Mitsubishi Electronics MDS-B User Manual

4.6 (9)

BNP-B3977A (ENG)

MDS-B Series

Linear Servo System

Specifications and Instruction Manual

Introduction

Thank you for purchasing the Mitsubishi linear servo system.

This instruction manual describes the handling and caution points for using this CNC.

Incorrect handling may lead to unforeseen accidents, so always read this instruction manual thoroughly to ensure correct usage.

Make sure that this instruction manual is delivered to the end user.

Precautions for safety

Please read this instruction manual and auxiliary documents before starting installation, operation, maintenance or inspection to ensure correct usage. Thoroughly understand the device, safety information and precautions before starting operation.

The safety precautions in this instruction manual are ranked as "DANGER" and

"CAUTION".

DANGER

CAUTION

When a dangerous situation may occur if handling is mistaken leading to fatal or major injuries.

When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.

Note that some items described as

 

 

CAUTION

may lead to major results

 

 

 

 

 

depending on the situation. In any case, important information that must be observed is described.

The signs indicating prohibited and mandatory items are described below.

This sign indicates that the item is prohibited (must not be carried out). For example, is used to indicate "Fire

Prohibited".

This sign indicates that the item is mandatory (must be carried out). For example, is used to indicate grounding.

After reading this instruction manual, keep it in a safe place for future reference.

In this instruction manual, the cautions on a level that will not lead to physical damage and the cautions for special functions, etc., are ranked as "NOTICE", "INFORMATION" and "MEMO".

NOTICE

: When a fault in the product will occur but physical damage will not

 

occur if handling is mistaken.

INFORMATION : When special functions will be started with parameter changes, or when there are other usage methods.

MEMO

: Information that should be known for operation.

I

For Safe Use

1. Special precautions for linear servo system

DANGER

The linear servo system uses a powerful magnet on the secondary side. Thus, caution must be taken not only by the person installing the linear motor, but also the machine operators. For example, persons wearing a pacemaker, etc., must not approach the machine.

The person installing the linear motor and the machine operator must not have any items (watch or calculator, etc.) which could malfunction or break due to the magnetic force on their body.

Always use nonmagnetic tools for installing the linear motor or during work in the vicinity of the linear motor.

(Example of nonmagnetic tool)

Explosion-proof beryllium copper alloy safety tool: Nihon Gaishi

2. Electric shock prevention

DANGER

Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks.

Do not operate the machine with the front cover removed. The high voltage terminals and charged sections will be exposed, and may pose a risk of electric shocks.

Do not remove the surface cover even when the power is OFF unless carrying out wiring work or periodic inspections. The inside of the servo amplifier is charged, and may pose a risk of electric shocks.

Wait at least 10 minutes after turning the power OFF, before starting wiring or inspections. Failure to observe this could lead to electric shocks.

Ground the servo amplifier and linear servomotor with Class 3 grounding or higher.

Wiring and inspection work must be done by a qualified technician.

Wire the servo amplifier and linear servomotor after installation. Failure to observe this could lead to electric shocks.

Do not touch the switches with wet hands. Failure to observe this could lead to electric shocks.

Do not damage, apply forcible stress, place heavy items or engage the cable. Failure to observe this could lead to electric shocks.

II

3. Fire prevention

CAUTION

Install the servo amplifier, linear servomotor and regenerative resistor on noncombustible material. Direct installation on combustible material or near combustible materials could lead to fires.

If a servo amplifier fault should occur, turn OFF the power on the servo amplifier's power supply side. If a large current continues to pass, fires could occur.

Shut off the power with the error signal. Failure to do so could cause the regenerative resistor to abnormally overheat and fires to occur due to faults in the regenerative transistor, etc.

4. Injury prevention

CAUTION

Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.

Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc.

Do not mistake the polarity(+, -) . Failure to observe this item could lead to ruptures or damage, etc.

Do not touch the servo amplifier fins, regenerative resistor or linear motor, etc., while the power is turned ON or immediately after turning the power OFF. Some parts are heated to high temperatures, and touching these could lead to burns.

III

5. Various precautions

Observe the following precautions. Incorrect handling of the unit could lead to faults, injuries and electric shocks, etc.

(1) Transportation and installation

CAUTION

Correctly transport the product according to its weight.

Do not stack the products above the tolerable number.

Do not hold the front cover when transporting the servo amplifier. The unit could drop.

Follow this Instruction Manual and install the unit in a place where the weight can be borne.

Always store the secondary side of the linear servomotor in the delivered packaged state.

Do not get on top of or place heavy objects on the unit.

Always observe the installation directions.

During the interval from unpacking to installation, the risks posed by the magnetic attraction force in the secondary side of the linear servomotor will increase, so take special care, and install the correctly.

Secure the specified distance between the servo amplifier and control panel, or between the servo amplifier and other devices.

Do not install or run a servo amplifier or linear servomotor that is damaged or missing parts.

Do not let conductive objects such as screws or metal chips, etc., or combustible materials such as oil enter the servo amplifier or linear servomotor.

The servo amplifier and linear servomotor are precision devices, so do not drop them or apply strong impacts to them.

Store and use the units under the following environment conditions.

 

 

 

 

 

Conditions

 

 

 

 

 

 

 

 

Environment

Servo

 

Scale I/F

 

Pole

 

 

 

detec-tion

Linear servomotor

 

amplifier

 

unit

 

 

 

 

unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ambient temperature

 

 

0°C to +55°C

 

0°C to +40°C

(with no dew condensation)

(with no dew condensation)

 

Ambient humidity

 

90% (RH) or less

 

80% (RH) or less

(with no dew condensation)

(with no dew condensation)

 

Storage temperature

 

–15°C to +70°C

 

–15°C to +50°C

 

(with no freezing)

 

(with no freezing)

 

 

 

Storage humidity

 

 

90% (RH) or less (with no dew condensation)

Atmosphere

Indoors (Where unit is not subject to direct sunlight)

With no corrosive gas, combustible gas, oil mist or dust.

 

Altitude

 

 

1000m or less above sea level

 

 

 

 

 

Vibration

4.9m/s2

 

98m/s2

98m/s2

IV

CAUTION

Always use nonmagnetic tools when installing the linear servomotor.

Always mount a mechanical stopper on the end of the linear servomotor's travel path to avoid danger if the motor should go over the end.

Securely fix the linear servomotor onto the machine. Insufficient fixing could cause the servomotor to come off during operation.

Provide a cover on the movable sections of the linear servomotor so that they are never touched during operation.

When storing for a long time, please contact your dealer.

(2) Wiring

CAUTION

Correctly and securely perform the wiring. Failure to do so could lead to runaway of the servomotor.

Do not install a phase advancing capacity, surge absorber or radio noise filter on the output side of the servo amplifier.

Correctly connect the output side (terminals U, V, W). Failure to do so could lead to abnormal operation of the servomotor.

Do not directly connect a commercial power supply to the linear servomotor. Doing so could lead to faults.

Make sure not to mistake the orientation of the surge absorbing diode installed on the DC relay for the control output signal. Failure to do so could cause a trouble preventing the signal from being output, or could inhibit operation of the protection circuit during an emergency stop, etc.

