Motorola MC34066DW, MC34066P, MC33066DW, MC33066P Datasheet

0 (0)

Order this document by MC34066/D

High Performance

Resonant Mode Controllers

The MC34066/MC33066 are high performance resonant mode controllers designed for off±line and dc±to±dc converter applications that utilize frequency modulated constant on±time or constant off±time control. These integrated circuits feature a variable frequency oscillator with programmable deadtime, precision retriggerable one±shot timer, temperature compensated reference, high gain wide±bandwidth error amplifier with a precision output clamp, steering flip±flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of a high speed fault comparator and latch, programmable soft±start circuitry, input undervoltage lockout with selectable thresholds, and reference undervoltage lockout.

These devices are available in dual±in±line and surface mount packages.

Variable Frequency Oscillator with a Control Range Exceeding 1000:1

Programmable Oscillator Deadtime Allows Constant Off±Time Operation

Precision Retriggerable One±Shot Timer

Internally Trimmed Bandgap Reference

5.0 MHz Error Amplifier with Precision Output Clamp

Dual High Current Totem Pole Outputs

Selectable Undervoltage Lockout Thresholds with Hysteresis

Enable Input

Programmable Soft±Start Circuitry

Low Startup Current for Off±Line Operation

 

 

Simplified Block Diagram

 

 

VCC

15

 

 

 

 

 

Enable/

 

Reference

 

 

 

 

VCC UVLO

 

 

Vref

UVLO Adjust

9

Regulator

 

5

Osc

 

 

Variable

Vref UVLO

4

Gnd

Deadtime

1

 

 

 

 

 

 

 

Osc RC

 

 

Frequency

Aout

 

Drive

 

 

Oscillator

 

Osc Control 2

 

14 Output A

Current 3

 

 

Steering

 

 

One±Shot RC

 

One±Shot

Flip±Flop

 

Drive

 

Bout

 

 

16

 

 

 

12 Output B

 

 

Error Amp

 

 

 

Drive Gnd

 

 

Clamp

 

 

13

Error Amp

 

 

 

 

 

 

Error

 

 

 

 

Out 6

 

 

 

 

Error Amp +

 

Amplifier

 

 

 

 

8

 

Soft±Start

Fault±Detector/

 

Fault Input

 

 

 

Error Amp ±

 

Latch

10

 

 

 

 

7

 

 

 

 

CSoft±Start

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

MC34066

MC33066

HIGH PERFORMANCE

RESONANT MODE

CONTROLLERS

SEMICONDUCTOR

TECHNICAL DATA

P SUFFIX

PLASTIC PACKAGE

CASE 648

DW SUFFIX

PLASTIC PACKAGE

CASE 751G (SO±16L)

PIN CONNECTIONS

 

 

 

 

 

 

Osc Deadtime

1

 

16

One±Shot RC

 

 

 

 

 

 

Osc RC

2

 

15

V

Osc Control

 

 

 

 

CC

 

 

 

 

3

 

14

Drive Output A

Current

 

 

 

 

 

 

 

 

 

 

 

 

Gnd

4

 

13

Drive Gnd

 

 

 

 

 

 

Vref

5

 

12

Drive Output B

 

 

 

 

 

 

Error Amp Out

6

 

11

CSoft±Start

Error Amp

 

 

 

 

7

 

 

10

Fault Input

Inverting Input

 

 

 

 

Enable/UVLO

 

 

 

 

Error Amp

8

 

 

9

Noninverting Input

 

 

 

 

Adjust

 

 

 

 

(Top View)

ORDERING INFORMATION

 

Operating

 

Device

Temperature Range

Package

 

 

 

MC34066DW

TA = 0° to +70°C

SO±16L

 

 

MC34066P

Plastic DIP

 

 

 

 

MC33066DW

TA = ± 40° to +85°C

SO±16L

 

 

MC33066P

Plastic DIP

 

 

 

 

Motorola, Inc. 1996

Rev 1

MC34066 MC33066

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

 

 

 

 

Power Input Supply Voltage

VCC

20

V

Drive Output Current, Source or Sink (Note 1)

IO

 

A

Continuous

 

0.3

 

Pulsed (0.5 μs, 25% Duty Cycle)

 

1.5

 

 

 

 

 

