Schneider Electric T300 User Manual

4.5 (8)

MV Network Management

Easergy

T300

Remote Terminal Unit for distribution networks

User Manual

Safety information

Hazard Categories and Special Symbols

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury. The safety alert symbol shall not be used with this signal word.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

2

NT00378-EN-03

Safety information

Legal information

The Schneider Electric brand and any registered trademarks of Schneider Electric Industries SAS referred to in this guide are the sole property of Schneider Electric SA and its subsidiaries. They may not be used for any purpose without the owner's permission, given in writing. This guide and its content are protected, within the meaning of the French intellectual property code (Code de la propriété intellectuelle français, referred to hereafter as "the Code"), under the laws of copyright covering texts, drawings and models, as well as by trademark law. You agree not to reproduce, other than for your own personal, noncommercial use as defined in the Code, all or part of this guide on any medium whatsoever without Schneider Electric’s permission, given in writing. You also agree not to establish any hypertext links to this guide or its content.

Schneider Electric does not grant any right or license for the personal and noncommercial use of the guide or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

FCC Part 15

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception which can be determined by turning the equipment off and on, the user is encouraged to try to correct interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

This device complies with FCC RF radiation exposure limits set forth for general population. This device must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

NT00378-EN-03

3

Easergy T300

Contents

 

 

1

GENERAL DESCRIPTION .................................................................................................................................

6

1.1

FUNCTIONAL DESCRIPTION ....................................................................................................................................

6

1.2

DESCRIPTION OF T300 MODULES..........................................................................................................................

7

1.2.1 HU250 Module – CPU and Communication Gateway.............................................................................

7

1.2.2 SC150 Module – Switch Control Unit ......................................................................................................

7

1.2.3 LV150 Module – Low Voltage measuring Unit.........................................................................................

8

1.2.4 PS50 Module – Backup Power Supply for severe environments ............................................................

8

1.2.5 PS25 Module – Backup Power Supply for monitoring and control solutions...........................................

8

1.3

T300 INTERNAL ARCHITECTURE ............................................................................................................................

9

1.4

T300 CONFIGURATION PRINCIPLE .......................................................................................................................

10

1.4.1 Engineering in Easergy Builder .............................................................................................................

10

1.4.2 Management of RBAC and security policy ............................................................................................

12

1.5

INITIAL START-UP ...............................................................................................................................................

13

2 CONNECTING TO THE T300 WEB SERVER..................................................................................................

14

3 OVERVIEW OF THE T300 WEB SERVER ......................................................................................................

15

3.1

DATA CONSULTATION AND MONITORING PAGES...................................................................................................

17

3.1.1

Home Page ............................................................................................................................................

17

3.1.2

Substation Page.....................................................................................................................................

18

3.1.3

System Page..........................................................................................................................................

24

3.1.4

Data Pages ............................................................................................................................................

26

3.2

MEASUREMENTS.................................................................................................................................................

29

3.2.1

Measurements Pages ............................................................................................................................

29

3.3

DIAGNOSTIC FILES..............................................................................................................................................

33

3.3.1

Events Page...........................................................................................................................................

33

3.3.2

System Page..........................................................................................................................................

34

3.3.3

Cyber-Security Page..............................................................................................................................

34

3.4

TRACES..............................................................................................................................................................

35

3.4.1

Protocol Traces......................................................................................................................................

35

3.5

SYSTEM CYBER-SECURITY..................................................................................................................................

36

3.5.1

Users and roles......................................................................................................................................

36

3.5.2

Centralized authentication with RADIUS ...............................................................................................

40

3.6

DEVICE SYNCHRONIZATION .................................................................................................................................

45

3.6.1

Clock Page.............................................................................................................................................

45

3.7

IP INTERFACES...................................................................................................................................................

46

3.7.1

IP Configuration Page............................................................................................................................

46

3.8

DIAL-UP MODEM SETTINGS.................................................................................................................................

51

3.8.1

Modems Configuration Page .................................................................................................................

51

3.9

UPGRADING THE FIRMWARE................................................................................................................................

53

3.9.1

Firmware Page.......................................................................................................................................

53

3.10 MANAGING THE CONFIGURATION ....................................................................................................................

55

3.10.1

Configuration Page ................................................................................................................................

55

4

T300 SETTINGS ...............................................................................................................................................

59

 

4.1 HU250 MODULE SETTINGS.................................................................................................................................

60

 

4.1.1

Local I/O.................................................................................................................................................

60

 

4.1.2

SCADA Protocols...................................................................................................................................

64

 

4.1.3

Master Protocols ....................................................................................................................................

64

 

4.1.4

Configuring the Physical Ports...............................................................................................................

65

 

4.1.5

Synchronization .....................................................................................................................................

69

 

4.2 SC150 MODULE SETTINGS .................................................................................................................................

71

 

4.2.1

MV Current and Voltage Sensors ..........................................................................................................

72

 

4.2.2

Switch Control........................................................................................................................................

76

 

4.2.3

Front panel voltage indication................................................................................................................

84

 

4.2.4

MV Voltage Monitoring...........................................................................................................................

85

 

4.2.5

Fault current Detection...........................................................................................................................

88

 

4.2.6

Fault Current validation and indication ................................................................................................

104

 

4.2.7

MV Power Measurement Settings .......................................................................................................

110

 

4.2.8

MV Power Quality Settings ..................................................................................................................

111

 

4.2.9

Automation Settings.............................................................................................................................

112

 

 

 

 

 

 

4

 

NT00378-EN-03

Easergy T300

Contents

 

 

4.3

LV150 MODULE SETTINGS................................................................................................................................

114

4.3.1 LV Current and Voltage Sensors .........................................................................................................

115

4.3.2 Front panel voltage indication..............................................................................................................

118

4.3.3

LV Voltage Monitoring..........................................................................................................................

119

4.3.4 Broken Phase Conductor Detection ....................................................................................................

122

4.3.5 LV Power Measurement Settings ........................................................................................................

124

4.3.6

Power Quality Settings.........................................................................................................................

125

4.4

PS50 MODULE SETTINGS .................................................................................................................................

126

4.5

COMMISSIONING TESTS ....................................................................................................................................

127

5

OPERATION ...................................................................................................................................................

128

5.1 INDICATIONS AND ACTIONS ON THEFRONT PANEL...................................................................................................

128

5.2

TESTING THE LEDS ON THE FRONT PANEL.........................................................................................................

134

5.3

LOCAL/REMOTE MODE......................................................................................................................................

134

5.3.1

Automation Enabled.............................................................................................................................

135

5.4

SWITCH COMMANDS .........................................................................................................................................

135

5.5

OTHER COMMANDS ..........................................................................................................................................

135

5.6

BLMON UTILITY................................................................................................................................................

136

5.6.1

Accessing BLMon ................................................................................................................................

136

5.6.2

Using BLMon........................................................................................................................................

137

6

MAINTENANCE..............................................................................................................................................

138

6.1

DIAGNOSTIC LEDS ON THE FRONT PANEL..........................................................................................................

139

6.2

POWERING DOWN THE EQUIPMENT....................................................................................................................

143

6.3

BATTERY MAINTENANCE ...................................................................................................................................

143

6.3.1

Replacing the Battery...........................................................................................................................

143

6.3.2 Battery Care and Storage ....................................................................................................................

143

6.4

REPLACING THE HU250, SC150 OR LV150 MODULE.........................................................................................

144

6.4.1 Addressing the SC150 and LV150 Modules........................................................................................

144

6.4.2 Checking the Firmware Version...........................................................................................................

144

6.4.3 Importing a Stored Configuration.........................................................................................................

