Schneider Electric REG 96, REG 24, REG 48 User Manual

0 (0)

Zelio Control

Temperature controller

Quick start

04/2009

REG 24 ...

REG 48 ...

REG 96 ...

www.schneider-electric.com

Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2009 Schneider Electric. All rights reserved.

2

EIO0000000377 00 04/2009

SOMMAIRE

SOMMAIRE.........................................................................................................................................

 

 

3

CHAPTER 1 INTRODUCTION ............................................................................................................

 

5

Fonctioning: ...................................................................................................................................

 

 

5

Application examples: ...................................................................................................................

 

5

Identification and functionnalities:

Chapter 1 Introduction .....................................................

6

CHAPTER 2 : TERMINOLOGY...........................................................................................................

 

7

PID : Proportionnel Intégral Dérivé :.............................................................................................

7

The outputs: ...................................................................................................................................

 

 

8

Regulation principle: .....................................................................................................................

 

9

CHAPTER 3: EXAMPLES OF INTEGRATED FUNCTIONS INTO THE CONTROLLERS ................

11

Auto tunning: ...............................................................................................................................

 

11

Fuzzy logic: ..................................................................................................................................

 

 

11

Self control :.................................................................................................................................

 

 

11

Ramps: Chapter 3 Example of functions ................................................................................

12

Pid 2 :............................................................................................................................................

 

 

12

Soft start :.....................................................................................................................................

 

 

12

Alarms: .........................................................................................................................................

 

 

12

CHAPTER 4 : WIRING AND SCHEMATICS :...................................................................................

13

REG 24 (12 models) : ..................................................................................................................

 

13

REG 48 (14 models) : ...................................................................................................................

 

13

REG 96 (14 models): Chapter 4 wiring and shematics ...........................................................

14

CHAPTER 5: IMPLEMENTATION ....................................................................................................

 

15

Selection guide: ...........................................................................................................................

 

15

Front face description : Chapter 5 Implementation ...............................................................

16

CHAPTER 6: EXAMPLE OF IMPLEMENTATION ............................................................................

17

1 st step : Controller selection....................................................................................................

 

17

2sd step : The cabling .................................................................................................................

 

17

3 Rd step : Front face programming

Chapter 6 Example of implementation .......................

18

Probe type setting (PT100) ..........................................................................................................

 

18

Setting of the PT100 probe range (0 to 400°C)...... .....................................................................

19

Setting of the minimum value for the PT100 probe Pvb = 0°C............................................ ......

19

Setting of the maximum value for the PT100 probe PvF = 400°C .......................................... ...

19

Chapter 6 Example of implementation .......................................................................................

20

Setting of the choosen decimal value (Pvd) (to display the tenth)...........................................

20

Chapter 6 Example of implementation .......................................................................................

21

Regulation mode selection = heating on channel 1 (rEv)..........................................................

21

Alarms 1 and 2 parameters setting.............................................................................................

 

21

Alarm 1 parameters setting at 32°C Chapter 6 Example of implementation .........................

22

Alarm 2 setting at 38°C ............................

....................................................................................

22

Parameter setting of the alarms on high overtaking (do1T) .....................................................

22

4 Th step: Functional test............................................................................................................

 

23

1 St step: install the software ZelioControl Soft (compatible with Windows XP and Vista) ...

23

2 Nd step: installation of the TSXCUSB485 driver.....................................................................

23

3 Rd step: connect the TSXUSB485 to your PC and the controller..........................................

23

4 Th step : check the communication port parameters of the TSXCUSB485 driver................

24

5 Th step: Discover the software ZelioControl Soft...................................................................

24

Chapter 6 Example of implementation .......................................................................................

25

6 Th step: check the communication parameters of the TSXCUSB485 driver.........................

25

7 Th step: Communication parameters setting:.........................................................................

25

Chapter 6 Setup example ............................................................................................................

 

26

8 Th step: Connection to the régulator and application Upload ...............................................

26

9 Th step: Application display ....................................................................................................

 

26

CHAPITRE 7: ZelioControl SOFT software ....................................................................................

27

ZelioControl Soft screen - oPE CH1 ...........................................................................................

 

27

EIO0000000377

00 04/2009

 

3

ZelioControl SOFT screen PID CH2 ............................................................................................

27

ZelioControl SOFT screen PID CH2 ............................................................................................

28

ZelioControl Soft screen - PLT CH3............................................................................................

29

ZelioControl Soft screen - PRG CH4...........................................................................................

30

ZelioControl Soft screen - MON Ch5..........................................................................................

31

ZelioControl Soft screen – SET Ch6 ................. ..........................................................................

32

ZelioControl Soft screen – SyS Ch7 ................. ..........................................................................

33

ZelioControl Soft screen – ALM Ch8 ................. .........................................................................

34

ZelioControl Soft screen - CoM CH9...........................................................................................

35

ZelioControl Soft screen - PFb CH10..........................................................................................

35

ZelioControl Soft screen - PAS CH11 .........................................................................................