Error Amplifier, Fault, One±Shot, Oscillator, and

Vin

±1.0 to +6.0

V

Soft±Start Inputs

 

 

 

 

 

 

 

UVLO Adjust Input

Vin(UVLO)

±1.0 to VCC

V

Soft±Start Discharge Current

Idchg

20

mA

Power Dissipation and Thermal Characteristics

 

 

 

DW Suffix Package, Case 751G

 

 

 

Maximum Power Dissipation @ TA = 25°C

PD

862

mW

Thermal Resistance, Junction±to±Air

RθJA

145

°C/W

P Suffix Package, Case 648

 

 

 

Maximum Power Dissipation @ TA = 25°C

PD

1.25

W

Thermal Resistance, Junction±to±Air

RθJA

100

°C/W

Operating Junction Temperature

TJ

+150

°C

Operating Ambient Temperature

TA

 

°C

MC34066

 

0 to +70

 

MC33066

 

±40 to +85

 

 

 

 

 

Storage Temperature Range

Tstg

±65 to +150

°C

ELECTRICAL CHARACTERISTICS (VCC = 12 V [Note 2], ROSC = 95.3 k, RDT = 0 Ω, RVFO = 5.62 k, COSC = 300 pF, RT = 14.3 k, CT = 300 pF, CL = 1.0 nF, for typical values TA = 25°C, for min/max values TA is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

REFERENCE SECTION

 

 

 

 

 

 

 

 

 

 

 

Reference Output Voltage (IO = 0 mA, TA = 25°C)

Vref

5.0

5.1

5.2

V

Line Regulation (VCC = 10 V to 18 V)

Regline

±

1.0

20

mV

Load Regulation (IO = 0 mA to 10 mA)

Regload

±

1.0

20

mV

Total Output Variation over Line, Load, and Temperature

Vref

4.9

±

5.3

mV

Output Short Circuit Current

IO

25

100

190

mA

Reference Undervoltage Lockout Threshold

Vth

3.8

4.3

4.8

V

ERROR AMPLIFIER

 

 

 

 

 

 

 

 

 

 

 

Input Offset Voltage (VCM = 1.5 V)

VIO

±

1.0

10

mV

Input Bias Current (VCM = 1.5 V)

IIB

±

0.2

1.0

μA

Input Offset Current (VCM = 1.5 V)

IIO

±

0

0.5

μA

Open Loop Voltage Gain (VCM = 1.5 V, VO = 2.0 V)

AVOL

70

100

±

dB

Gain Bandwidth Product (f = 100 kHz)

GBW

2.5

4.2

±

MHz

 

 

 

 

 

 

Input Common Mode Rejection Ratio (VCM = 1.5 V to 5.0 V)

CMRR

70

95

±

dB

Power Supply Rejection Ratio (VCC = 10 V to 18 V, f = 120 Hz)

PSRR

80

100

±

dB

Output Voltage Swing

 

 

 

 

V

High State with Respect to Pin 3 (ISource = 2.0 mA)

VOH

2.3

2.7

3.1

 

Low State with Respect to Ground (ISink = 1.0 mA)

VOL

±

0.4

0.6

 

NOTES: 1. Maximum package power dissipation limits must be observed.

2.Adjust VCC above the Startup threshold before setting to 12 V.

3.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

Tlow = 0°C for MC34066

Thigh = +70°C for MC34066

±40°C for MC33066

+85°C for MC33066

2

MOTOROLA ANALOG IC DEVICE DATA

MC34066 MC33066

ELECTRICAL CHARACTERISTICS (continued) (VCC = 12 V [Note 2], ROSC = 95.3 k, RDT = 0 Ω, RVFO = 5.62 k, COSC = 300 pF,

RT = 14.3 k, CT = 300 pF, CL = 1.0 nF, for typical values TA = 25°C, for min/max values TA is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

OSCILLATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency (Error Amp Output Low)

 

 

fOSC(low)

 

 

 

kHz

TA = 25°C

 

 

 

90

100

110

 

Total Variation (VCC = 10 V to 18 V, TA = TLow to THigh)

 

85

±

115

 

Frequency (Error Amp Output High)

 

 

fOSC(high)

 

 

 

kHz

TA = 25°C

 

 

 

900

1000

1100

 

Total Variation (VCC = 10 V to 18 V, TA = TLow to THigh)

 