144

6.5

REPLACING A BOX MODEM................................................................................................................................

145

6.6

REPLACING THE PS50 MODULE ........................................................................................................................

145

6.6.1 Addressing the PS50 Module ..............................................................................................................

145

6.6.2

Commissioning ....................................................................................................................................

145

6.7

REPLACING THE PS25 MODULE ........................................................................................................................

145

7

APPENDIX A - GENERAL CHARACTERISTICS..........................................................................................

146

7.1

HU250 ............................................................................................................................................................

146

7.2

SC150.............................................................................................................................................................

147

7.3

LV150

.............................................................................................................................................................

148

7.4

HU250, SC150 AND LV150 .............................................................................................................................

149

7.5

PS50...............................................................................................................................................................

 

150

7.6

PS25...............................................................................................................................................................

 

152

8 ANNEXE B: LIST OF POTENTIAL ISSUE CODES.......................................................................................

153

8.1

SC150 POTENTIAL ISSUE CODES ON SWITCH CONTROL.......................................................................................

153

9

APPENDIX C: GLOSSARY............................................................................................................................

154

9.1

ABBREVIATIONS AND DEFINITIONS .....................................................................................................................

154

10 APPENDIX D: INVERSE DEFINITE MINIMUM TIME (IDMT) CURVES........................................................

157

NT00378-EN-03

5

Presentation

General description

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Wear your personal protective equipment (PPE) and comply with the safe electrical work practices. See NFPA 70E in the USA or applicable local standards.

This unit must be installed and serviced only by qualified electrical personnel.

Turn off all power supplying this unit before working on or inside the unit.

Always use a properly rated voltage sensing device to confirm that the power is off.

A live current transformer secondary circuit must not be opened without turning off the primary side of the transformer and short-circuiting transformer secondary circuit first.

Replace all devices, doors and covers before turning on power to this unit.

Failure to follow these instructions will result in death or serious injury.

WARNING

LOSS OF CONTROL

The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Example:

Emergency Stop.

Separate or redundant control paths must be provided for critical control functions.

System control paths may include communication links. Consideration must be given to the implications of anticipated transmission delays or failures of the link.

Failure to follow these instructions can result in death or serious injury.

1 General description

1.1 Functional description

Easergy T300 features a modular architecture designed for applications in MV network substations.

The T300 offers the following functions:

Management of the open/close motor mechanism on MV switchgear, compatible with any MV switch

Detection of ammetric and directional fault currents on the MV network: operational on any neutral system with or without the presence of distributed power and including fault current algorithms based on the

following international standards:

o Phase overcurrent and ground fault detection (ANSI 50/51,

ANSI 50N/51N)

o Directional overcurrent and ground fault detection (ANSI 67/67N)

Two fault current detection methods are used: o Definite time (DT) curve

o Inverse definite minimum time (IDMT) curve

MV network voltage and current monitoring, for the following functions: o Undervoltage detection (ANSI 27)

o Overvoltage detection (ANSI 59)

o Neutral overvoltage detection (ANSI 59N)

o Voltage broken conductor detection (ANSI 47) o Undercurrent detection (ANSI 37)

MV current measurement using standard current sensors, compatible

with standard IEC 61869-2, according to three possible configurations: o 3 phase CTs

o 1 core balance CT

o 3 phase CTs + 1 core balance CT

MV voltage measurement using the following voltage sensors:

oLPVT (low power voltage transformer) conforming to standard IEC 60044-7

oStandard MV/LV VTs with secondary from 57 Vac to 220 Vac conforming to IEC 61869-3 (requires a VT adapter)

o VPIS (voltage presence indicating system) with voltage output (VPIS-VO)

oVDS (voltage detecting system) indicator with voltage output (standard IEC 61243-5)

oPPACS external capacitive divider mounted at the head of the MV cable

MV power measurement according to standard IEC61557-12

Quality of the MV power supply delivered, according to the principles of IEC 61000-4-30 class S (up to harmonic 15), for T300 RTUs equipped with LPVT and VT sensors

LV network voltage monitoring, for the following functions:

oUndervoltage detection (ANSI 27)

o Overvoltage detection (ANSI 59)

o Neutral overvoltage detection (ANSI 59N)

oVoltage broken conductor detection (ANSI 47)

LV current measurement using standard current sensors, compatible with IEC61869-2, according to two possible configurations:

o3 phase CTs

o3 phase cores + 1 neutral measuring sensor

LV voltage measurement via a Voltage adapter measuring directly the voltage on the LV network.

LV power measurement according to IEC 61557-12.

Quality of the LV power supply delivered according to the principles of IEC 61000-4-30 class S (up to harmonic 15).

Transformer monitoring:

oTemperature monitoring with threshold alarm

oMeasurement of current peaks

Monitoring, remote indication, and local display of T300 and substation data

Integrated automation functions in the SC150 modules (Sectionalizer)

6

NT00378-EN-03

Presentation

General description

Recording of timeand date-stamped events in logs (SOE)

Battery-backed power supply with several hours independent operation in the event of an AC line outage

Local or remote communication over 1 or more communication channels: local communication with auxiliary equipment; remote communication with the remote control center (SCADA system).

The following modems are managed on the communication ports: o 2G/3G and 3G/4G (standard EU and US versions)

oRS232/RS485

Communication protocols for communicating with the control center or with other devices:

oIEC 60870-5-101 slave and IEC 60870-5-104 master and slave

oDNP3 master and slave

oModbus master and slave

oIEC 61850 client and server.

Device time synchronization, can be set:

oVia the communication protocol

oVia the SNTP server

IEC 61131-3 PLC (IsaGRAF®) including text and graphics editors for executing specific custom applications in the following programming languages:

oSFC: Sequential Function Chart

o FBD: Function Block Diagram

o LD: Ladder Diagram

o ST: Structured Text

oIL: Instruction List

1.2Description of T300 Modules

Easergy T300 comprises several communicating modules.

1.2.1 HU250 Module – CPU and Communication

 

 

Gateway

 

The T300 HU250 module manages the following functions:

 

 

User database and access rights administration

 

 

Remote communication with the control center (SCADA system) via the

 

 

protocols (IEC 60870-5-101/IEC 60870-5-104/IEC 61850) and the secure

 

 

protocol (DNP3)

 

 

Local communication with other substations (inter-device communication)

 

 

Flexible communication media (Ethernet, 2G, 3G, 4G)

 

 

Communication gateway for the T300 modules

 

 

LAN communication for third-party devices (IED) in master protocols

 

 

(Modbus, IEC 60870-5-104, IEC 61850, DNP3)

 

 

Access to local and remote configuration for all T300 modules

 

 

Web server with local and remote access

 

 

Integrated automation function with execution of programmable logic

Easergy HU250 module

 

control

 

Remote/local operation of global functions, enabling/disabling of PLC

 

 

function

 

For more information regarding installing, connection, and use of HU250

 

module, refer to the HU250 Installation Guide (ref: NHA77925-xx).

 

1.2.2 SC150 Module – Switch Control Unit

 

The T300 SC150 module manages the following functions:

 

 

Control and monitoring of all switch types

 

 

Detection of ammetric and directional fault currents:

 

 

o Detection of Ammetric phase overcurrent and ground fault

 

 

o Detection of Directional phase overcurrent and ground fault

 

 

Detection of broken phase conductor

 

 

Current measurements using standard current transformers

 

 

MV Voltage measurements using different types of sensor: LPVT, VT,

 

 

VDS, VPIS, and external capacitive divider installed on the MV cables

 

 

MV Power measurement in accordance with standard IEC 61557-12

 

 

MV Power quality according to the principles of IEC 61000-4-30 class S

 

 

(up to harmonic 15)

 

 

Special integrated automation function: sectionalizer

Easergy SC150 module

For more information regarding installing, connection, and use of SC150

module, refer to the SC150 Installation Guide (ref: NHA91857-xx).