Do not connect/disconnect the cables connected between each unit while the power is ON.

Securely tighten the fixing screws and fixing mechanisms on the cable connectors. Insufficient fixing could cause the connectors to dislocate during operation.

Ground the shield cables indicated in the Connection Manual with a cable clamp, etc.

Separate the signal wire away from the power line/electricity line.

Use wires and cables having a wire diameter, heat resistance and bending characteristics compatible for the system.

V

(3) Trial operation and adjustment

CAUTION

Check and adjust each parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.

Do not make remarkable adjustments and changes as the operation could become unstable.

(4) Usage methods

CAUTION

Install an external emergency stop circuit so that the operation can be stopped and power shut OFF immediately.

Unqualified persons must not disassemble or repair the unit.

If the alarm is reset (RST) with the operation start signal (ST) ON, the servomotor will restart suddenly. Confirm that the operation signal is OFF before resetting. Failure to observe this could lead to accidents.

Never make modifications.

Reduce magnetic interference by installing a noise filter. The electronic devices used near the servo amplifier could be affected by magnetic noise.

Always use the linear servomotor and servo amplifier with the designated combination.

The linear servomotor basically does not have any devices such as the magnetic brakes installed. Thus, when using this for an axis onto which an unbalance force is applied, such as a gravity axis, install a stopping device on the machine side to secure safety.

Always carry out trial operation after changing the program or parameters, and after maintenance and inspection.

Do not enter the machine's movable range during automatic operation.

For an unbalanced axis, such as a gravity axis, basically balance it with a device such as a counterbalance. With the linear motor, the continuous thrust is lower than the rotary motor, so if the axis is unbalanced the motor's heating amount will increase. If an error should occur, the axis will drop naturally. This is hazardous as the dropping distance and dropping speed are large.

(5) Troubleshooting

CAUTION

If a hazardous situation is predicted during stop or product trouble, install an external brake mechanism.

If an alarm occurs, remove the cause and secure the safety before resetting the alarm.

Never go near the machine after restoring the power after a failure, as the machine could start suddenly. (Design the machine so that personal safety can be ensured even if the machine starts

suddenly.)

VI

(6) Maintenance, inspection and part replacement

CAUTION

Carry out maintenance and inspection after backing up the servo amplifier programs and parameters.

The capacity of the electrolytic capacitor will drop due to deterioration. To prevent secondary damage due to failures, replacing this part every five years when used under a normal environment is recommended. Contact the Service Center or Service Station for replacements.

Do not carry out a megger test (insulation resistance test) during the inspections.

If the battery warning is issued, save the machining program, tool data and parameters with an input/output device, and then replace the battery.

(7) Disposal

CAUTION

Treat this unit as general industrial waste. Note that the MDS Series units with a heat radiating fin protruding from the back use alternate Freon, and thus cannot be treated as general industrial waste. Always return this part to the Service Center or Service Station.

A permanent magnet is used on the secondary side of the linear servomotor. This also must be returned to the Service Center or Service Station.

Do not disassemble the servo amplifier or linear servomotor parts.

(8) General precautions

CAUTION

The drawings given in this Specifications and Maintenance Instruction Manual show the covers and safety partitions, etc., removed to provide a clearer explanation. Always return the covers or partitions to their respective places before starting operation, and always follow the instructions given in this manual.

VII

 

 

Contents

 

Chapter 1

Outline

 

1-1

Outline .....................................................................................................................

1-2

1-2

Features...................................................................................................................

1-2

Chapter 2 Drive System Configuration

 

2-1

Basic system configuration...................................................................................

2-3

2-2 List of units and corresponding linear motors....................................................

2-4

2-3 Linear motor drive system.....................................................................................

2-5

 

2-3-1 Standard linear servo system .........................................................................

2-5

 

2-3-2 Configuration of parallel drive system.............................................................

2-8

Chapter 3

Selection

 

3-1 Selecting the linear servomotor............................................................................

3-2

 

3-1-1

Max. feedrate..................................................................................................

3-2

 

3-1-2

Max. thrust ......................................................................................................

3-2

 

3-1-3

Continuous thrust............................................................................................

3-4

3-2 Selecting the power supply unit ...........................................................................

3-6

3-3 Selecting the power supply capacity, wire size, AC reactor,

 

 

contactor and NFB .................................................................................................

3-6

Chapter 4 Linear Servomotor Specifications

 

4-1

Type configuration .................................................................................................

4-2

4-2

List of specifications..............................................................................................

4-3

4-3 Speed – torque characteristics drawing (At input voltage 200VAC) .................

4-4

4-4

Dynamic brake characteristics..............................................................................

4-5

4-5

Outline dimensions ................................................................................................

4-6

4-6

Explanation of connectors ....................................................................................

4-9

Chapter 5 Servo Drive Specifications

 

5-1

Type configuration .................................................................................................

5-2

5-2

List of specifications..............................................................................................

5-3

5-3

Overload protection specifications ......................................................................

5-4

5-4

Outline dimensions ................................................................................................

5-6

5-5 Explanation of connectors and terminal blocks..................................................

5-8

5-6

Dynamic brake unit ................................................................................................

5-9

 

5-6-1 Connection of dynamic brake unit ..................................................................

5-9

 

5-6-2 Outline dimensions of dynamic brake unit ......................................................

5-10

5-7

Battery unit..............................................................................................................

5-10

 

5-7-1 Connection of battery unit...............................................................................

5-10

 

5-7-2 Outline dimensions of battery unit ..................................................................

5-10

Chapter 6

Detector Specifications

 

6-1

Linear scale.............................................................................................................

6-2

6-2

Scale I/F unit ...........................................................................................................

6-3

 

6-2-1 Outline ............................................................................................................

6-3

 

6-2-2

Type configuration ..........................................................................................

6-3

 

6-2-3

List of specifications........................................................................................

6-4

 

6-2-4

Outline dimensions .........................................................................................

6-5

 

6-2-5

Explanation of connectors ..............................................................................

6-6

6-3

Pole detection unit .................................................................................................

6-7

 

6-3-1

Outline ............................................................................................................

6-7

i

 

6-3-2

Type configuration ..........................................................................................

6-7

 

6-3-3

List of specifications........................................................................................

6-7

 

6-3-4

Outline dimensions .........................................................................................

6-8

 

6-3-5

Explanation of connectors ..............................................................................

6-8

 

6-3-6 Installation.......................................................................................................

6-9

Chapter 7

Installation

 

7-1 Installation of the linear servomotor ....................................................................

7-2

 

7-1-1

Environmental conditions................................................................................

7-3

 

7-1-2 Installing the linear servomotor.......................................................................

7-3

 

7-1-3 Cooling of linear servomotor...........................................................................

7-4

7-2 Installation of the servo amplifier .........................................................................

7-5

 

7-2-1

Environmental conditions................................................................................

7-5

 

7-2-2 Drive section wiring system diagram ..............................................................

7-6

 

7-2-3

Installing the unit.............................................................................................

7-7

 

7-2-4 Layout of each unit .........................................................................................

7-8

 

7-2-5

Main circuit connection ...................................................................................

