Motorola SN54LS390J, SN74LS390D, SN74LS390N Datasheet

0 (0)
Motorola SN54LS390J, SN74LS390D, SN74LS390N Datasheet

DUAL DECADE COUNTER; DUAL 4-STAGE

BINARY COUNTER

The SN54/74LS390 and SN54/74LS393 each contain a pair of high-speed 4-stage ripple counters. Each half of the LS390 is partitioned into a divide-by-two section and a divide-by five section, with a separate clock input for each section. The two sections can be connected to count in the 8.4.2.1 BCD code or they can count in a biquinary sequence to provide a square wave (50% duty cycle) at the final output.

Each half of the LS393 operates as a Modulo-16 binary divider, with the last three stages triggered in a ripple fashion. In both the LS390 and the LS393, the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state.

Dual Versions of LS290 and LS293

LS390 has Separate Clocks Allowing 2, 2.5, 5

Individual Asynchronous Clear for Each Counter

Typical Max Count Frequency of 50 MHz

Input Clamp Diodes Minimize High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

SN54 / 74LS390

VCC

 

CP0

 

MR Q0

 

CP1

 

Q1

 

Q2

 

Q3

16

 

15

 

14

 

13

 

12

 

11

 

10

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

3

 

4

 

5

 

 

6

 

7

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CP0

MR

Q0

 

CP1

 

Q1

Q2

Q3

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Flatpak version

 

 

 

 

 

 

 

SN54 / 74LS393

 

 

 

 

 

 

 

 

 

 

has the same pinouts

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Connection Diagram) as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

CP

 

MR

Q0

 

Q1

 

 

Q2

 

 

Q3

 

the Dual In-Line Package.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

13

 

12

 

11

 

10

 

 

9

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7

CP MR Q0 Q1 Q2 Q3 GND

SN54/74LS390

SN54/74LS393

DUAL DECADE COUNTER;

DUAL 4-STAGE

BINARY COUNTER

LOW POWER SCHOTTKY

 

 

 

J SUFFIX

 

 

 

CERAMIC

 

 

 

CASE 620-09

16

1

 

 

 

 

 

 

 

 

N SUFFIX

 

 

 

PLASTIC

16

 

 

CASE 648-08

 

 

 

 

1

 

 

 

 

 

D SUFFIX

 

16

 

SOIC

 

 

CASE 751B-03

 

 

1

 

 

 

 

 

 

J SUFFIX

 

 

 

CERAMIC

 

 

 

CASE 632-08

14

1

 

 

 

 

 

 

 

 

N SUFFIX

 

 

 

PLASTIC

14

 

 

CASE 646-06

 

 

 

 

1

 

 

 

 

 

D SUFFIX

 

14

 

SOIC

 

 

CASE 751A-02

 

 

1

 

 

 

ORDERING INFORMATION

SN54LSXXXJ Ceramic

SN74LSXXXN Plastic

SN74LSXXXD SOIC

FAST AND LS TTL DATA

5-544

SN54/74LS390 SN54/74LS393

PIN NAMES

 

LOADING (Note a)

 

 

 

HIGH

LOW

CP

Clock (Active LOW going edge)

 

 

 

 

 

 

1.0

U.L.

 

 

Input to +16 (LS393)

0.5

U.L.

CP0

Clock (Active LOW going edge)

 

 

 

 

 

 

Input to 2 (LS390)

0.5

U.L.

1.0

U.L.

CP1

Clock (Active LOW going edge)

 

 

 

 

 

 

Input to 5 (LS390)

0.5

U.L.

1.5

U.L.

MR

Master Reset (Active HIGH) Input

0.5

U.L.

0.25

U.L.

Q0 ± Q3

Flip-Flop outputs (Note b)

10

U.L.

5 (2.5)

U.L.

NOTES:

a)1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.

b)The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)

b)Temperature Ranges.

FUNCTIONAL DESCRIPTION

Each half of the SN54/74LS393 operates in the Modulo 16 binary sequence, as indicated in the 16 Truth Table. The first flip-flop is triggered by HIGH-to-LOW transitions of the CP input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the Q outputs do not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flip-flops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.