 

 

 

 

NT00378-EN-03

 

7

 

Presentation

General description

Easergy LV150 module

Easergy PS50 module

Easergy PS25 module

1.2.3 LV150 Module – Low Voltage measuring Unit

The T300 LV150 module manages the following functions:

Current measurements using standard current transformers

LV Voltage measurements using Voltage adaptor

LV Power measurement in accordance with standard IEC 61557-12

LV Power quality according to the principles of IEC 61000-4-30 class S (up to harmonic 15)

Detection of broken phase conductor

For more information regarding installing, connection, and use of LV150 module, refer to the LV150 Installation Guide (ref: NHA92575-xx).

1.2.4PS50 Module – Backup Power Supply for severe environments

The PS50 is the default power supply for the T300. It supplies power to the system and allows, through a battery-backup power supply, continuity of operation for the equipment listed below in the event of a power outage:

Motor mechanism for the MV switches and circuit breakers

Transmission interfaces (radio, modem, etc.)

T300 electronic modules

Third-party devices, such as protection relays, fault current passage indicators, and other electronic equipment installed in the MV substation

The PS50 module can communicate on an RS485 Modbus link with the HU250 module to exchange information managed by the PS50 power supply. This communication also makes it possible to set the PS50 module from the T300 web server.

For more information regarding installing, connection, and use of PS50 module, refer to the PS50 Installation Guide (ref: NT00375-xx).

1.2.5PS25 Module – Backup Power Supply for monitoring and control solutions

The PS25 module is the dedicated power supply for monitoring and control solutions of MV electrical networks using a T300. The PS25 module provides a single 12 V or 24 V supply voltage to the system (depending on the model). It has a battery-backup power supply which in the event of a power outage enables operation of:

T300 electronic modules

Measurement and monitoring functions

The PS25 module does not include any communication. It operates autonomously. Set up is done directly on the product.

For more information regarding installing, connection, and use of PS25 module, refer to the PS25 Installation Guide (ref: NT00376-xx).

8

NT00378-EN-03

Schneider Electric T300 User Manual

Presentation

General description

 

 

1.3 T300 Internal Architecture

The diagram below shows an example internal architecture for a T300 RTU comprising 1 HU250, 1 SC150, 1 LV150 and 1 PS50 module. Architectures may differ depending on the application; there may be more

SC150 and LV150 modules, or some of the other components shown may not be required (e.g. there may be just the HU250 module or the PS50 module may be replaced with another type of power supply, etc.).

Since the T300 is modular, mutliple architectures are possible.

This diagram shows the various internal links between the component modules.

The HU250 is the central interface for internal communication between all the modules as well as for external communication.

NT00378-EN-03

9

Presentation

General description

T300

Default configuration

Easergy Builder

Custom configuration

Web serveur

Custom configuration with application parameter settings

Configuration backup to

PC or in Easergy Builder

T300 configuration steps

1.4 T300 Configuration Principle

The T300 is delivered with a default factory configuration corresponding to the options ordered.

This initial configuration should then be customized to adapt it to the user application and requirements.

There are some tools for this purpose:

Easergy Builder: Engineering tool for adding or customizing specific operational options adapted to the application. Easergy Builder generates a custom configuration for the T300 based on the initial configuration modified by the addition of these options.

SAT: engineering tool for defining / changing the equipment's security policy and roles assigned to users.

T300 Web server: Commissioning tool for the end user. Using the configuration set up in Easergy Builder and loaded onto the equipment, the user can set the parameters for the T300 application program via the Web server. This step consists in customizing the parameters of the various functions, such as fault current detection, communication, switch control, measurement, etc.

In contrast to Easergy Builder, the Web server does not allow functions to be added to the equipment. It only allows parameters to be set and customized for the application associated with the functions already selected.

1.4.1 Engineering in Easergy Builder

Before using the equipment, a certain number of functions need to be configured in Easergy Builder. These functions are not included in the factory configuration as they depend on the customer application.

The functions that requiered to be added/modified in Easergy Builder are listed below:

1.4.1.1Adding/Deleting Channel and Modems

The setting of Channels and existing modems in the default configuration can be done via the T300 Web server. However, the addition or replacement of modems or the creation of Channels for the SCADA link, can only be done via Easergy Builder.

Refer to the Easergy Builder User Manual for more details on these custom settings.

1.4.1.2T300 Synchronization

The default configuration does not include device synchronization.

The choice of synchronization source can only be configured in Easergy Builder. The Web server only allows the synchronization parameters to be set once the function has been configured in Easergy Builder.

There are three possibilities for synchronizing the RTU:

Automatically by the communication protocol (via the SCADA)

Through an SNTP server, if the RTU is connected to an IP network.

By GPS satellites, if the HU250 module includes a 4G modem with GPS option.

You can define two channels of synchronization, the primary device and the secondary device.

The secondary device will be used if the primary device is unavailable.

Instructions on how to configure synchronization are given in the T300 Quick Start Guide (NT00383-xx). Refer to this document for more information.

10

NT00378-EN-03

Presentation

General description

1.4.1.3Sequence of Events (SOE)

An events file is automatically created in the T300 default configuration. This file corresponds to standard use of the equipment and includes a number of data for which events are generated on change of states.

The engineering phase is to modify or add additional variables to the file or to create additional events files (eg measures backup file), or to change the default storage files.

The total capacity of event files is limited to maximum 4 files.

Easergy Builder allows the management, creation or modification of these events files.

Note that this management cannot be done via the Web server. The Web server can only be used to operate these events files, i.e. consulting, downloading, or deleting them.

Instructions on how to configure the SOE option are given in the T300 Quick Start

Guide (NT00383-xx). Refer to this document for more information.

1.4.1.4The Master and Slave protocols

The default configuration of the equipment is provided without addressing for the protocol since it must be adapted to the SCADA type used or the type of slave to include in the configuration.

The Master protocols:

For Master protocols, the engineering phase is to create first of all slave devices in the system and the data that will be associated to these Devices. The data to create depend on the application and the connected device type.

The addressing protocol will have to be set for all the data you wish to report the statements on the T300.

The list of master protocols that can be used is as follows:

o

IEC 60870-5-104

o

DNP3

o

Modbus

o IEC 61850 Client

The Slave protocols:

For slave protocols, the engineering phase consists of selecting in the system database, the datas that have to be reported to the SCADA and then to define the corresponding protocol addressing.

The list of slave protocols that can be used is as follows:

o

IEC 60870-5-101

o

IEC 60870-5-104

o

DNP3

o

Modbus

o

IEC 61850 Server

Instructions on how to configure the Master and Slave protocol addresses are given in the T300 Quick Start Guide (NT00383-xx). Refer to this document for more information.

1.4.1.5Personalization of LEDs

Some indicators used in front panel of the product and external lights can be customized to define the data that will trigger the lighting of these LEDs. This operation is made during the engineering phase via Easergy Builder advanced tool.

It is possible to customize the colors of the LEDs and set the I/O filter parameters via the Web server (see the Local I/O section).

Note that the same operations can also be carried out in Easergy Builder.

Instructions on how to assign the LEDs are given in the T300 Quick Start Guide (NT00383-xx). Refer to this document for more information.

NT00378-EN-03

11

Presentation

General description

1.4.1.6Management of specific commands

A specific management function related to the switch controls voltage can be configured in the engineering phase via Easergy Builder.