7-9

 

7-2-6 Connection of feedback cable ........................................................................

7-11

 

7-2-7

Link bar specifications ....................................................................................

7-12

 

7-2-8 Separated layout of units ................................................................................

7-13

 

7-2-9 Installing multiple power supply units .............................................................

7-14

 

7-2-10 Installation for 2ch communication specifications with CNC, and

 

 

 

installation of only one power supply unit .....................................................

7-16

 

7-2-11 Connection of battery unit.............................................................................

7-17

 

7-2-12 Connection with mechanical brakes .............................................................

7-18

Chapter 8 Drive Section Connector and Cable Specifications

 

8-1

Cable connection system ......................................................................................

8-2

 

8-1-1

Cable option list ..............................................................................................

8-3

8-2

Cable connectors ...................................................................................................

8-5

 

8-2-1 Servo amplifier CN1A, CN1B and CN9 cable connector ................................

8-5

 

8-2-2 Servo amplifier CN2 and CN3 cable connector ..............................................

8-5

 

8-2-3 Servo amplifier CN20 connector (for mechanical brakes) ..............................

8-5

 

8-2-4 MDS-B-HR, MDS-B-MD cable connector .......................................................

8-6

 

8-2-5 Power supply section power wire connector...................................................

8-7

 

8-2-6

Flexible conduits .............................................................................................

8-10

 

 

(1) Method for connecting to a connector with back shell...............................

8-10

 

 

(2) Method for connecting to the connector main body ..................................

8-10

8-3

Cable clamp fitting .................................................................................................

8-11

8-4 Cable wire and assembly.......................................................................................

8-12

8-5

Cable connection diagram.....................................................................................

8-13

 

8-5-1 CNC unit bus cable.........................................................................................

8-13

 

8-5-2 Absolute value scale coupling cable...............................................................

8-14

 

8-5-3 Cable for amplifier – scale I/F unit ..................................................................

8-15

 

8-5-4 Cable for scale I/F unit – scale .......................................................................

8-16

 

8-5-5 Cable for scale I/F unit – pole detector ...........................................................

8-17

 

8-5-6 Cable for I/F unit – motor thermal ...................................................................

8-17

 

8-5-7

Mechanical brake cable ..................................................................................

8-18

Chapter 9

Setup

 

9-1 Initial setup of servo drive unit .............................................................................

9-2

 

9-1-1 Setting the rotary switches..............................................................................

9-2

 

9-1-2 Transition of LED display after power is turned ON........................................

9-2

9-2 Setting the initial parameters ................................................................................

9-3

 

9-2-1 Setting the initial parameters ..........................................................................

9-3

ii

 

(1) Command polarity/feedback polarity (SV017: SPEC) ...............................

9-3

 

(2) Servo specifications (SV017: SPEC) ........................................................

9-4

 

(3) Ball screw pitch (SV018: PIT)....................................................................

9-4

 

(4) Detector resolution (SV019: RNG1, SV020: RNG2) .................................

9-4

 

(5) Motor type (SV025: MTYP) .......................................................................

9-5

 

(6) Detector type (SV025: MTYP)...................................................................

9-6

 

(7) Power supply type (SV036: PTYP)............................................................

9-7

9-2-2 Parameters set according to feedrate.............................................................

9-8

9-2-3 Parameters set according to machine movable mass ....................................

9-8

9-2-4 List of standard parameters for each motor....................................................

9-9

9-3 Initial setup of the linear servo system ................................................................

9-10

9-3-1 Installation of linear motor and linear scale ....................................................

9-10

9-3-2 DC excitation function.....................................................................................

9-13

9-3-3 Setting the pole shift .......................................................................................

9-15

9-3-4 Setting the parallel drive system.....................................................................

9-17

9-3-5 Settings when motor thermal is not connected...............................................

9-18

Chapter 10

Adjustment

 

10-1 Measurement of adjustment data .......................................................................

10-2

10-1-1

D/A output specifications ..............................................................................

10-2

10-1-2 Setting the output data..................................................................................

10-2

10-1-3 Setting the output scale ................................................................................

10-2

10-2

Gain adjustment ...................................................................................................

10-3

10-2-1

Current loop gain ..........................................................................................

10-3

10-2-2

Speed loop gain............................................................................................

10-3

10-2-3

Position loop gain .........................................................................................

10-5

10-3

Characteristics improvement ..............................................................................

10-7

10-3-1 Optimal adjustment of cycle time..................................................................

10-7

10-3-2

Vibration suppression method ......................................................................

10-10

10-3-3 Improving the cutting surface precision ........................................................

10-11

10-3-4 Improvement of protrusion at quadrant changeover .....................................

10-13

10-3-5

Improvement of overshooting .......................................................................

10-18

10-3-6 Improvement of characteristics during acceleration/deceleration.................

10-21

10-4 Setting for emergency stop .................................................................................

10-24

10-4-1 Vertical axis drop prevention control.............................................................

10-24

10-4-2

Deceleration control......................................................................................

10-31

10-5

Collision detection ...............................................................................................

10-32

10-6

Parameter list........................................................................................................

10-35

Chapter 11

Troubleshooting

 

11-1 Points of caution and confirmation ....................................................................

11-2

11-2 Troubleshooting at start up.................................................................................

11-3

11-3 List of servo alarms and warnings .....................................................................

11-4

11-4

Alarm details .........................................................................................................

11-6

11-5 LED display Nos. at memory error......................................................................

11-8

11-6 Error parameter Nos. at initial parameter error .................................................

11-8

11-7 Troubleshooting for each servo alarm ...............................................................

11-9

iii

Chapter 1 Outline

1-1

Outline ..........................................................................................................

1-2

1-2

Features........................................................................................................

1-2

1–1

Chapter 1 Outline

1-1 Outline

In recent years, demands for high accuracy, high speed and high efficiency have increased in the field of machine tools. The application of a linear servo for the feed axis has increased as a measure to respond to the demands.

With the linear servo system, high speed and high acceleration characteristics can be achieved in respect to the ball screw drive system. Furthermore, as there is no ball wear, etc., which is the disadvantage of using a ball screw drive, the life of the machine can be extended. A response error caused by backlash or wear does not occur, so a high accuracy system can be structured.

The MELDAS linear servo system has been developed to realize a max. speed of 120m/min and acceleration of 98m/s2 (motor unit) as a standard.

1-2 Features

(1)Ample lineup (Seven models)

Machines can be handled flexiblely. Thus, thrust can be increased by using several motors for one axis.

(2)High speed and high acceleration

The max. speed is 2m/s as a standard. An acceleration of 98m/s2 is possible with the motor unit.

(3)Absolute position detection system

As the absolute position detection system, the Mitsutoyo linear scale AT342 and Heidenhain absolute position linear scale LC191M are compatible with the MELDAS high-speed serial communication specifications. (Both are battery-less)

(4)High performance servo drive

Compared to the conventional amplifier MDS-B-Vx, the servo processing performance has been greatly improved. The high-gain servo MDS-B-V14L has been developed to achieve high speed and more accurate machining in combination with the high frequency PWM control. Linear servo systems requiring a higher speed and accuracy are powerfully backed up by the high-gain servo MDS-B-V14L.

