Fairchild Semiconductor KA555ID, KA555I, KA555D, KA555 Datasheet

0 (0)

www.fairchildsemi.com

KA555

Single Timer

Features

Description

High Current Drive Capability (200mA)

The KA555 is a highly stable controller capable of

Adjustable Duty Cycle

producing accurate timing pulses. With monos table

Temperature Stability of 0.005%/° C

operation, the time delay is controlled by one external

Timing From Msec to Hours

resistor and one capacitor. With astable operation, the

Turn Off Time Less Than 2Msec

frequency and duty cycle are accurately controlled with two

Applications

external resistors and one capacitor.

 

 

8-DIP

 

Precision Timing

 

 

 

Pulse Generation

 

 

Time Delay Generation

1

 

Sequential Timing

 

 

 

 

 

8-SOP

 

 

 

1

 

 

 

 

 

Internal Block Diagram

GND

 

R

R

R

Vcc

1

 

 

8

Trigger

 

Comp.

Discharging Tr.

Discharge

2

 

 

7

Output

3

OutPut

F/F

6

Threshold

Stage

 

 

 

 

Comp.

 

Reset

4

 

 

5

Control

 

 

 

Vref

 

Voltage

Rev. 1.0.2

©2002 Fairchild Semiconductor Corporation

KA555

Absolute Maximum Ratings (TA = 25° C)

Parameter

Symbol

Value

Unit

Supply Voltage

VCC

 

16

V

Lead Temperature (Soldering 10sec)

TLEAD

 

300

° C

Power Dissipation

PD

 

600

mW

 

 

 

 

 

Operating Temperature Range

TOPR

0 ~ +70

/ -40 ~ +85

° C

KA555/KA555I

 

 

 

 

Storage Temperature Range

TSTG

- 65

~ +150

° C

2

KA555

Electrical Characteristics

(TA = 25° C, VCC = 5 ~ 15V, unless otherwise specified)

Parameter

Symbol

Conditions

Min.

Typ.

Max.

Unit

Supply Voltage

VCC

 

-

4.5

-

16

V

Supply Current *1(Low Stable)

ICC

VCC = 5V, RL = ∞

-

3

6

mA

VCC = 15V, RL = ∞

-

7.5

15

mA

 

 

 

 

 

 

 

 

 

 

Timing Error *2 (Monos Table)

 

 

 

 

 

 

 

Initial Accuracy

ACCUR

 

 

-

1.0

3.0

%

Drift with Temperature

RA = 1KΩ

to100KΩ

∆ t/∆ T

 

50

 

ppm/° C

Drift with Supply Voltage

C = 0.1µ F

 

 

 

∆ t/∆ VCC

 

 

0.1

0.5

%/V

 

 

 

 

 

 

 

 

 

 

 

 

Timing Error *2(Astable)

 

 

 

 

 

 

 

Initial Accuracy

ACCUR

RA = 1KΩ

to 100KΩ

-

2.25

-

%

Drift with Temperature

 

∆ t/∆ T

C = 0.1µ F

 

 

150

 

ppm/° C

Drift with Supply Voltage

 

 

 

∆ t/∆ VCC

 

 

 

0.3

 

%/V

 

 

 

 

 

 

 

 

 

 

 

 

Control Voltage

VCC

VCC = 15V

9.0

10.0

11.0

V

VCC = 5V

 

2.6

3.33

4.0

V

 

 

 

Threshold Voltage

VTH

VCC = 15 V

-

10.0

-

V

 

 

 

 

 

 

VCC = 5V

 

-

3.33

-

V

 

 

 

 

 

 

 

 

 

 

 

Threshold Current *3

ITH

 

-

-

0.1

0.25

µ A

Trigger Voltage

VTR

VCC = 5V

 

1.1

1.67

2.2

V

 

VCC = 15V

4.5

5

5.6

V

 

 

 

 

 

 

 

 

 

 

Trigger Current

ITR

VTR = 0V

 

 

0.01

2.0

µ A

 

 

 

 

 

 

 

 

Reset Voltage

VRST

 

-

0.4

0.7

1.0

V

Reset Current

IRST

 

-

 

0.1

0.4

mA

 

 

 

 

 

 

 

 

 

VCC = 15V

 

 

 

 

 

 

ISINK = 10mA

-

0.06

0.25

V

Low Output Voltage

VOL

ISINK = 50mA

 

0.3

0.75

V

 

 

VCC = 5V

 

-

 

 

 

 

 

ISINK = 5mA

0.05

0.35

V

 

 

 

 

 

VCC = 15V

 

 

 

 

 

 

ISOURCE = 200mA

 

12.5

-

V

High Output Voltage

VOH

ISOURCE = 100mA

12.75

13.3

 

V

 

 

VCC = 5V

 

 

 

-

 

 

 

ISOURCE = 100mA

2.75

3.3

V

 

 

 

Rise Time of Output

tR

 

-

-

100

-

ns

Fall Time of Output

tF

 

-

-

100

-

ns

Discharge Leakage Current

ILKG

 

-

-

20

100

nA

 

 

 

 

 

 

 

 

Notes:

1.Supply current when output is high is typically 1mA less at VCC = 5V

2.Tested at VCC = 5.0V and VCC = 15V

3.This will determine maximum value of RA + RB for 15V operation, the max. total R = 20MΩ , and for 5V operation the max. total R = 6.7MΩ

3

KA555

Application Information

Table1 below is the basic operating table of 555 timer:

 

Table 1. Basic Operating Table

 

 

 

 

 

 

 

Threshold Voltage

Trigger Voltage

Reset(Pin4)

Output(Pin3)

Discharging Tr.