Instructions on how to configure this specific command management option are given in the Easergy Builder User Manual. Refer to this document for more information.

1.4.1.7Calculation Formulae

The calculation formulae are used to carry out math, combinational logic operations or others on T300 data in order to perform specific personalized functions.

These Calculation formulaes can be created via Easergy Builder.

The list of operations available are given in the Easergy Builder User Manual.

Refer to this document for more information related to the calculation formulae.

1.4.1.8IEC 61131-3 PLC

An IEC 61131-3 programming tool (IsaGRAF® platform) is available with the T300 for developing PLC programs.

This IsaGRAF® platform is an external software tool to be installed on a PC. It is used to develop specific custom applications in the following programming languages:

o SFC: Sequential Function Chart

o FBD: Function Block Diagram o LD: Ladder Diagram

o ST: Structured Text

o IL: Instruction List

Before developing and using a PLC program in the HU250, the interface must first be created with IsaGRAF® in Easergy Builder to define the links and the relationship between these 2 elements and the CoreDB.

Instructions on how to configure the interface with IsaGRAF® in Easergy Builder are given in the Easergy Builder User Manual. Refer to this document for more information.

1.4.2 Management of RBAC and security policy

The T300 is provided with a standard security policy and a default RBAC (roles assigned to a number of predefined users).

The T300 security policy is managed by a special tool - SAT (Security Administration Tool).

The SAT can be used during the engineering phase to redefine or change the system access restrictions, including the access rights and responsibilities, via an RBAC (Role-Based Access Control) model.

Radius protocol provides also the capability to have a generalized and unique authentication policy on a dedicated server, rather than to define them locally on the various T300s of the network.

The commissioning phase done in the Web server will be only limited to adding or deleting users, to modify their associated passwords, and to assign or modify one or more of the roles pre-defined in the SAT to these users.

See the Managing Users and Roles section for more information on how to set these parameters.

Instructions on how to configure the security policy in the SAT are given in the SAT

User Manual. Refer to this document for more information.

12

NT00378-EN-03

Installation

Start-Up the unit

1.5 Initial Start-Up

Instructions relating to starting up the equipment are described in the T300 Quick

Start Guide (reference NT00383-xx).

Refer to this document to get the following information:

How to install Easergy Builder

First local connection to the T300

o Connecting to the T300 Web server via an Ethernet network o Connecting to the T300 Web server via a WI-FI network

Configuring the SC150 and LV150 modules IP addresses

Overview of Easergy Builder

How to import a T300 configuration into Easergy Builder

How to import a saved tar.gz T300 configuration into Easergy Builder

How to customize the T300 configuration in Easergy Builder

How to synchronize the T300

How to send a configuration to the T300 via Easergy Builder.

NT00378-EN-03

13

Connecting to the T300 Overview of the T300 Web Server

Connection of a configuration/consultation/maintenance PC to one of the available ETH port.

2 Connecting to the T300 Web Server

Easergy T300 needs a connection from a PC, tablet, or smartphone to be able to configure, consult, or carry out maintenance on the equipment: This can be via a WI-FI or Ethernet connection (via the HU250 module).

Equipment Required for the T300 Connection

The T300 needs a PC with Windows XP, 7, or more recent operating system, and a web browser, such as Internet Explorer (version 10 minimum), Mozilla Firefox, or Google Chrome. It also needs:

An Ethernet port (RJ45) on the PC to connect to the T300 via an Ethernet network or direct PC-T300 access

WI-FI access on the PC to connect to the T300

Note: The choice of WI-FI or Ethernet access to the T300 is up to the user. There is no difference in operation between the 2 types of link. However, Wi-Fi is considered as a Local access mode and Ethernet a remote access mode, with the possibilities that relate to these two modes.

The T300 parameters and data are accessed directly via a web browser. No other additional software is required to access the embedded Web server.

Principle of the T300 Embedded Web Server

The T300 includes an embedded server that initializes automatically as soon as the connection is established with the T300.

The data displayed by the T300 via this embedded server is presented in the form of HTML pages.

Different pages and subpages can be accessed by the user depending on their user rights. The HTML pages displaying the data managed by the T300 are refreshed in real time to help ensure they show the most up-to-date status information.

Access and connection are secured by a login and password.

From the embedded server you can:

Modify the fault current detection, communication, automation fucntion, or system parameters

Note: The T300 is supplied with default parameters that can be modified as required by the user.

View the states managed by the T300 (indicators, events, potential issues, measurements, counters, etc.)

Save the T300 configuration to file or download it from a file already saved on the PC

Send remote control orders to the T300

Transfer diagnostics logs in .csv file format compatible with Excel

Load a new version of the T300 application firmware (to the HU250 or the SC150 and LV150 modules)

IP Addresses for Connection to the T300

As standard, the T300 integrates IP addresses for the local Ethernet connection from a PC as well as for WI-FI access. The following characteristics are needed to establish these connections:

Default T300 Ethernet port address: https://192.168.0.254

WI-FI access:

WI-FI SSID = EasergyT300

Password = EasergyT300

WI-FI IP address = https://192.168.2.254

Note: To prevent conflicts and for security purposes, it is advisable to configure a single and unique SSID for each T300. Refer to the corresponding section in this manual for information on how to change these parameter settings.

The default connection parameters are general purpose, but it is possible to modify them to meet your network specifications.

Ethernet cable for the PC-T300 link

Connecting to the T300 Web Server

Instructions on how to connect to the T300 web server are not given in this manual. Refer to the T300 Quick Start Guide (reference NT00383-xx), for detailed instructions on how to connect via Ethernet or WI-FI.

14

NT00378-EN-03

Connecting to the T300 Overview of the Web Server

Home page – T300 Web server

Substation page – T300 Web server

MV Measurement page – T300 Web server

3 Overview of the T300 Web Server

The T300 Web server is the local and remote user interface for consulting and monitoring T300 operating, maintenance, and application configuration data.

Once the username and password have been entered, all data in the HTML pages can be viewed simply by clicking on the links in the ribbon at the top of the screen.

This ribbon contains 5 menus:

HOME:

The information on this page identifies the MV substation to which the user is connected. Some of this information can be filled in by the user:

o The substation's GPS coordinates

o A location map is created automatically and updated using the GPS data (if there is an Internet connection).

o Notes added by the user

oThe product ID with the option to add images

MONITORING & CONTROL:

This menu is used to view the T300 status, monitor substation data, and control the breaking device:

o Graphical representation of the substation and switchgear with electrical symbols

oDisplay of T300 status in the form of a data point list with the values associated with each type (state, command data, analog data, setpoint values)

oOption to set command and setpoint data parameters manually from the Web server and to assign a specific preset value (for security purposes, each command must be confirmed by the user)

Note: The user can modify command data via the Web server:

-Via the WI-FI network only if the T300 is in local mode

-Via the LAN or WAN only if the T300 is in remote mode

MV/LV MEASUREMENTS

This page is used to view the different measurements performed by the T300 (display of some measurements according to the options of the unit):

oCurrent measurements on each phase, residual current and mean current

oAverage of the currents on each phase, the calculated or measured residual current and the average current

o Phase-to-neutral and phase-to-phase voltage measurements on each phase and indication of residual voltage and mean voltage measurements

oAverage of the voltages on each phase, the calculated neutral voltage and the phase-to-neutral average voltage

o Active, reactive, and apparent power measurements on each phase

oAverage of the active, reactive and apparent power on each phase and of the total power

o Power factor measurement on each phase

o Active, reactive, and apparent energy measurements on each phase

oPower quality measurement (statistics and counters for the voltage interruptions, sags, and swells on the MV network)

oMinimum and Maximum recorded for current averages, per day, week, month and year.

o Harmonic distortions on each phase current and the average of the three phases.

oHarmonic distortions on each phase voltage and the average of the three phases.

o Harmonic magnitude 1 on each phase current. o Harmonic magnitude 1 on each phase voltage.

o Harmonic 1 current and voltage on the average of the three phases. o Harmonic angle 1 on each phase current.

o Harmonic angle 1 on each phase voltage.