1–2

Chapter 2 Drive System Configuration

2.1

Basic system configuration ........................................................................

2-3

2-2

List of units and corresponding linear motors .........................................

2-4

2-3

Linear motor drive system ..........................................................................

2-5

 

2-3-1

Standard linear servo system...............................................................

2-5

 

2-3-2

Configuration of parallel drive system ..................................................

2-8

2–1

Chapter 2 Drive System Configuration

WARNING

All wiring work must be carried out by a qualified electrician.

Wait at least 10 minutes after turning the power OFF, before starting wiring or inspections. Failure to observe this could lead to electric shocks.

Install the servo amplifier and linear servomotor before staring wiring. Failure to observe this could lead to electric shocks.

Do not damage, apply forcible stress, place heavy things on, or catch the cables. Failure to observe this could lead to electric shocks.

CAUTION

Correctly wire the machine. Failure to observe this could lead to runaway of the linear servomotor or injuries.

Make sure not to mistake the connection terminals. Failure to observe this could lead to ruptures or trouble.

Make sure not to mistake the polarity (+, –). Failure to observe this could lead to ruptures or trouble.

Make sure not to mistake the orientation of the surge absorbing diode installed on the DC relay for the control output signal. Failure to do so could cause a trouble preventing the signal from being output, or could inhibit operation of the protection circuit during an emergency stop, etc.

Do not install a phase-advancing capacitor, surge absorber or radio noise filter on the output side of the servo amplifier.

Shut off the power with the error signal. Failure to do so could cause the regenerative resistor to abnormally overheat and fires to occur due to faults in the regenerative transistor, etc.

Do not modify the machine.

2–2

Chapter 2 Drive System Configuration

2.1Basic system configuration

Example: One spindle axis + two rotary servo axes + one linear servo axis

MELDAS CNC

Servo drive unit

Servo drive unit

(two axes)

(two axes)

MDS-B-V24

MDS-B-V14L

Spindle drive unit

Power supply

(one axis)

unit

MDS-B-SP

MDS-B-CV

 

8 8

 

 

8 8

 

8 8

 

 

8 8

 

 

 

Detector cable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L+

 

 

 

 

 

 

 

 

 

 

 

 

L–

For control circuit power supply (RS)

 

 

 

 

 

 

 

 

 

 

 

L11

 

 

 

 

 

 

 

 

 

 

 

L21

 

U

V

W

U

V

W

U

V

W

L1

L2

L3

 

 

 

 

 

Linear scale

Servomotor

 

MDS-

MC

Spindle motor

B-AL

 

AC reactor

 

 

3ø 200VAC for

NF

 

main circuit power

 

supply

200VAC

 

 

Detector cable

Linear servomotor primary side

Servomotor

Linear servomotor secondary side, permanent magnet

Linear scale

2–3

 

Chapter 2 Drive System Configuration

 

 

1.

In a system having a spindle drive unit, always place the spindle drive unit

 

next to the power supply unit as shown in the drawing. Also, place the servo

 

drive unit 11kW and above next to the power supply unit.

2.

When also using a spindle drive unit, place the units next to the power

 

supply unit in order of the drive capacity size.

3.

The use of the contactor installation can be selected except for the

 

MDS-B-CV-370.

4.

Use without a contactor is possible, except for the MDS-B-CV-370.

CAUTION

However, for safety purposes, use of a contactor is recommended.

 

Set the rotary switch on the power supply unit as follows according to

 

whether the contactor is used.

 

With contactor Rotary switch setting = 0

 

Without contactor Rotary switch setting = 1

 

For the MDS-A-CR, the rotary switch is fixed to 0. Always install a contactor.

5.

Always install an AC reactor (shipped from Mitsubishi). Note that this is not

 

required for the A-CR. Wire the AC reactor to the front (NF side) of the

 

contactor.

2-2 List of units and corresponding linear motors

 

Linear servo amplifier

 

 

Corresponding servo amplifier (LM- )

 

 

 

 

 

Outline

Type

NP2S-05

NP2M-1

NP2L-15

NP4S-10

NP4M-2

NP4L-30

NP4G-4

Type

 

Capacity

H×W×D (mm)

 

M

0M

M

M

0M

M

0M

Max.

 

 

 

 

 

 

 

MDS-B-

 

 

Outline

1500N

3000N

4500N

3000N

6000N

9000N

12000N

 

 

 

dimension types

thrust

 

 

 

 

 

 

 

 

 

 

V14L-01

 

0.1kW

 

 

 

 

 

 

 

 

 

V14L-03

 

0.3kW

380×60×180

 

 

 

 

 

 

 

 

V14L-05

 

0.5kW

A0 type

 

 

 

 

 

 

 

 

V14L-10

 

1.0kW

 

 

 

 

 

 

 

 

 

V14L-20

 

2.0kW

380×60×300

 

 

 

 

 

 

 

 

V14L-35

 

3.5kW

A1 type

 

 

 

 

 

 

 

 

V14L-45

 

4.5kW

380×90×300

 

 

 

 

 

 

 

 

 

 

 

B1 type

 

 

 

 

 

 

 

 

V14L-70

 

7.0kW

380×120×300

 

 

 

 

 

 

 

 

V14L-90

 

9.0kW

C1 type

 

 

 

 

 

 

 

 

V14L-110

 

11.0kW

380×150×300

 

 

 

 

 

 

 

 

V14L-150

 

15.0kW

D1 type

 

 

 

 

 

 

 

 

Outline dimension and outline type of each unit

Outline drawing (mm)

 

A0/A1

B1

C1

D1

 

W:60

 

 

W:150

 

 

 

W:90

Fin section D:120

 

W:120

 

Fin 120

 

Fin 120

 

 

Fin 120

 

 

 

D:300

180

D:300

D:300

D:300

 

 

Fin

 

 

 

H:380

H:380

H:380

H:380

 

 

The A0 type does not have a fin. (Depth 180)

2–4

 

 

Chapter 2 Drive System Configuration

2-3 Linear motor drive system

 

 

 

 

 

1. With the linear servo system, the linear motor is assembled into the

 

 

machine, and the position detector (linear scale) is also installed when the

 

CAUTION

machine is assembled. Thus, it is not possible to know the motor pole

 

position beforehand as information in the CNC unit. At the first machine

 

 

startup, basically, the servo loop cannot be applied, so take special care

 

 

when starting up a machine having an unbalanced axis such as a gravity

 

 

axis.

CAUTION

CAUTION

2.The linear servomotor basically does not have any devices such as the magnetic brakes installed. Thus, when using this for an axis onto which an unbalance force is applied, such as a gravity axis, install a stopping device on the machine side to secure safety.

3.Use the linear servomotor and servo amplifier with the designated combination.

For an unbalanced axis, such as a gravity axis, basically balance it with a device such as a counterbalance. With the linear motor, the continuous thrust is lower than the rotary motor, so if the axis is unbalanced the motor's heating amount will increase. If an error should occur, the axis will drop naturally. This is hazardous as the dropping distance and dropping speed are large.