(Vth)(Pin6)

(Vtr)(Pin2)

(Pin7)

 

 

Don't care

Don't care

Low

Low

ON

Vth > 2Vcc / 3

Vth > 2Vcc / 3

High

Low

ON

Vcc / 3 < Vth < 2 Vcc / 3

Vcc / 3 < Vth < 2 Vcc / 3

High

-

-

Vth < Vcc / 3

Vth < Vcc / 3

High

High

OFF

When the low signal input is applied to the reset terminal, the timer output remains low regardless of the threshold voltage or the trigger voltage. Only when the high signal is applied to the reset terminal, timer's output changes according to threshold voltage and trigger voltage.

When the threshold voltage exceeds 2/3 of the supply voltage while the timer output is high, the timer's internal discharge Tr. turns on, lowering the threshold voltage to below 1/3 of the supply voltage. During this time, the timer output is maintained low. Later, if a low signal is applied to the trigger voltage so that it becomes 1/3 of the supply voltage, the timer's internal discharge Tr. turns off, increasing the threshold voltage and driving the timer output again at high.

1. Monos Table Operation

 

 

 

 

 

 

 

 

 

 

 

 

 

+Vcc

 

 

 

 

 

4

 

 

 

 

 

 

RA

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

RESET

Vcc

 

 

 

 

 

Trigger

DISCH

7

 

 

 

 

 

 

 

 

 

 

2 TRIG

THRES

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

OUT

CONT

C1

 

GND

5

 

 

 

RL

1

 

C2

 

102

 

 

 

 

 

 

 

 

101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=1k

 

 

 

 

10k

100k

 

10M

 

 

 

1M

 

Capacitance(uF)

 

 

R A

 

100

 

 

 

 

 

 

 

10-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-2

 

 

 

 

 

 

 

 

10-3

 

 

 

 

 

 

 

 

10-5

10-4

10-3

10-2

10-1

100

101

102

Time Delay(s)

Figure 1. Monoatable Circuit

Figure 2. Resistance and Capacitance vs.

 

Time delay(td)

Figure 3. Waveforms of Monostable Operation

4

Fairchild Semiconductor KA555ID, KA555I, KA555D, KA555 Datasheet

KA555

Figure 1 illustrates a monos table circuit. In this mode, the timer generates a fixed pulse whenever the trigger voltage falls below Vcc/3. When the trigger pulse voltage applied to the #2 pin falls below Vcc/3 while the timer output is low, the timer's internal flip-flop turns the discharging Tr. off and causes the timer output to become high by charging the external capacitor C1and setting the flip-flop output at the same time.

The voltage across the external capacitor C1, VC1 increases exponentially with the time constant t=RA*C and reaches 2Vcc/3 at td=1.1RA*C. Hence, capacitor C1 is charged through resistor RA. The greater the time constant RAC, the longer it takes for the VC1 to reach 2Vcc/3. In other words, the time constant RAC controls the output pulse width.

When the applied voltage to the capacitor C1 reaches 2Vcc/3, the comparator on the trigger terminal resets the flip-flop, turning the discharging Tr. on. At this time, C1 begins to discharge and the timer output converts to low.

In this way, the timer operating in monos table repeats the above process. Figure 2 shows the time constant relationship based on RA and C. Figure 3 shows the general waveforms during monos table operation.

It must be noted that, for normal operation, the trigger pulse voltage needs to maintain a minimum of Vcc/3 before the timer output turns low. That is, although the output remains unaffected even if a different trigger pulse is applied while the output is

high, it may be affected and the waveform not operate properly if the trigger pulse voltage at the end of the output pulse remains at below Vcc/3. Figure 4 shows such timer output abnormality.

Figure 4. Waveforms of Monos table Operation (abnormal)

2. Astable Operation

 

 

 

+Vcc

 

4

 

RA

 

8

 

 

RESET

Vcc

7

2

TRIG

DISCH

 

RB

 

 

 

 

 

THRES

6

3

OUT

CONT

C1

 

GND

5

 

 

 

RL

1

 

C2

Figure 5. Astable Circuit

 

100

 

 

 

 

 

 

 

 

 

 

 

(RA+2RB)

 

 

 

10

 

 

1k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capacitance(uF)

 

 

 

10k

 

 

 

1

 

 

 

 

 

 

 

100k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1M

 

 

 

0.1

 

 

 

 

 

 

10M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

1E-3

 

 

 

 

 

 

 

100m

1

10

100

1k

10k

100k

 

 

 

 

Frequency(Hz)

 

 

 

Figure 6. Capacitance and Resistance vs. Frequency

5

Loading...
+ 9 hidden pages