850

±

1150

 

Oscillator Control Input Voltage, Pin 3 (ISink = 0.5 mA, TA = 25°C)

Vin

1.3

1.4

1.5

V

Output Deadtime (Error Amp Output High)

 

DT

 

 

 

ns

RDT = 0 Ω

 

 

 

±

70

100

 

RDT = 1.0 k

 

 

 

600

700

800

 

ONE±SHOT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drive Output On±Time (RDT = 1.0 k)

 

 

tOS

 

 

 

μs

TA = 25°C

 

 

 

1.43

1.5

1.57

 

Total Variation (VCC = 10 V to 18 V, TA = TLow to THigh)

 

1.4

±

1.6

 

DRIVE OUTPUTS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Voltage

 

 

 

 

 

 

V

Low State (ISink = 20 mA)

 

 

VOL

±

0.8

1.2

 

(ISink = 200 mA)

 

 

 

±

1.5

2.0

 

High State (ISource = 20 mA)

 

 

VOH

9.5

10.3

±

 

(ISource = 200 mA)

 

 

 

9.0

9.8

±

 

Output Voltage with UVLO Activated (VCC = 6.0 V, ISink = 1.0 mA)

VOL(UVLO)

±

0.8

1.2

V

Output Voltage Rise Time (CL = 1.0 nF)

 

tr

±

20

50

ns

Output Voltage Fall Time (CL = 1.0 nF)

 

tf

±

20

50

ns

FAULT COMPARATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Threshold

 

 

Vth

0.95

1.0

1.05

V

Input Bias Current (VPin 10 = 0 V)

 

 

IIB

±

±2.0

±10

μA

Propagation Delay to Drive Outputs (100 mV Overdrive)

tPLH(In/Out)

±

60

100

ns

SOFT±START

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capacitor Charge Current (VPin 11 = 2.5 V)

 

Ichg

4.5

8.1

14

μA

Capacitor Discharge Current (VPin 11 = 2.5 V)

 

IIdchg

1.0

8.0

±

mA

UNDERVOLTAGE LOCKOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Startup Threshold, VCC Increasing

 

 

Vth(UVLO)

 

 

 

V

Enable/UVLO Adjust Pin Open

 

 

 

14.8

16

17.2

 

Enable/UVLO Adjust Pin Connected to VCC

 

 

8.0

9.0

10

 

Minimum Operating Voltage after Turn±On

 

VCC(min)

 

 

 

V

Enable/UVLO Adjust Pin Open

 

 

 

8.0

9.0

10

 

Enable/UVLO Adjust Pin Connected to VCC

 

 

7.6

8.6

9.6

 

Enable/UVLO Adjust Shutdown Threshold Voltage

Vth(Enable)

6.0

7.0

±

V

Enable/UVLO Adjust Input Current (Pin 9 = 0V)

 

Iin(Enable)

±

±0.2

±1.0

mA

TOTAL DEVICE

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Supply Current (Enable/UVLO Adjust Pin Open)

ICC

 

 

 

mA

Startup (VCC = 13.5 V)

 

 

 

±

0.45

0.6

 

Operating (fOSC = 100 kHz) (Note 2)

 

 

±

21

30

 

NOTES: 2. Adjust VCC above the Startup threshold before setting to 12 V.

 

 

 

 

 

3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

 

 

Tlow = 0°C for MC34066

Thigh =

+70°C for MC34066

 

 

 

 

 

±40°C for MC33066

 

+85°C for MC33066

 

 

 

 

 

MOTOROLA ANALOG IC DEVICE DATA

3

 

Motorola MC34066DW, MC34066P, MC33066DW, MC33066P Datasheet

MC34066 MC33066

Figure 1. MC34066 Representative Block Diagram

 

VCC

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50k

 

7k

 

 

 

 

 

 

 

 

 

 

 

 

 

7k

 

 

 

 

 

 

 

 

 

 

 

Enable/

 

 

+

 

Reference

 

 

 

 

 

 

 

 

9

 

50k

 

 

 

 

 

 

 

 

Vref

UVLO Adjust

 

±

 

Regulator

5.1V

Vref UVLO

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8V VCC UVLO

 

 

 

 

 

 

Gnd

 

 

 

 

 

 

UVLO

±

 

 

 

 

4

 

 

 

 

 