NT00378-EN-03

15

Connecting to the T300 Overview of the Web Server

Diagnostic/Events page – T300 Web server.

HU01 Settings page – T300 Web server.

SC01 Settings page – T300 Web server.

DIAGNOSTICS:

This menu is used to view the data logs recorded in real time by the T300. Events are time-stamped with a 1 ms resolution.

Recording of events: Data changes are recorded in log files according to the configuration.

The recording mode must be configured using the Easergy Builder configuration tool:

o It is possible to define up to 4 log files (events).

o The size and name of each log file are configurable. o Any data can be assigned to a log file.

Note: By default, only the Events log is created, with a capacity of 2,000 events. Log files can be downloaded locally or remotely. For all logs, when the storage cap acity is reached, the most recent event erases the oldest event from the list.

MAINTENANCE:

This menu helps with maintenance of the T300 by supplying the relevant information or by allowing configuration of the standard RTU applications:

o Users: managing the roles and passwords associated with each user. o Clock: Synchronization of the device date and time

o IP configuration: Definition of the IP addresses of the LAN, WAN, and WI-FI

networks or the T300 router function

o Modem configuration: Configuration of the modem communication parameters, for the modems providing remote access, such as the 3G or 4G

modem

o Firmware: Information relating to the firmware for each module (version, date,

and time) with the option to update it

o Configuration: Information relating to the device configuration with the option to import/export the configuration in file format or saving/importing it into dedicated slot spaces in the device.

SETTINGS:

There are several pages dedicated to configuring the various functions for each T300 module:

o HU250: Configuration of the HU250 module parameters:

o SCADA protocol (slave) (Modbus, IEC 60870-5-101 and 104, DNP3) o Master protocol (Modbus, IEC60870-5-104, DNP3)

o Physical port (RS485 for PS50 link, RS232/485 modem box, etc.) o Synchronization

o SC0x: Configuration of the parameters of each SC150 module: o Current and voltage measurement sensors

o Switch controls

o Current and voltage presence/absence detection o Fault current indication

o Fault current detection

o Broken conductor detection o MV Measurements

o MV Power quality

o Sectionalizer automation function.

o PS50: Configuration of the parameters of each PS50 module: o Power supply input monitoring

o

Battery

o Remote control order monitoring

o

Back-up power supply management.

o LV0x: Configuration of the parameters of each LV150 module: o Current and voltage measurement sensors

o LV Voltage monitoring

o Broken conductor detection o LV Measurements

o LV Power quality.

LV01 Settings page – T300 Web server.

16

NT00378-EN-03

Commissioning

Data Consultation and

 

Monitoring Pages

3.1Data Consultation and Monitoring Pages

3.1.1 Home Page

Accessed via: Home page

Once the username and password have been entered to access the

T300 Web server, the Home page is displayed automatically.

This page contains the following general information about the MV substation:

 

Device Information: It is possible to add the names of the operators who

 

have used or configured the equipment or a specific custom note that can be

 

viewed each time a connection is established to this substation.

 

 

Location: The GPS coordinates for the MV substation location

 

 

(latitude, longitude, and altitude) can be entered here.

 

 

If these coordinates are defined and there is an Internet connection,

 

Home page – Web server

a Google map automatically appears in the Home page.

 

 

 

 

It is possible to download another image manually by clicking the

button

 

next to the map. Then simply browse to select the relevant image file and

 

click Upload to upload the map:

 

Factory Information: This gives the product ID and the version of the software loaded on the HU250 module.

It is also possible to include an image of the MV substation or a particular device here for identification purposes.

To do this, click the , button to select the relevant file and click Upload to upload the image:

NT00378-EN-03

17

Commissioning

Data Consultation and

 

Monitoring Pages

 

 

Monitoring & Control/Substation page – Web server

Extended data display for the HU250 module

3.1.2 Substation Page

Accessed via: Monitoring & Control/Substation page

The Substation page provides an overview of the information relating to the MV substation managed by the T300:

The overall status of the T300 HU250 module (local/remote control, state of the automation function, etc.)

The overall status of the power supplies managed by the PS50 module

Information related to the MV switches and the associated measurements, with a graphical representation per channel (by SC150 module)

The Low Voltage measurements managed by each LV150 module.

Information displayed for the HU250 Module

This graphical representation corresponds to the information displayed and the actions that are possible on the HU250 module, namely:

Indication of Local/Remote operation (this can be changed using the pushbutton on the HU250 module)

Reset button to clear the fault current indication

Automation function status (ON/OFF or locked), with the option to activate the automation function (by clicking the button) and to reset the automation

function lock (by clicking the button)

Indication of the ambient temperature, if there is a PT100 temperature sensor connected to the HU250 module

Extended display for the HU250 Module

By clicking on the graphical representation of the HU250 above, an additional representation appears on the right-hand side of the screen indicating the states of all the digital I/O:

By clicking the button, the user has the option to change the state of the associated digital output:

Note: the labels of the displayed states can eventually be customized by changing the description of the corresponding data points in CoreDb via Easergy Builder. Refer to the Easergy Builder User's Manual for more information.

18

NT00378-EN-03

Commissioning

Data Consultation and Monitoring

 

pages

Information displayed for the PS50 Module

This graphical representation contains the following information:

The status of the power supplies managed by the PS50 module, respectively:

The AC line supply

The 24/48 VDC power supply for the switch motor mechanism

The 12 VDC power supply for the transmission equipment

The battery

A Reset button for restarting the power supplies in the event of an outage following a potential issue on one of the outputs

Power supply shutdown

A power supply shutdown occurs when the mains power supply has been switched off for a long time, in order to limit the time on the backup power supply (battery). This power interruption preserves the capacity of the battery and its lifetime. Battery backup saving can be enabled or disabled by configuration.

When this function is enabled, as soon as the MV network is switched off, the battery takes over the power supply for a configurable maximum period Backup time duration (default: 16 hours).

Beyond this period, an immediate alarm General shutdown is activated and then Power supply is switched off automatically. The power supply is also switched off if the battery reachs low level and then PS50 module enters sleep mode until the AC network voltage returns.

From this sleep mode, the 24/48 V & 12 V power supply outputs can be reactivated temporarily when the PS50 module is reset (Reset button ) or when the External Reset digital input of the PS50 module is activated. The power supply is switched off again and permanently if it reach the critical discharge threshold (< 10.8 V).

Extended display for the PS50 Module

By clicking on the graphical representation of the PS50 above, additional information appears on the right-hand side of the screen including states, measurements, and the possible actions.

 

 

 

 

Under normal conditions, the information is displayed in green. In the event of an anomaly, the information is displayed in orange or red depending on the severity of the condition.

Examples of potential issues displayed in red

NT00378-EN-03

19

 

Commissioning

 

 

Data Consultation and Monitoring

 

 

 

 

pages

 

 

 

 

 

 

 

 

 

 

 

The extended information included in the detailed view of the PS50 module is

 

 

 

 

described in the table below:

 

 

 

 

 

A Reboot PS50 button for restarting the PS50 module. This action performs a complete reboot of

 

 

the T300 device.

 

 

 

 

 

 

 

 

A Restart all outputs button for restarting all outputs. This may reset the outputs to their initial state

 

 

 

if this is possible and if the anomaly is temporary.