2-3-1 Standard linear servo system

The standard drive system configuration of the linear servo system is shown below. For the linear servo system, the corresponding servo drive unit is the MDS-B-V14L.

Detection

 

 

 

 

 

 

 

Pole

 

Resolution

Max. speed

Servo driver

Linear scale

Scale I/F

 

detection

Remarks

system

 

 

 

 

 

 

 

 

unit

 

 

 

 

 

 

 

 

 

 

 

0.04µm

120m/min

 

LS186

 

 

 

 

 

Standard

 

 

(Heidenhain)

 

 

 

 

incremental system

 

 

 

 

 

 

 

 

 

 

480m/min

 

 

 

 

 

 

 

High-speed

 

 

Note currently

 

 

 

 

 

 

 

operation is possible.

 

 

this is

 

LIDA181

 

 

 

 

 

However, as the

 

0.08µm

120m/min due

 

 

 

 

 

 

scale is an open

 

 

(Heidenhain)

 

 

 

 

 

 

to restrictions

MDS-B-V14L-

MDS-B-H

 

MDS-B-M

type, there are limits

Incre-ment

 

 

 

 

 

by the linear

 

 

 

R11M

 

D-600

to the working

al system

 

motor.

 

 

 

 

 

 

 

environment.

 

 

 

 

 

 

 

 

 

 

This has a high

 

 

 

 

LIF181

 

 

 

 

 

resolution so the

 

0.008µm

48m/min

 

 

 

 

 

 

controllability is

 

 

(Heidenhain)

 

 

 

 

increased. The max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

speed is limited.

 

 

 

 

 

 

 

 

 

 

(Open type scale)

 

With the above

three types, an

analog voltage output type scale can also be used.

 

 

0.1µm

120m/min

 

LC191M

 

 

 

 

 

(Heidenhain)

 

Standard absolute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

system.

 

0.5m

110m/min

 

AT342

 

 

 

 

(Mitsutoyo)

 

 

 

 

 

 

 

 

 

 

 

Absolute

Absolute

 

MDS-B-V14L-

 

 

 

 

 

 

This has a high

position

 

 

 

 

 

 

 

system

 

 

 

 

 

 

 

 

resolution so the

0.5µm

 

 

 

 

 

 

 

 

 

 

AT342

 

 

 

 

 

controllability is

 

Position/

 

 

 

MDS-B-H

 

 

 

 

110m/min

 

special

 

 

 

increased. (The

 

 

 

 

 

 

speed

 

 

 

MDS-B-HR-21 can be

 

 

 

 

 

(Mitsutoyo)

 

R-21M

 

 

 

control position and

 

resolution for

 

 

used when detecting the

 

 

control

 

 

 

motor thermal signal

 

speed resolution are

 

0.04µm

 

 

 

with the CNC.

 

 

 

increased.)

2–5

 

Chapter 2 Drive System Configuration

 

(1) Standard incremental system

 

 

 

 

 

Unit name

Type

Qty.

 

 

MDS-B-V14L

 

Linear servomotor

LM-NP -

1

 

 

Servo driver

 

 

 

 

 

Servo driver

MDS-B-V14L-

1

 

 

 

 

Linear scale

LS186, LIDA181 etc.

1

 

 

 

 

Scale I/F unit

MDS-B-HR-11M

1

 

 

 

 

Pole detection unit

MDS-B-MD-600

1

To NC or

CN1A

CN1B

To next axis,

 

 

 

terminator or

 

 

 

previous axis

 

 

battery unit

 

 

 

 

 

 

 

 

 

 

 

CN4

 

 

 

 

 

 

 

To power

 

 

 

 

 

CN3

 

 

 

 

CN2

 

supply if final

 

 

 

 

 

 

axis

 

Motor thermal

 

 

 

L+

 

 

 

 

L–

 

signal

 

 

 

 

 

 

 

 

 

Single-phase

 

 

 

 

 

 

200VAC

Pole detector

 

 

Empty

 

 

 

 

CON3

CON1

 

 

 

(MDS-B-MD-600)

 

 

U V W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear motor

CON4

 

 

 

 

CON2

primary side

 

 

 

 

 

 

 

 

 

Scale I/F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MDS-B-HR-11M)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog voltage output type incremental scale (LS186,LIDA181,LIF181,etc.)

Linear motor secondary side permanent magnet

(2) Absolute system (System using linear scale LC191M)

In a system that does not use the MDS-B-HR unit (scale I/F unit), use the

CAUTION motor thermal signal for the CNC unit's general-purpose input port, and detect the motor overheating.

 

 

 

 

 

MDS-B-V14L

 

Unit name

Type

Qty.

 

 

Servo driver

 

 

 

 

 

Linear servomotor

LM-NP -

1

 

 

 

 

Servo driver

MDS-B-V14L-

1

 

 

 

 

Linear scale

LC191M

1

 

 

 

To next axis,

Scale I/F unit

None

0

 

 

 

To NC or

CN1A

 

terminator or

Pole detection unit

None

0

 

CN1B

battery unit

previous axis

 

 

 

 

 

 

CN4

 

 

 

 

 

 

CN3

To power

 

 

 

 

CN2

 

supply if final

 

 

 

 

 

axis

 

 

 

 

 

 

 

 

 

 

 

 

L+

 

 

 

 

 

 

L–

 

 

 

 

 

 

Single-phase

 

Motor thermal

To NC general-

 

 

 

200VAC

 

 

 

 

 

 

signal

purpose input port

 

 

 

 

Linear motor

 

 

 

U V W

 

primary side

 

 

 

 

 

 

 

 

 

Linear motor secondary side permanent magnet

LC191M (Heidenhain)

Absolute position linear scale

2–6

Chapter 2 Drive System Configuration

(3)Absolute system 2 (System using linear scale AT342)

The linear scale and servo drive unit can be connected directly and used without the scale I/F unit (MDS-B-HR) or pole detection unit (MDS-B-MD). Note that the position and speed resolution will be limited to 0.5µm, so to further improve the controllability, use of the system shown in (4) is recommended.

In a system that does not use the MDS-B-HR unit (scale I/F unit), use the

CAUTION motor thermal signal for the CNC unit's general-purpose input port, and detect the motor overheating.

 

 

 

 

 

 

MDS-B-V14L

 

Unit name

 

Type

Qty.

 

 

Servo driver

 

 

 

 

 

 

Linear servomotor

LM-NP -

1

 

 

 

 

Servo driver

MDS-B-V14L-

1

 

 

 

 

Linear scale

AT342

 

1

 

 

 

To next axis,

Scale I/F unit

 

None

0

 

 

 

 

To NC or

CN1A

CN1B

terminator or

Pole detection unit

 

None

0

 

 

 

battery unit

 

 

 

 

previous axis

 

CN4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CN3

To power supply if

 

 

 

 

 

CN2

 

 

 

 

 

 

 

final axis

 

 

 

 

 

 

 

L+

 

 

 

To NC general-

 

 

 

L–

 

 

 

 

 

 

Single-phase

 

 

Motor thermal

purpose input port

 

 

 

200VAC

 

 

 

 

 

 

Linear motor

signal

 

 

 

 

 

 

 

 

 

U V W

 

primary side

 

 

 

 

 

Linear motor secondary side permanent magnet

AT342 (Mitsutoyo) Absolute position

linear scale

(4)Absolute system 3 (System using linear scale AT342 special + MDS-B-HR-21)

By using the scale I/F unit (MDS-B-HR), the resolution of the position and speed used for servo control can be improved, thereby improving the servo's controllability.