VCC

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Osc Deadtime

 

 

 

 

 

 

 

4.2V/4V

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

 

RDT

1

 

 

Q2

 

 

 

Steering

 

Drivers

 

 

 

 

 

 

5.1V

 

 

 

 

 

 

 

 

 

 

 

 

 

ROSC

Osc RC

 

 

±

Oscillator

 

Flip±Flop

 

 

 

 

Drive

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

+

 

 

 

T

Q

 

 

 

14

Output A

 

COSC

IOSC

 

 

 

 

Q

 

 

 

 

 

 

 

4.9V/3.6V

 

 

 

 

 

 

Drive

One±Shot RC

 

 

 

 

ton

R

 

 

 

12

 

 

One±Shot

 

 

 

 

 

 

 

Output B

 

 

16

 

 

 

 

 

 

 

 

 

 

Drive

 

 

 

 

 

±

 

 

 

 

 

 

 

 

 

R

Osc Control

 

 

+

 

 

 

 

 

 

 

 

13

Gnd

T

 

 

 

 

 

 

 

 

 

 

 

 

CT

Current

 

 

4.9V/3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

UVLO + Fault

 

R

Fault

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

Comparator

+

 

Fault

 

 

 

Current Mirror

 

 

 

 

 

 

RVFO

 

 

 

 

S

 

 

10

Input

IOSC

+

 

Error Amp

 

 

 

 

Fault

 

±

 

 

 

 

Fault

 

 

 

 

 

 

±

 

Output Clamp

 

 

 

 

1.0V

 

 

Error Amp

6

2.5V

 

EA Clamp

 

 

 

Latch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

Soft±Start

 

 

 

 

 

 

 

 

 

 

Error Amp

7

 

 

 

 

 

 

 

 

 

 

 

 

Inverting Input

 

±

 

Buffer

 

 

 

 

 

 

 

 

 

 

Error Amp

8

+

 

9μA

 

 

 

 

 

 

 

 

 

 

Noninverting Input

Error

 

 

 

 

 

 

 

 

 

 

 

 

CSoft±Start

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OPERATING DESCRIPTION

Introduction

As power supply designers have strived to increase power conversion efficiency and reduce passive component size, high frequency resonant mode power converters have emerged as attractive alternatives to conventional square±wave control. When compared to square±wave converters, resonant mode control offers several benefits including lower switching losses, higher efficiency, lower EMI emission, and smaller size. This integrated circuit has been developed to support new trends in power supply design. The MC34066 Resonant Mode Controller is a high performance bipolar IC dedicated to variable frequency power control at frequencies exceeding 1.0 MHz. This integrated circuit provides the features, performance and flexibility for a wide variety of resonant mode power supply applications.

The primary purpose of the control chip is to supply precise pulses to the gates of external power MOSFETs at a repetition rate regulated by a feedback control loop. The MC34066 can be operated in any of three modes as follows: 1) fixed on±time, variable frequency; 2) fixed off±time, variable frequency; and 3) combinations of 1 and 2 that change from fixed on±time to fixed off±time as the frequency increases. Additional features of the IC ensure that system startup and fault conditions are administered in a safe, controlled manner.

A simplified block diagram of the IC is shown on the first page of this data sheet, which identifies the main functional blocks and the block±to±block interconnects. Figure 1 is a detailed functional diagram which accurately represents the internal circuitry. The various functions can be divided into two sections. The first section includes the primary control path which produces precise output pulses at the desired frequency Oscillator, a One±Shot, a pulse Steering Flip±Flop, a pair of power MOSFET Drivers, and a wide bandwidth Error Amplifier. The second section provides several peripheral support functions including a voltage reference, undervoltage lockout, Soft±Start circuit, and a fault detector.

Primary Control Path

The output pulse width and repetition rate are regulated through the interaction of the variable frequency Oscillator, One±Shot timer and Error Amplifier. The Oscillator triggers the One±Shot which generates a pulse that is alternately steered to a pair of totem±pole output drivers by a toggle Flip±Flop. The Error Amplifier monitors the output of the regulator and modulates the frequency of the Oscillator. High±speed Schottky logic is used throughout the primary control channel to minimize delays and enhance high frequency characteristics.

4

MOTOROLA ANALOG IC DEVICE DATA

Loading...
+ 8 hidden pages