 

 

 

 

 

 

A General shutdown button that can only be activated if there is no AC line supply and power is

 

 

 

supplied by the battery only. Click this button to switch all T300 power supplies to standby mode

 

 

 

and thereby conserve battery power. It is possible to exit standby mode, either manually by pressing

 

 

 

the Reset button on the front of the PS50, or automatically when the AC line supply is restored.

 

 

A Reload default settings button for clearing the current parameters and returning to the

 

 

 

PS50 module default parameters.

 

 

 

 

 

 

A Health symbol indicating the overall state of the PS50 and an Overtemperature symbol indicating

 

 

 

the state of the PS50 module thermal protection.

 

 

 

 

 

 

A symbol indicating the state of the 24/48 V switch motor mechanism power supply with an

 

 

 

ON/OFF button for turning this power supply on or off.

 

 

 

A voltage measurement and a consumption measurement are also displayed for this power supply.

 

 

 

 

 

 

A symbol indicating the state of the 12 V transmission power supply with an ON/OFF button for

 

 

 

turning this power supply on or off.

 

 

 

A voltage measurement and a consumption measurement are also displayed for this power supply.

 

 

 

 

 

 

A symbol indicating the state of the general 12 V power supply for the T300 modules and IEDs.

 

 

 

A voltage measurement and a consumption measurement are also displayed for this power supply.

 

 

 

 

 

 

This section displays the overall state of the battery charger with a Reset temperature

 

 

 

statistics button to clear the stored minimum and maximum battery temperatures.

 

 

 

A voltage measurement and a consumption measurement are also displayed for the battery.

 

 

 

 

 

 

A symbol for the presence/absence of the AC line supply with the corresponding voltage

 

 

 

measurement.

 

 

 

 

 

 

 

 

Two time indications and a button:

 

 

 

Last battery charging time: Duration of the battery's last charging period

 

 

 

Last battery discharging time: Duration of the battery's last discharging period

 

 

 

Battery test button for activating the battery test immediately. The battery test is theoretically

 

 

 

 

conducted automatically depending on the period defined in the Automatic test

 

 

 

 

interval parameter (default setting: 1 day).

 

 

 

 

Note : The

button is not displayed if the battery is disconnected, if battery

 

 

 

 

potential issue is detected, or if the AC supply is missing.

 

 

A graphical representation of the overall status of the battery, including:

 

 

 

 

Overall battery health indication

 

 

 

 

Percentage battery charge remaining

 

 

 

 

Internal resistance measurement in mOhm

 

 

 

 

The temperature measured in the PS50 operating environment (measurement made internally

 

 

 

 

in the PS50 box) with an indication of the minimum and maximum values recorded since the

 

 

 

 

last statistics reset (see )

 

 

 

 

An indication of whether the battery is charging or discharging via arrows showing the direction

 

 

 

 

of the current. The measurement indicated at the charger level (see ) gives a measurement

 

 

 

 

value for this current.

 

 

 

 

 

 

 

 

20

 

 

NT00378-EN-03

Commissioning

Data Consultation and Monitoring

 

pages

Button for editing the graphics parameters associated with switches

Window for setting the parameters of the graphic objects associated with a switch

Information displayed for the SC150 modules

Each switch managed by a SC150 module is represented graphically with the following indications:

Position of the switch (open or closed)

Position of the ground switch (open or closed) Presence of the MV voltage (ON or OFF)

Display of the RMS current and voltage measurements for each phase Indication of the presence of a fault current by a red flash and an arrow

indicating the direction of the fault current (for directional fault current detection): o Green arrow = in the direction of the busbar

o Red arrow = in the direction of the network

Graphical representation of the Switch

It is possible to customize the graphical representation of each switch by clicking the button at the top of the page.

Click the edit button that appears in the page to access the graphic parameters for the switch you want to customize.

A window appears offering the following choices:

Parameter

Possible choices

Description

SC Position on the bus

 

Not connected

Choice of position of the switch on

 

 

On the left

the busbar:

 

 

On the right

No link with the busbar

 

 

In the middle

 

On the left

 

 

 

 

On the right

 

 

 

 

In the middle

Switch type

 

Disconnector

Choice of switchgear represented:

 

 

Load switch

 

Disconnector

 

 

Switch disconnector

 

Load switch

 

 

Circuit breaker

 

Switch disconnector

 

 

 

 

Circuit breaker

Line output

 

Not any output

Choice for the representation of

 

 

Cable

the line downstream of the switch

 

 

LV0x

 

 

VT presence

 

No

Choice of whether or not to display

 

 

Yes

the voltage measurement

 

 

 

transformer

CT presence

 

No

Choice of whether or not to display

 

 

Yes

the current measurement

 

 

 

transformer

Bay name

 

 

Name given to the channel

NT00378-EN-03

21

Commissioning

Data Consultation and Monitoring

 

pages

Dummy switch position

Dummy switch position LED on the front panel of the SC150 module

Extended display for the SC150 module

By clicking on the graphical representation of the switch, additional information appears on the right-hand side of the screen including counters

and measurements:

Information relating to the switch is displayed in the same way as in the standard representation. There is also an option to send a command to the

switch by clicking the or button (depending on its actual position). The graphical representation of the switch is automatically updated as soon as the change of state is detected.

The general fault current counters representing the total number of phase-to- phase and phase-to-ground (earth) fault currents detected are displayed by type (transient, semi-permanent, and permanent), with the option to reset the counter

values by clicking the Reset button .

The detected phase-to-phase fault current counters are displayed by type (transient, semi-permanent, and permanent), with the option to change the values

by clicking the Edit button.

The detected phase-to-ground (earth) fault current counters are displayed by type (transient, semi-permanent, and permanent), with the option to change the

values by clicking the Edit button.

The number of operations counted on the switch is given, with the option to

change the value by clicking the Edit button .

The T300 includes the option to configure 2 sets of fault current detection parameters (with specific values for each set) in the Settings section of the Web server (see the corresponding section in this manual). The option is given here to

select which set of parameters to apply to fault current detection by clicking or

. The active group is indicated by a green LED.

A Simulation section that is used to test a command on a dummy switch without actually actuating it (this can be useful to test T300-SCADA communication when it is not physically possible to operate the switch due to an

interruption on the MV network). To do this, click on the or

button to operate dummy switch and, for instance, check the retransmission of the change of state remotely (e.g. at the SCADA end). The position of the dummy switch changes state in this Simulation section of the application but the actual position of the MV switch (indicated in ) does not change.

After a command is sent to the dummy switch, its position is indicated for 30 seconds on the first customized LED on the SC150 module.

The instantaneous current measurements for each phase as well as the residual current

The instantaneous voltage measurements for each phase.

22

NT00378-EN-03

Commissioning

Data Consultation and Monitoring

 

pages

Button for editing the graphics parameters associated with LV150

Window for setting the parameters of the graphic objects associated with LV150

Information displayed for the LV150 modules

Each LV150 module has its own graphical representation including the display of the following information:

The temperature measurements provided by the three PT100 sensors connected to the LV150

The LV current measurements on each phase and neutral The LV voltage measurements on each phase and neutral.

Note: The neutral current measurement displayed corresponds to a measured value in case the 3-phase + neutral sensors mounting is used and to a calculated value (by summing all 3 phases) when the neutral is not connected.

Graphical representation of LV150:

It is possible to customize the graphical representation of each LV150 module by clicking the button at the top of the page.

Click the edit button that appears in the page to access the graphic parameters for the LV150 you want to customize.