 

 

 

 

 

 

MDS-B-V14L

 

Unit name

Type

 

Qty.

 

 

Servo driver

 

Linear servomotor

LM-NP -

1

 

 

 

 

Servo driver

MDS-B-V14L-

1

 

 

 

 

Linear scale

AT342 (Special)

1

 

 

 

 

 

MDS-B-HR-21M

 

 

 

 

To next axis,

 

MDS-B-HR-21 can

 

 

 

 

 

 

 

CN1A

CN1B

terminator or

 

be used when

 

To NC or

 

Scale I/F unit

0

 

 

battery unit

detecting the motor

previous axis

CN4

 

 

 

 

thermal signal with

 

 

 

 

 

 

 

 

 

To power supply

 

the CNC.

 

 

 

 

CN3

 

 

 

 

 

 

 

Pole detection unit

None

0

 

CN2

 

if final axis

 

 

 

 

 

 

 

 

 

 

L+

 

 

 

 

 

 

 

L–

 

 

 

 

 

 

 

Single-phase

 

 

Motor thermal

 

 

 

200VAC

 

 

Empty

 

 

 

 

Linear motor

signal

CON3

 

 

 

 

 

CON1

 

U V W

 

 

primary side

 

 

 

 

 

 

 

 

CON4

CON2

 

 

 

Linear motor

 

 

Empty

Scale I/F

 

 

 

secondary side

 

 

 

 

 

 

 

(MDS-B-HR-21M)

 

 

 

permanent

 

 

 

 

 

 

 

 

 

 

 

 

 

magnet

 

 

 

 

 

 

 

 

 

 

AT342 special (Mitsutoyo)

 

 

 

 

 

 

Absolute position linear scale

 

 

 

2–7

Chapter 2 Drive System Configuration

2-3-2 Configuration of parallel drive system

The system configuration when driving one axis with two motors and two servo drive units is as shown below. In this case, the position command sent to each servo drive unit must be the same position command using the CNC synchronous control function.

(1) 2-scale 2-motor (2-amplifier) control

Incremental system

Absolute system

Unit name

Type

Qty.

Linear servomotor

LM-NP -

2

Servo driver

MDS-B-V14L-

2

Linear scale

LS186, LIDA181 etc.

2

Scale I/F unit

MDS-B-HR-12M

1

 

 

 

 

MDS-B-HR-11M

1

 

 

 

Pole detection unit

MDS-B-MD-600

2

Unit name

Type

Qty.

Linear servomotor

LM-NP -

2

Servo driver

MDS-B-V14L-

2

Linear scale

AT342 (Special)

2

Scale I/F unit

MDS-B-HR-22M

1

 

MDS-B-HR-22 can

 

 

be used when

 

 

detecting the motor

 

 

thermal signal with

 

 

the NC.

 

 

MDS-B-HR-21M

1

 

MDS-B-HR-21 can

 

 

be used when

 

 

detecting the motor

 

 

thermal signal with

 

 

the NC.

 

Pole detection unit

None

0

 

 

 

 

 

 

 

 

 

 

Master axis

Slave axis

 

 

 

 

 

 

 

 

 

 

 

MDS-B-V14L MDS-B-V14L

 

 

 

 

 

 

 

 

 

 

 

 

To next axis,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scale I/F

 

 

To NC or

CN1A

 

CN1B

CN1B

terminator or

 

 

 

 

 

 

 

 

 

 

battery unit

 

 

 

(Incremental scale : MDS-B-HR-11M)

previous axis

 

 

 

 

 

 

 

 

 

 

 

CN4

CN4

 

 

 

 

(AT342 scale

: MDS-B-HR-21M)

 

 

 

 

 

 

Motor thermal signal

 

 

 

 

 

 

 

 

CN3

 

 

 

 

CON3

CON1 Empty

 

 

 

 

 

 

CN3

To power supply

 

 

 

 

 

CN2

 

 

 

 

 

 

 

 

 

 

 

 

CN2

 

if final axis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CON4

CON2

 

 

 

 

 

 

 

 

 

 

Linear motor

 

 

 

 

 

 

 

 

L+

 

 

primary side

Scale I/F

 

 

 

 

 

 

 

L–

 

 

(Slave)

 

 

 

 

 

 

 

 

Single-phase

 

 

Motor thermal

(Incremental scale : MDS-B-HR-12M)

 

 

 

 

 

 

 

 

signal

(AT342 scale

: MDS-B-HR-22M)

 

 

 

 

 

200VAC

Pole detector

 

 

 

 

 

 

 

 

 

 

 

CON3

 

CON1

 

 

 

 

 

 

(MDS-B-MD-600)

 

 

 

 

U

V

W

U V

W

 

* Not required for the AT342

 

 

 

 

 

 

 

scale

 

 

Linear motor

 

 

 

 

 

 

 

 

 

 

 

 

CON4

 

CON2

 

 

 

 

 

 

 

 

primary side (Master)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear scale

Analog voltage output type

 

 

 

 

incremental scale or

 

Pole detector

AT342 (Mitsutoyo)

 

(MDS-B-MD-600)

absolute position scale

Linear scale

* Not required for the AT342

 

 

scale

 

2–8

Chapter 2 Drive System Configuration

(2)1-scale 2-motor (2-amplifier) control

When using only one linear scale to detect the position, if this linear scale is an incremental scale, the pole position of each motor cannot be detected independently. Thus, the motor installation position on the master side and slave side must be mechanically aligned.

If the linear scale is an absolute position scale, the pole position of each motor can be set independently in the CNC as an absolute position even when only one linear scale is being used. However in this case, DC excitation must be carried out with only one motor, so this method is limited to when the axis can be driven with one motor (possible if low-speed drive) is possible.

Incremental system

Unit name

Type

Qty.

Linear servomotor

LM-NP -

2

Servo driver

MDS-B-V14L-

2

Linear scale

LS186, LIDA181 etc.

1

Scale I/F unit

MDS-B-HR-12M

1

 

 

 

Pole detection unit

MDS-B-MD-600

1

Absolute system

Unit name

Type

Qty.

Linear servomotor

LM-NP -

2

Servo driver

MDS-B-V14L-

2

Linear scale

AT342 (Special)

1

Scale I/F unit

MDS-B-HR-22M

1

 

MDS-B-HR-22 can

 

 

be used when

 

 

detecting the motor

 

 

thermal signal with

 

 

the NC.