36

ZelioControl Soft screen - CFG CH13 .........................................................................................

37

Application file saving under ZelioControl SOFT ......................................................................

38

4

EIO0000000377 00 04/2009

CHAPTER 1 INTRODUCTION

Fonctioning:

The temperature control relays are equiped with a sensor input that permits to use multiple types of sensors (PT100 probe, thermocouple, current or voltage sensors depending the model), one or two process outputs (relay, solid state relay interface or analog) for heating, cooling or heating and cooling regulation based on PID algorithm.

The measured temperature and the setpoint can be displayed in °Celsius or °Fahrenheit.

Advanced functions are embedded: Ramps (up to 16), hysteresis, fuzzy logic, auto tuning, soft start, alarms.

The temperature controllers can be setup using the front face interface or through a common software by a communication port and the integrated Modbus.

This communication port provides intergartion capability in an itelligente architecture supervised by Magelis terminal or controled by PLCs(Twido, M340 or Premium) to exchange setpoints, process values and alarms.

Application examples:

The temperature controllers Zélio control REG provide a solution for temperature control in the following applications:

-Ovens and furnaces,

-Extrusion lines,

-Plastic and rubber presses,

-thermo-forming,

-Production of synthetic fibres an polymerisation,

-Food and drink processing lines,

-Moulding presses,

-Environmental chambers, overhead furnaces and test benches,

-UV &laser technologies,

-Cabin of painting,

-Cold rooms,

-Horticultural and livestock farms,

-Maintening the temperature of a colour bath…

EIO0000000377

00 04/2009

5

Identification and functionnalities:

Chapter 1 Introduction

The product part number allows identification of the embedded functions:

24 controllers :

REG

24

P

TP

1

A

R

HU

 

 

P

UJ

 

 

L

LU

 

 

 

 

 

 

J

 

Regulator

Size

PID

Input

Output

Without

Output

power

 

 

 

type

number

modbus

type

supply

 

 

P = PID

 

 

 

 

 

Input type:

 

TP = Thermocouples and PT100

 

 

 

 

UJ = Analog signal

 

 

 

 

Modbus function:

A = no modbus available

 

 

 

Output type:

 

R = relay

 

 

 

 

 

 

 

L = solid state relay interface

 

 

 

 

 

J = analog (4/20mA)

 

 

 

Power supply:

 

HU = 110/220 VAC

 

 

 

 

 

 

LU = 24 V AC/DC

 

 

 

 

48/96 controllers :

REG

48

P

UN

1

L

R

HU

 

96

 

 

2

 

L

LU

 

 

 

 

 

 

J

 

Regulator

Size

PID

Input

Output

Without

Output

Power

 

 

 

type

number

modbus

type

supply

 

 

P = PID

 

 

 

 

 

Input type:

 

UN = universal input

thermocouple / PT100 / analog

 

Output type:

 

R = relay

 

 

 

 

 

 

 

L = solid state relay interface

 

 

 

 

 

J = analog (4/20mA)

 

 

 

 

Modbus function:

L = no modbus available

 

 

 

Power supply :

HU = 110/220 VAC

 

 

 

 

 

 

LU = 24 V AC/DC

 

 

 

 

Note : When 2 outputs possible combination between 1 relay and 1 solid state relay interface or 1 solid state relay and one current (for detail see doc 24480-EN page 6)

6

EIO0000000377 00 04/2009

CHAPTER 2 : TERMINOLOGY

PID : Proportionnel Intégral Dérivé :

The principle of the PID algorithm consists on 3 actions that are dependant to the difference between the setpoint (SV) and the measured process value (PV).

-A proportional action ne action proportionnelle, the error is multiplied by a gain GR

-A complete action, the error is integrated on an interval of time TI

-Derivated action, the error is derivated according to time TD

Consigne

 

 

 

Gr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1/Ti

 

 

Process

+

 

 

 

 

 

SetPoint (SP)

-

 

 

 

 

 

 

Td

Mesure

Process value (PV)

PID principle schematic

The parameters of the PID influence the answer of the system in the following way:

-When the proportional gain GR increases, the time of rise is shorter but there is a more important overshoot of the setpoint. The time of stabilization varies little and the static error is improved.

-When 1 / TI increase, the time of rise is shorter, but there is a more important overtaking of the setpoint. The time of stabilization stretches out but we assure a static no error.

-When TD increases, the time of rise changes little, but the overshoot decreases. The time of stabilization is better and there is no influence on the static error.

The use of 24/48/96 controllers is going to allow through a parameter setting of variables to appeal to automatic functions or manual regulations.

These variables are going to allow:

-To choose the type of sensor used (probe thermocouple or PT100, analogical sensor),

-To choose the type of output used according to the actuator(s) (relay, solid state relay, analogical),

-To choose the function of regulation (heating or cooling or heating and cooling),

-To reduce the time of establishment (the value of measure reaches as quickly as possible the setpoint),

-Avoid overshoot (fuzzy logic and PID2),

-To maintain the temperature very close to the setpoint (réduction of the hysteresis and the dead band),

-Avoid influence of perturbation,

-To activate alarms (high, low, delayed…),

-Setup ramps (up to 16 depending the model) to chain cycles of regulations,

-To have information of defects (overflowing measures, defect sensors),

-To lock or authorize the modification of the parameters from the front face of the product.