A window appears offering the following choices:

Parameter

Possible choices

 

Description

LV Position on

 

 

 

Choice of position of the LV150 on the

the bus

 

Not connected

 

busbar:

 

 

 

No link with the busbar

 

 

On the left

 

 

On the left

 

 

On the right

 

 

On the right

 

 

In the middle

 

 

In the middle

Bay name

 

 

 

Name given to the channel

Window for selecting the standard for the graphical representations

Synoptics settings

Click the settings button to define the type of graphical representation to apply for the objects displayed in the page's synoptics:

Parameter

Possible choices

 

Description

Symbols

 

 

 

The standard used relates to the representation of

 

 

 

 

the switchgear, voltage and current transformers,

 

 

IEC standard

 

and the ground switch:

 

 

 

Objects represented in accordance with the IEC

 

 

ANSI standard

 

standard.

 

 

 

Objects represented in accordance with the

 

 

 

 

ANSI standard.

NT00378-EN-03

23

Commissioning

Data Consultation and Monitoring

 

pages

Monitoring & Control/Physical view page – Web server

Overall HU250 module status

Overall PS50 module status

3.1.3 System Page

Accessed via: Monitoring & Control/System page

This page provides a general overview of the system. The states of the various items (modules) are given by symbols indicating a correct operation or potential issue conditions. The indications given by theses states are detailed by module here after.

HU250 Module Status

This representation includes:

The status of the Wi-Fi access and the K7 3G/4G modem with a 5-bar GSM signal strength indicator, and indication of the IP address if connected to the mobile network.

The status of the HU250 module itself, including the configuration, the PLC, the GPS reception, the synchronization of equipment and a percentage value representing the CPU usage level.

Note: The GPS reception symbol indicates the satus of GPS reception with a color:

-gray: unconfigured or invalid GPS reception.

-green: operational GPS reception.

-red: GPS reception potential issue.

Note 2: A GPS reception issue causes a loss of synchronization and the corresponding symbol becomes red.

PS50 Module Status

This representation includes:

An indication of the type of link used for the internal HU250-PS50 link (RS485 in Modbus protocol).

The status of the PS50 module, the charger, and the battery, as well as the overall status of the internal Modbus RS485 link.

LV150 and SC150 Modules Status

 

This representation includes:

 

An indication of the type of link used for the internal link between HU250

 

module and SC150/LV150 modules (Ethernet LAN in IEC 60870-5-104 protocol).

 

The status of the SC150 and LV150 modules, including for each the status of

 

the configuration and synchronization, as well as the overall status of the internal

IEC 60870-5-104 Ethernet LAN.

Overall SC150 and LV150 modules status

24

NT00378-EN-03

Commissioning

Data Consultation and Monitoring

 

pages

Extended display

Example of a pop-up window displayed for the Configuration section of a module

Example of a pop-up window displayed for the Synchronization section of a HU250 module and SC150/LV150 module

Example of a pop-up window displayed for the Modem section of a module

By passing the mouse over some graphical elements of the modules in the System page, a "pop up" window appears giving additional indications.

This additional display concerns the following:

1.Configuration: By passing the mouse over the Conf element of a module, the system indicates the following informations:

The minimum software required for compatibility with the module configuration.

The options installed on the module (eg details of installed power measurement options).

2.Synchronization: By passing the mouse over the Synchro element of a module, the system gives the following indications:

For the HU250 module:

o Status of the two synchronization sources (primary and secondary).

For the SC150 and LV150 modules:

o Status of the module time synchronization and status of the

synchronization source generating this synchronization.

o Status of the "1Hz" module synchronization as well as the status of this synchronization 1Hz signal. This synchronization allows all the SC150 and LV150 modules to be synchronized to the same 1 Hz frequency top generated by the HU250 module.

3.Modem: by passing the mouse over the graphical representation of a 3G/4G modem, the system indicates the following informations:

Type of modem installed (2G, 3G or 4G modem).

Received GSM signal strength, numbered from 0 to 99: o 0 to 10: insufficient GSM reception

o 11 to 31: correct GSM reception o 99: undetectable GSM signals.

The IP address obtained for the T300, assigned by the mobile operator.

The modem IMEI code, allowing identification of the equipment connecting to the mobile network.

Shortcut to pages

By clicking on the graphical representation of a module, a pop-up window appears giving the possibility to access directly certain pages of the Web server linked to this module, like shortcuts or quick accesses.

Depending on the type of module, quick access can be of different types:

PS50: shortcuts to the PS50 module configuration page (Settings page) and the PS50 module status display page (Subview of PS page).

Other modules: shortcuts to the system events page (Diagnostics- >System page) and the module settings page (Settings page).

Example of shortcuts available by clicking on the module representation

NT00378-EN-03

25

Commissioning

Data Consultation and Monitoring

 

pages

3.1.4 Data Pages

Accessed via: Monitoring & Control/Status-Command-Analog-Setpoint page

There are 4 pages in the T300 Web server for viewing status and measurement data or for sending commands:

Status page: For viewing the status of the digital data

Command page: For sending change of state commands based on the digital data

Analog page: For viewing measurement values

Setpoint page: For forcing parameter values

Each page has the same format, with the following information displayed on the screen:

The data refresh period can be configured in 1 of 3 ways: o Fast: Data is refreshed every second

o Normal: Data is refreshed every 4 seconds o Slow: Data is refreshed every 10 seconds

Monitoring & Control / Status page – Web server

It is also possible to set a filter to display data by Source or Destination to limit the amount of data displayed on screen:

The description of a data item is displayed over 3 main columns:

o

Point name

Internal name of the data item in CoreDb (database)

o

Description

Data label

o

Value

Value of the data item

By clicking the button associated with the Value field, you can manually edit the state or value of a Command or Setpoint data item:

Note: For switch control, it is advisable to use the interface in the Substation view.

26

NT00378-EN-03

Commissioning

Data Consultation and Monitoring

 

pages

Similarly, for a Status or Analog data item, you can force its status or value. However, this type of data is only processed in read mode; forcing is only applied in simulation.

To do this, the actual data item must first be locked by clicking the Locking option.

Once the data is locked, the button associated with the Value field then becomes accessible and can be used to change its status or value in simulation mode.

Example of Analog data display

Note: The modified value also impacts the remote retransmission at the SCADA end. This allows you, for instance, to simulate the state of a variable and to test its retransmission at the SCADA end, without affecting the actual equipment operation.

Disabling the Locking option cancels the simulation and returns to the actual status or value of the data item.

Two icons displayed in the Quality column provide an indication of the data processing quality. The quality of a data item can give an indication of the validity of the status or value entered on the Web server page.

This quality is indicated for the following 2 sources:

o Local source: Reflects the quality of the data item from the viewpoint

of its processing at the HU250 end

o Remote source: Reflects the quality of the data item sent by the information source (device) processing the data (e.g. SC150, PS50, etc.)

In the same way as for a change of state or value for Status or Analog data, it is possible to manually simulate the quality of a data item.

To do this you must first lock the data item using the Locking option,

then click the button associated with the Quality field.

The possible choices for the local and remote source quality are then displayed on screen.

Disabling the Locking option cancels the simulation and returns to the actual quality of the data item.

NT00378-EN-03

27

Commissioning

Data Consultation and Monitoring

 

pages

The table below shows the correspondence of the different quality types that can be simulated after having locked a data item.