 

Pole detection unit

None

0

Master axis

 

Slave axis

 

MDS-B-V14L MDS-B-V14L

 

 

 

To NC or

 

 

 

To next axis,

 

 

 

 

 

 

 

 

 

previous axis

CN1A

CN1B

CN1B

terminator or

 

 

 

 

 

 

 

battery unit

 

 

 

 

 

CN4

CN4

 

 

 

 

 

 

CN3

 

 

 

 

 

 

 

 

CN3

To power supply

 

 

 

 

CN2

 

 

 

 

 

 

CN2

if final axis

 

 

 

 

 

 

 

 

 

 

 

 

 

L+

 

 

Scale I/F

 

 

 

 

L–

 

 

 

 

 

 

Single-phase

 

 

(Incremental scale : MDS-B-HR-12M)

 

 

 

 

 

 

 

 

200VAC

 

Motor thermal

(AT342 scale

: MDS-B-HR-22M)

 

 

 

 

 

CON3

CON1

 

 

 

 

Linear motor

signal

 

 

 

U V W

 

 

 

 

 

 

 

 

 

primary side

 

CON4

CON2

 

 

 

 

(Slave)

Linear motor primary

 

 

 

 

 

side (Master)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear scale

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog voltage output type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

incremental scale or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pole detector

 

AT342 (Mitsutoyo)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MDS-B-MD-600)

 

absolute position scale

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Not required for the AT342

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scale

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2–9

Chapter 3 Selection

3-1

Selecting the linear servomotor .................................................................

3-2

 

3-1-1

Max. feedrate.......................................................................................

3-2

 

3-1-2

Max. thrust ...........................................................................................

3-2

 

3-1-3

Continuous thrust.................................................................................

3-4

3-2

Selecting the power supply unit.................................................................

3-6

3-3

Selecting the power supply capacity, wire size, AC reactor,

 

 

contactor and NFB .......................................................................................

3-6

3–1

Chapter 3 Selection

3-1 Selecting the linear servomotor

It is important to select a linear servomotor matched to the purpose of the machine that will be installed. If the linear servomotor and machine to be installed do not match, the motor performance cannot be fully realized, and it will also be difficult to adjust the parameters. Be sure to understand the linear servomotor characteristics in this chapter to select the correct motor.

3-1-1 Max. feedrate

The max. feedrate for the LM-N Series linear servomotor is 120m/min. However, there are systems that cannot reach the max. speed 120m/min depending on the linear scale being used. Refer to the section "2-3-1 Standard linear servo system) for the main systems and possible max. feedrates.

3-1-2 Max. thrust

The linear servomotor has an output range for the continuous thrust that can be used only for short times such as acceleration/deceleration. If the motor is a self-cooling type, a thrust that is approx. 6-fold can be output. For an oil-type motor, a thrust that is approx. 3-fold can be output.

The max. linear motor thrust required for acceleration/deceleration can be approximated using the machine specifications and expression (3-1).

Fmax = (M • a + Ff) • 1.2

(3-1)

Fmax : Max. motor thrust

(N)

M

: Movable mass (including motor's moving sections)

(kg)

a

: Acceleration during acceleration/deceleration

(m/s2)

Ff

: Load force (including cutting force, wear and unbalance force) (N)

Note that there is a servo response delay as shown on the right in respect to the acceleration in the acceleration/ deceleration command set with the CNC. Thus, the acceleration characteristics (thrust characteristics required for acceleration/deceleration when movable mass is applied) in respect to the speed required for the linear servomotor will be as shown on the next page. (Conditions: Indicates the characteristics using the position loop gain during SHG control using a linear acceleration/deceleration command pattern.) Thus, when selecting the linear motor, refer to the speed - acceleration (thrust) characteristics on the next page, and confirm the speed - thrust characteristics (4-4 Torque characteristics drawing) for the linear motor.

Speed

Command

speed

Servo response

Time

(Note) The speed – acceleration characteristics on the next page are reference values at a specific condition, so if an S-character acceleration/deceleration filter is applied on the command, if the position loop gain differs, the characteristics will also differ.

3–2

Mitsubishi Electronics MDS-B User Manual

Chapter 3 Selection

During acceleration: Speed – acceleration acceleration

Servo response characteristics

Max. speed 120m/min, PGN1 = 47 (SHG)

40

During

35acceleration

 

30

 

Command 29.4m/s2

 

 

(m/s2)

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

Max. speed 80m/min, PGN1 = 47 (SHG)

 

40

During

 

 

 

 

 

 

35

acceleration

 

 

 

 

 

 

30

Command 29.4m/s2

 

 

 

(m/s2)

 

 

 

 

 

 

25

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

 

 

 

 

Velocity (m/min)

 

 

 

Max. speed 120m/min, PGN1 = 100 (SHG)

40

During

35acceleration

 

30

 

Command 29.4m/s2

 

 

(m/s2)

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

Max. speed 80m/min, PGN1 = 100 (SHG)

40

During

35acceleration

(m/s2)

30

Command 29.4m/s2

 

 

 

25

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

During deceleration: Speed –

Servo response characteristics

Max. speed 120m/min, PGN1 = 47 (SHG)

40

During

35decceleration

 

30

 

Command 29.4m/s2

 

 

(m/s2)

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

Max. speed 80m/min, PGN1 = 47 (SHG)

 

40

 

 

 

 

 

 

 

35

During

 

 

 

 

 

 

decceleration

Command 29.4m/s2

 

 

 

30

 

 

 

(m/s2)

 

 

 

 

 

 

25

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

Max. speed 120m/min, PGN1 = 100 (SHG)

40

During

35acceleration

 

30

 

Command 29.4m/s2

 

 

(m/s2)

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

Acceleration

20

 

Command 19.6m/s2

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

Max. speed 80m/min, PGN1 = 100 (SHG)

 

40

 

 

 

 

 

 

 

35

During

 

 

 

 

 

 

decceleration

 

 

 

 

 

(m/s2)

30

Command 29.4m/s2

 

 

 

25

 

 

 

 

 

 

 

Command 19.6m/s2

 

 

 

Acceleration

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

Command 9.8m/s2

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

00

20

40

60

80

100

120

Velocity (m/min)

3–3

Chapter 3 Selection

3-1-3 Continuous thrust

A typical operation pattern is assumed, and the motor's continuous effective load thrust (Frms) is calculated from the load force. If numbers (1) to (8) in the following drawing were considered a one cycle operation pattern, the continuous effective load thrust is obtained from the root mean square of the thrust during each operation, as shown in the expression (3-2).

 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Motor

0

 

 

 

 

 

 

 

speed

 

 

 

 

 

 

 

 

F1

 

 

 

 

 

F7

 

 

 

 

 

F4

 

 

 

Motor

 

F2

 

 

 

 

 

0

 

 

 

 

 

 

 

thrust

 

F3

 

 

F6

 

Time

 

 

 

 

 

 

 

 

 

 

F5

 

F8

 

 

 

 

 

 

 

 

 

t1

t2

t3

t4

t5

t6

t7

t8

 

 

 

 

 

t0

 

 

 

Fig. 3-1 Continuous operation pattern

Frms =

F12·t1 + F22·t2 + F32·t3 + F42·t4 + F52·t5 + F62·t6 + F72·t7 + F82·t8

(3-2)

 

t0

 

Select a motor so that the continuous effective load thrust (Frms) is 80% or less of the motor rated thrust (Fs).

Frms ≤ 0.8 × Fs

(3-3)

(1)Horizontal axis load thrust

When operations (1) to (8) are for a horizontal axis, calculate so that the following thrusts are required in each period.

