SWING (V
pp
)
THD, TOTAL HARMONIC DISTORTION (%)
0 4.0 8.0 12 16 20
V
CC
= +15 V
V
EE
= –15 V
R
L
= 2.0 k
T
A
= 25°C
A
V
= 1000
A
V
= 100
A
V
= 10
A
V
= 1.0
T
A
, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
V
CC
= +15 V
V
EE
= –15 V
V
O
= –10 V to +10 V
R
L
= 10 k
f 10Hz
f, FREQUENCY (Hz)
1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M 100 M
, EXCESS PHASE (DEGREES)
φ
, EXCESS PHASE (DEGREES)
φ
f, FREQUENCY (MHz)
1.0 2.0 3.0 5.0 7.0 10 20 30
T
A
, AMBIENT TEMPERATURE (°C)
GBW, GAIN BANDWIDTH PRODUCT (NORMALIED)
–55 –25 0 25 50 75 100 12
5
V
CC
= +15 V
V
EE
= –15 V
R
L
= 2.0 k
VOL
A,
O
P
E
N
LOO
P V
OL
T
AGE
GAI
N
(
d
B)
0.4
0.3
0.2
0.1
0
4.0
3.0
2.0
1.0
0
116
112
108
104
100
96
100
80
60
40
20
0
20
10
0
–10
–20
–30
–40
1.15
1.1
1.05
1.0
0.95
0.9
0.85
0
45
90
135
180
100
120
140
160
180
THD
,
T
O
T
AL
H
AR
M
O
N
IC
D
IS
T
OR
T
IO
N
(
%
)
VOL
A,
O
P
E
N
LOO
P V
OL
T
AGE
GAI
N
(
d
B)
VOL
A , OPEN LOOP VOLTAGE GAIN (dB)
Loading...
+ 14 hidden pages