Note that this also gives an indication of the different quality types that can be obtained in actual operation:

 

Local source quality

Description

 

Overflow

An overflow has occurred on a counter

 

Rollover

An overflow and an automatic reset have

 

 

occurred on a counter

 

Counter adjustment

The counter has been adjusted

 

Chatter

Excessive change on a digital input

 

Locked

The data item is locked

 

Manual

The data item has been manually replaced

 

Not typical

The data item has not yet been written to

 

 

the database

 

Invalid data

Data item is invalid

 

Critical alarm

The value of the data item has exceeded

 

 

the High-High alarm threshold

 

High level alarm

The value of the data item has exceeded

 

 

the High alarm threshold

 

Low level alarm

The value of the data item is below the Low

 

 

alarm threshold

 

Signal alarm

The value of the data item is below the

Choice of quality options for the local and remote sources

 

Low-Low alarm threshold

 

Invalid time

The data item time-stamp is invalid or

 

 

inaccurate (the HU250 is not synchronized

 

 

by a source)

 

Remote source quality

Description

 

Overflow

An overflow has occurred

 

Rollover

A rollover has occurred on a counter

 

Counter adjustment

The counter has been adjusted

 

Chatter

Excessive change on a digital input

 

Locked

The data item is locked

 

Substituted data

The data item has been manually replaced

 

Not topical

The data item has not yet been written

 

 

to the database

 

Invalid data

Data item is invalid

 

Invalid time

The data item time-stamp is invalid

28

NT00378-EN-03

Commissioning

The Measures

Example of measurements displayed – MV or LV Measurement/PM – Power page / RMS tab

3.2 Measurements

3.2.1 Measurements Pages

Accessed via: MV and LV Measurements/PM-Power/PM-Energy/Power-Quality page

The MV and LV Measurements pages in the Web server display the different types of power, energy, and quality measurements taken by the T300 on the MV and LV networks, in tabs including data tables based on the analog data received from the current and voltage sensors.

Note: Regarding MV voltage measurement, the T300 takes the measurements using the same current and voltage sensors as those used to detect fault currents.

The power and energy measurements comply with standard IEC 61557-12.

The power quality measurements are completed according to the principles of IEC 61000-4-30 class S (up to harmonic 15).

Note: To comply with the accuracy required by the standards (1% accuracy), voltage measurements are only possible using LPVT or VT type adaptors (for LV measurement; only Voltage adaptor type).

Some measurements are optional for the T300 ("option" column in the table below). If the corresponding option is not present in the equipment, the associated data is not displayed in the LV and MV Measurements pages.

Note: The PM option (and associated measurements) is included as standard for LV measurements, although this is optional for MV measurements.

The data displayed in the MV Measurements page depends on the parameter settings in the Settings/SC0x/Measurements and Power Quality pages.

The data displayed in the LV Measurements page depends on the parameter settings in the Settings/LV0x/Measurements and Power Quality pages.

Refer to the corresponding sections for more information on how to configure these parameters.

The list of measurements displayed in the MV and LV Measurements pages is identical and shown below:

Tab PM - Power

Tab RMS

Category

Measure

Description

Option

Current

Mean

Mean current on all 3 phases

 

 

Phase A

Current on phase A

 

 

Phase B

Current on phase B

 

 

Phase C

Current on phase C

 

 

Residual

Residual current

 

Single

Mean

Mean phase-to-neutral voltage on all 3

 

voltage

 

phases

No option

 

Phase A

Phase-to-neutral voltage on phase A

 

Phase B

Phase-to-neutral voltage on phase B

(included

 

Phase C

Phase-to-neutral voltage on phase C

as

 

Neutral

Residual voltage

standard)

Phase

Mean

Mean phase-to-phase voltage on all 3 phases

 

voltage

Vab

Phase-to-phase voltage between phases A

 

 

 

and B

 

 

Vbc

Phase-to-phase voltage between phases B

 

 

 

and C

 

 

Vca

Phase-to-phase voltage between phases C

 

 

 

and A

 

Real power

Total

Total active power

 

 

Phase A

Active power on phase A

 

 

Phase B

Active power on phase B

 

 

Phase C

Active power on phase C

 

Reactive

Total

Total reactive power

 

power

Phase A

Reactive power on phase A

 

 

Phase B

Reactive power on phase B

PM option

 

Phase C

Reactive power on phase C

Apparent

Total

Total apparent power

(*)

power

Phase A

Apparent power on phase A

 

 

Phase B

Apparent power on phase B

 

 

Phase C

Apparent power on phase C

 

Power

Total

Total power factor

 

factor

Phase A

Power factor on phase A

 

 

Phase B

Power factor on phase B

 

 

Phase C

Power factor on phase C

 

(*): PM option is incuded as standard for the LV measurements.

NT00378-EN-03

29

Commissioning

The Measures

Example of measurements displayed – MV or LV Measurement/PM – Power page / Average tab

Tab PM - Power

Tab Average (°)

Category

Measure

Description

Option

Current

Average current phase A

Average current phase A

 

 

Average current phase B

Average current phase B

 

 

Average current phase C

Average current phase C

 

 

RMS current residual

RMS current residual (computed)

 

 

(computed)

 

 

 

RMS current residual

RMS current residual (measured)

 

 

(measured)

 

 

 

Average of Mean RMS

Average of Mean RMS phase

 

 

phase current

current

 

Voltage

Average voltage phase A

Average voltage phase A

 

 

Average voltage phase B

Average voltage phase B

 

 

Average voltage phase C

Average voltage phase C

 

 

Average voltage neutral

Average voltage neutral (computed)

 

 

(computed)

 

 

 

Average of Mean RMS

Average of Mean RMS voltage

 

 

voltage phase-N

phase-N

 

Power

Average P Real power

Average P Real power phase A

 

 

phase A

 

 

 

Average P Real power

Average P Real power phase B

 

 

phase B

 

 

 

Average P Real power

Average P Real power phase C

 

 

phase C

 

 

 

Average P Real power

Average P Real power total

 

 

total

 

 

 

Average Q Reactive

Average Q Reactive power phase A

 

 

power phase A

 

 

 

Average Q Reactive

Average Q Reactive power phase B

 

 

power phase B

 

 

 

Average Q Reactive

Average Q Reactive power phase

 

 

power phase C

C

 

 

Average Q Reactive

Average Q Reactive power total

PM

 

power total

 

Option

 

Average S Apparent

Average S Apparent power phase

(*)

 

power phase A

A

 

 

Average S Apparent

Average S Apparent power phase

 

 

power phase B

B

 

 

Average S Apparent

Average S Apparent power phase

 

 

power phase C

C

 

 

Average S Apparent

Average S Apparent power total

 

 

power total

 

 

Min/Max

Minimum of average of

Minimum of average of Mean RMS

 

recording

Mean RMS phase current

phase current day

 

 

day

 

 

 

Minimum of average of

Minimum of average of Mean RMS

 

 

Mean RMS phase current

phase current week

 

 

week

 

 

 

Minimum of average of

Minimum of average of Mean RMS

 

 

Mean RMS phase current

phase current month

 

 

month

 

 

 

Minimum of average of

Minimum of average of Mean RMS

 

 

Mean RMS phase current

phase current year

 

 

year

 

 

 

Maximum of average of

Maximum of average of Mean RMS

 

 

Mean RMS phase current

phase current day

 

 

day

 

 

 

Maximum of average of

Maximum of average of Mean RMS

 

 

Mean RMS phase current

phase current week

 

 

week

 

 

 

Maximum of average of

Maximum of average of Mean RMS

 

 

Mean RMS phase current

phase current month

 

 

month

 

 

 

Maximum of average of

Maximum of average of Mean RMS

 

 

Mean RMS phase current

phase current year

 

 

year

 

 

(*): PM option is incuded as standard for the LV measurements.

(°) :A button on the page manually resets the calculated averages on the currents.

30

NT00378-EN-03

Loading...
+ 130 hidden pages