Table 3-1 Load thrusts of horizontal axes

Period

Load thrust calculation method

Explanation

 

(Amount of acceleration thrust) + (Kinetic

Normally the acceleration/deceleration time constant is

(1)

calculated so this thrust is 80% of the maximum thrust of

friction force)

 

the motor.

 

 

(2)

(Kinetic friction force) + (Cutting force)

 

 

(Amount of deceleration thrust) +

The signs for the amount of acceleration thrust and

(3)

amount of deceleration thrust are reversed when the

(Kinetic friction force)

 

absolute value is the same value.

 

 

(4)

(Static friction force)

Calculate so that the static friction force is always required

during a stop.

 

 

(5)

− (Amount of acceleration thrust) −

The signs are reversed with period (1) when the kinetic

(Kinetic friction force)

friction does not change according to movement direction.

 

(6)

− (Kinetic friction force) − (Cutting force)

The signs are reversed with period (2) when the kinetic

friction does not change according to movement direction.

 

 

(7)

− (Amount of deceleration thrust) −

The signs are reversed with period (3) when the kinetic

(Kinetic friction force)

friction does not change according to movement direction.

 

(8)

− (Static friction force)

Calculate so that the static friction force is always required

during a stop.

 

 

3–4

Chapter 3 Selection

(2)Unbalance axis load force

When operations (1) to (8) are for an unbalance axis, calculate so that the following forces are required in each period. Note that the forward speed shall be an upward movement.

Table 3-2 Load thrusts of unbalance axes

Period

Load thrust calculation method

Explanation

 

(Amount of acceleration thrust) +

Normally the acceleration/deceleration time constant is

(1)

(Kinetic friction force) + (Unbalance

calculated so this thrust is 80% of the maximum thrust of the

 

force)

motor.

(2)

(Kinetic friction force) + (Unbalance

 

force) + (Cutting force)

 

 

 

 

(Amount of deceleration thrust) +

The signs for the amount of acceleration thrust and amount of

(3)

(Kinetic friction force) + (Unbalance

deceleration thrust are reversed when the absolute value is

 

thrust)

the same value.

(4)

(Static friction force) + (Unbalance

The holding force during a stop becomes fairly large.

force)

(Upward stop)

 

(5)

− (Amount of acceleration thrust) −

 

(Kinetic friction force) + (Unbalance

 

 

force)

 

(6)

− (Kinetic friction force) + (Unbalance

The generated force may be in the reverse of the movement

force) − (Cutting force)

direction, depending on the size of the unbalance force.

 

(7)

− (Amount of deceleration thrust) −

 

(Kinetic friction force) + (Unbalance

 

 

force)

 

(8)

− (Static friction force) + (Unbalance

The holding force becomes smaller than the upward stop.

force)

(Downward stop)

 

During a stop, the static friction force may constantly be applied. The static friction force and unbalance force may particularly become larger during an POINT unbalance upward stop, and the thrust during a stop may become extremely

large. Therefore, caution is advised.

(3)Max. cutting thrust and max. cutting duty

If the max. cutting force and max. cutting duty (%/min) are known, the following expression can be used for the selection conditions.

0.8 × Fs ≥ Fc ×

D

 

100

 

(3-4)

 

 

Fs : Motor continuous thrust

(N)

Fc : Max. cutting force during operation

(N)

D : Max. cutting duty

(%/min)

(4) Unbalance force

For an unbalanced axis, such as a gravity axis, basically balance it with a device such as a counterbalance. With the linear motor, the continuous thrust

CAUTION is lower than the rotary motor, so if the axis is unbalanced the motor's heating amount will increase. If an error should occur, the axis will drop naturally. This

is hazardous as the dropping distance and dropping speed are large.

3–5

Chapter 3 Selection

3-2 Selecting the power supply unit

Compared to the normal rotary motor, when using the linear servo system, the instantaneous output, such as the acceleration/deceleration, is large in respect to the continuous operation. Furthermore, this system is used in applications where acceleration/deceleration is carried out frequently, so the selection differs from the methods for selecting the conventional power supply unit.

Power supply unit capacity >Σ (Spindle motor output)

 

+Σ (Capacity of servo amplifier driving linear motor)

 

+0.7 × Σ (Rotary servomotor output)

(3-5)

*When using two or more axes with the rotation motor

Select a power supply unit capacity having the minimum lineup capacity that satisfies expression (3-5).

(Caution) With the linear servo axis, this is used for an axis with a high acceleration/deceleration frequency compared to that multiplied by 0.7 when using two or more axes with the rotation motor, so the value does not need to be multiplied by 0.7.

POINT

Refer to the "MELDAS AC Servo and Spindle MDS-A Series, MDS-B Series

Specifications BNP-B3759B" for other details on the power supply unit.

3-3 Selecting the power supply capacity, wire size, AC reactor, contactor and NFB

The selection of the power supply capacity, wire size, AC reactor, contactor

and NFB is the same as the MDS-B-V1 unit.

POINT Refer to the "MELDAS AC Servo and Spindle MDS-A Series, MDS-B Series Specifications BNP-B3759B".

3–6

Chapter 4 Linear Servomotor Specifications

4-1

Type configuration.......................................................................................

4-2

4-2

List of specifications ...................................................................................

4-3

4-3 Speed – torque characteristics drawing (At input voltage 200VAC) .......

4-4

4-4

Dynamic brake characteristics ...................................................................

4-5

4-5

Outline dimensions .....................................................................................

4-6

4-6

Explanation of connectors..........................................................................

4-9

4–1

Chapter 4 Linear Servomotor Specifications

4-1 Type configuration

The type indication for the linear servomotor differs for the primary side and secondary side.

(1) Primary side

LM – N

P

 

1)

 

 

2)

3)

 

4)

5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Width dimensions

 

 

 

 

 

(nominal dimensions)

 

 

 

 

 

2

 

130

[mm]

 

 

 

 

4210 [mm]

1)Length dimensions (nominal dimensions)

S

290 [mm]

M

530 [mm]

L

770 [mm]

G1,010 [mm]

(2)Secondary side

5) Mitsubishi control No.

The Mitsubishi control No. is indicated with two alphanumeric digits.

4) Max. speed

M120 [m/s]

3)Rated thrust

The rated thrust is indicated with the two digits for the 1000th place and 100th place.

Example) 500[N]→05 3,000[N]→30

LM – N

S

 

1)

 

0

2)

3)

 

 

 

 

 

 

 

 

 

 

 

 

1) Width dimensions

 

 

 

 

 

 

 

(nominal dimensions)

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

120 [mm]

 

 

 

 

4

 

 

210 [mm]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) Mitsubishi control No.

The Mitsubishi control No. is indicated with two alphanumeric digits.

2) Length dimensions (nominal dimensions)

The secondary side length dimensions are indicated as a [mm] unit with three digits.

Example) 360[mm]→360

 

The combination of the primary side and secondary side is indicated with the

CAUTION

type symbol 1).

Select a model that has the same type symbol 1) for the primary side and

 

secondary side.

 

 

4–2

Loading...
+ 158 hidden pages