Each half of the LS390 contains a 5 section that is independent except for the common MR function. The 5

section operates in 4.2.1 binary sequence, as shown in the 5 Truth Table, with the third stage output exhibiting a 20% duty cycle when the input frequency is constant. To obtain a 10 function having a 50% duty cycle output, connect the input signal to CP1 and connect the Q3 output to the CP0 input; the Q0 output provides the desired 50% duty cycle output. If the input frequency is connected to CP0 and the Q0 output is connected to CP1, a decade divider operating in the 8.4.2.1 BCD code is obtained, as shown in the BCD Truth Table. Since the flip-flops change state asynchronously, logic signals derived from combinations of LS390 outputs are also subject to decoding spikes. A HIGH signal on MR forces all outputs LOW and prevents counting.

SN54 / 74LS390 LOGIC DIAGRAM (one half shown)

CP1

CP0

 

K CP J

 

 

K CP J

 

 

 

 

K CP J

 

 

 

 

K CP J

CD

Q

 

 

 

CD

Q

 

 

 

CD

Q

 

 

 

CD

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MR

Q0

Q1

Q2

Q3

SN54 / 74LS393 LOGIC DIAGRAM (one half shown)

CP

 

K CP J

K CP

J

K CP J

 

K CP J

CD

 

CD

CD

 

CD

 

 

Q

 

Q

Q

 

Q

MR

 

 

 

 

 

 

 

Q0

 

Q1

Q2

 

Q3

FAST AND LS TTL DATA

5-545

SN54/74LS390 SN54/74LS393

SN54 / 74LS390 BCD

TRUTH TABLE (Input on CP0; Q0 CP1)

COUNT

 

OUTPUTS

 

 

 

 

 

 

 

Q3

Q2

Q1

Q0

 

 

 

0

L

L

L

L

 

 

1

L

L

L

H

 

2

L

L

H

L

 

 

 

 

 

 

 

3

L

L

H

H

 

4

L

H

L

L

 

5

L

H

L

H

 

 

 

 

 

 

 

6

L

H

H

L

 

7

L

H

H

H

 

8

H

L

L

L

 

9

H

L

L

H

 

 

 

 

 

 

 

SN54/ 74LS390 5

TRUTH TABLE (Input on CP1)

OUTPUTS

 

COUNT

 

 

 

 

Q3

Q2

Q1

 

 

 

0

L

L

L

1

L

L

H

2

L

H

L

3

L

H

H

4

H

L

L

 

 

 

 

 

 

SN54 / 74LS390 10 (50% @ Q0)

TRUTH TABLE (Input on CP1, Q3 to CP0)

COUNT

 

OUTPUTS

 

 

 

 

 

Q3

Q2

Q1

Q0

 

0

L

L

L

L

1

L

L

H

L

2

L

H

L

L

 

 

 

 

 

3

L

H

H

L

4

H

L

L

L

5

L

L

L

H

 

 

 

 

 

6

L

L

H

H

7

L

H

L

H

8

L

H

H

H

9

H

L

L

H

 

 

 

 

 

GUARANTEED OPERATING RANGES

SN54 / 74LS393

TRUTH TABLE

COUNT

 

OUTPUTS

 

 

 

 

 

 

 

Q3

Q2

Q1

Q0

 

 

 

0

L

L

L

L

 

 

1

L

L

L

H

 

2

L

L

H

L

 

3

L

L

H

H

 

 

 

 

 

 

 

4

L

H

L

L

 

5

L

H

L

H

 

6

L

H

H

L

 

7

L

H

H

H

 

 

 

 

 

 

 

8

H

L

L

L

 

9

H

L

L

H

 

10

H

L

H

L

 

11

H

L

H

H

 

 

 

 

 

 

 

12

H

H

L

L

 

13

H

H

L

H

 

14

H

H

H

L

 

15

H

H

H

H

 

 

 

 

 

 

 

H = HIGH Voltage Level

L = LOW Voltage Level

Symbol

Parameter

 

Min

Typ

Max

Unit

 

 

 

 

 

 

 

VCC

Supply Voltage

54

4.5

5.0

5.5

V

 

 

74

4.75

5.0

5.25

 

 

 

 

 

 

 

 

TA

Operating Ambient Temperature Range

54

± 55

25

125

°C

 

 

74

0

25

70

 

 

 

 

 

 

 

 

IOH

Output Current Ð High

54, 74

 

 

± 0.4

mA

IOL

Output Current Ð Low

54

 

 

4.0

mA

 

 

74

 

 

8.0

 

 

 

 

 

 

 

 

FAST AND LS TTL DATA

5-546

Loading...
+ 4 hidden pages