EIO0000000377

00 04/2009

7

Chapter 2 Terminology

The outputs:

-Relay : Output type mostly used

-Solid state relay interface: Used to contrôle actuator with no noise or frequent switching.

-Courant : used to drive analog actuator such as speed drives

On and OFF control: Most simple algorithm, no anticipation of the setpoint, not precized, we notice a lot of oscillations.

Proportional control: The process output is proportional to the derivation from the. The proportional band allows overshoots anticipation.

Proportional control

Proportional band

SV

PV

8

EIO0000000377 00 04/2009

Regulation principle:

 

 

 

 

 

Chapter 2 Terminology

 

Proportional

 

 

 

 

 

 

 

 

 

SV

 

SV

 

SV

 

 

 

PV

 

PV

 

 

PV

 

 

 

 

 

 

 

 

 

P too low =

 

P too high = slow rise

 

P correct = correct

 

oscillations

 

and important gap

 

rise and minor gap

Intégrale

 

 

 

Offset

 

The integral allow catching up the

SV

 

 

 

setpoint when there is an offset with

 

 

 

the process value.

 

 

 

 

 

 

 

 

In combination with the proportional,

 

 

 

 

PV

 

 

PI

the integrale function reaches the

 

 

 

setpoint.

 

 

 

 

 

P

 

 

 

 

Derivative

Proportional + derivative

SV

 

 

 

 

 

 

 

 

Proportional only

The derived control allows countering

PV

 

any distance created by an external

 

 

 

 

perturbation.

 

 

 

 

 

 

 

 

 

 

 

 

 

External perturbation

 

PID

 

 

 

 

 

 

 

 

 

 

 

 

SV

 

 

The combination of proportional,

 

 

 

 

 

 

 

 

PV

 

 

 

derivative and integrale optimized

 

 

 

 

the regulation

 

 

 

 

 

 

 

EIO0000000377

00 04/2009

9

Schneider Electric REG 96, REG 24, REG 48 User Manual

Visualization of PID structure:

Hysteresisé ésis

Chapter 2 Terminology

Overshoot

Perturbation

Values

PV (measure)

Dead band

SP (setpoint)

Response time

 

Visualization of PID structure

Time

 

 

 

 

 

 

 

 

 

 

Reverse operation (heat control)

 

Normal operation (cooling control)

SV

 

hys

 

PV

 

 

 

hys

 

 

 

 

 

 

 

 

 

 

 

 

SV

 

 

 

PV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ON PV<SV

 

 

 

ON PV>SV

 

 

 

 

 

 

 

PV>SV

 

 

 

 

 

PV<SV

 

 

 

 

OFF

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output state

 

 

 

 

 

Output state

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Choice of regulation type

 

 

 

 

10

 

 

 

 

 

 

 

 

 

EIO0000000377 00 04/2009

CHAPTER 3: EXAMPLES OF INTEGRATED FUNCTIONS INTO THE CONTROLLERS

Auto tunning:

This function calculates automatically the proportional, derivative and integrale factors of the PID function. This calculation is done during 2 regulation cycles.

Fuzzy logic:

The fuzzy logic manages the command of the process in a range of 0 to 100% of the measure scale. This logic applies a command to the process to optimize the switching between heating and cooling outputs depending the setpoint and avoid overshoot.

.

100%

Heating

Cooling

0%

 

 

 

 

 

 

Setpoint

Temperature

Fuzzy logic principle

Self control :

This function restarts the calculation of the PID parameters at each setpoint change or after a power on.

Remark: This command will generate temporarly a perturbation of the regulation close to the setpoint value. Some applications might be sensitive to this function.

EIO0000000377

00 04/2009

11

Ramps:

Chapter 3 Example of functions

This function allows a sequence of setpoints (up to 16 ramps for REG48 and REG96) during a certain period of time. For each setpoint, a response time and the duration of the level can be setup.

These times can be defined in hour and minutes or in minutes and seconds.

Example:

TM1r TM1s TM2r TM2s TM3r

TM3s

TM4r

TM4s

Ramp 1

Ramp 2

Ramp 3

Ramp 4

Pid 2 :

Choice of a PID that avoid overshoot during the regulation phase.

Soft start :

Moderate starting up, the time of establishment (the process value reaches the setpoint) is adjustable. This function can be used in the case of machines sensitive to the abrupt variations of temperature.

Alarms:

One to 3 alarms are available depending the models. Each alarm is based on an output relay (1 to 3A depending the model). Two more alarms are available through Modbus on REG96 and one on the REG48 models.

The alarms can be configured for a low or high level and can also be delayed.

12

EIO0000000377 00 04/2009

Loading...
+ 26 hidden pages