Texas Instruments THS6032IGQER, THS6032IDWPR, THS6032IDWP, THS6032CGQER, THS6032EVM Datasheet

...
0 (0)

 

 

 

 

 

THS6032

 

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

 

 

 

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

D Low Power ADSL Line Driver Ideal for

THERMALLY ENHANCED SOIC (DWP)

 

Central Office

 

PowerPAD PACKAGE

 

 

 

(TOP VIEW)

 

 

 

± 1.35-W Total Power Dissipation for

 

 

 

 

 

 

 

 

 

Full-Rate ADSL Into a 25-Ω Load

PAD²

1

20

PAD²

D

Low-Impedance Shutdown Mode

VCCH±

2

19

VCCH+

 

± Allows Reception of Incoming Signal

1OUT

3

18

2OUT

 

During Standby

VCCL±

4

17

VCCL+

D Two Modes of Operation

1IN±

5

16

2IN±

1IN+

6

15

2IN+

 

± Class-G Mode: 4 Power Supplies, 1.35 W

 

NC

7

14

NC

 

Power Dissipation

 

SHDN1

8

13

NC

 

± Class-AB Mode: 2 Power Supplies, 2 W

 

SHDN2

9

12

DGND

 

Power Dissipation

 

PAD²

10

11

PAD²

 

Low Distortion

D

NC ± Not Connected

 

 

 

± THD = ±62 dBc at f = 1 MHz,

 

 

 

VO(PP) = 20 V, 25-Ω Load

 

(SIDE VIEW)

 

 

 

 

 

 

 

 

± THD = ±69 dBc at f = 1 MHz,

 

 

 

 

 

VO(PP) = 2 V, 25-Ω Load

 

 

 

 

D 400-mA Minimum Output Current Into a

 

 

 

 

 

25-Ω Load

Cross section view showing PowerPAD

D

High Speed

² This terminal is internally connected to the thermal pad.

 

 

 

 

 

± 65-MHz Bandwidth (±3dB) , 25-Ω Load

MicroStar Junior (GQE) PACKAGE

 

± 100-MHz Bandwidth (±3dB) , 100-Ω Load

 

(TOP VIEW)

 

 

 

± 1200 V/µs Slew Rate

 

 

 

 

D Thermal Shutdown and Short Circuit

 

 

 

 

 

Protection

 

 

 

 

D

Evaluation Module Available

 

 

 

 

description

The THS6032 is a low-power line driver ideal for asymmetrical digital subscriber line (ADSL) applications. This device contains two high-current, high-speed current-feedback drivers, which can be configured differentially for driving ADSL signals at the central office. The THS6032 features a unique class-G architecture to lower power consumption to 1.35 W. The THS6032 can also be operated in a traditional class-AB mode to reduce the number of power supplies to two.

HIGH-SPEED xDSL LINE DRIVER/RECEIVER FAMILY

DEVICE

DRIVER

RECEIVER

5 V

± 5 V

±15 V

DESCRIPTION

THS6002

 

500-mA differential line driver and receiver

THS6012

 

 

500-mA differential line driver

THS6022

 

 

250-mA differential line driver

THS6032

 

 

500-mA low-power ADSL central-office line driver

THS6062

 

Low-noise ADSL receiver

THS6072

 

 

Low-power ADSL receiver

THS7002

 

 

Low-noise programmable-gain ADSL receiver

CAUTION: The THS6032 provides ESD protection circuitry. However, permanent damage can still occur if this device is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD and MicroStar Junior are trademarks of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright 2000, Texas Instruments Incorporated

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

1

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

description

The class-G architecture supplies current to the load from four supplies. For low output voltages (typically

±2.5 < VO < +2.5), some of the output current is supplied from the +VCC(L) and ±VCC(L) supplies (typically ± 5 V). For large output voltages (typically VO < ±2.5 and VO > +2.5), the output current is supplied from +VCC(H) and ±VCC(H) (typically ± 15 V). This current sharing between VCC(L) and VCC(H) minimizes power dissipation within the THS6032 output stages for high crest factor ADSL signals.

The THS6032 features a low-impedance shutdown mode, which allows the central office to receive incoming calls even after the device has been shut down. The THS6032 is available packaged in the patented PowerPAD package. This package provides outstanding thermal characteristics in a small-footprint surface-mount package, which is fully compatible with automated surface-mount assembly procedures. It is also available in the new MicoStar Junior BGA package. This package is only 25 mm2 in area, allowing for high density PCB designs.

Shutdown (SHDN1 and SHDN2) allows for powering down the internal circuitry for power conservation or for multiplexing. Separate shutdown controls are available for each channel on the THS6032. The control levels are TTL compatible. When turned off, each driver output is placed in a low impedance state which is determined by the voltage at DGND. This virtual ground at the outputs allows proper termination of a transmission line.

AVAILABLE OPTIONS

 

PACKAGED DEVICES

PACKAGED DEVICES

 

TA

PowerPAD PLASTIC SMALL OUTLINE

MicroStar Junior (BGA)

EVALUATION MODULES

 

(DWP)

(GQE)

 

 

 

 

 

0°C to 70°C

THS6032CDWP

THS6032CGQE

THS6032EVM

THS6032GQE EVM³

 

 

 

± 40°C to 85°C

THS6032IDWP

THS6032IGQE

Ð

² The THS6032 is available taped and reeled. Add an R suffix to the device type (i.e.,THS6032CDWPR) ³ Uses the THS6032CGQE packaging option.

Terminal Functions

TERMINAL

 

NAME

DWP PACKAGE

GQE PACKAGE

 

 

 

TERMINAL NO.

TERMINAL NO.

 

 

 

 

 

 

1OUT

3

B1

 

 

 

 

 

 

1IN±

5

F1

 

 

 

 

 

 

1IN+

6

H1

 

 

 

 

 

 

2OUT

18

B9

 

 

 

 

 

 

2IN±

16

F9

 

 

 

 

 

 

2IN+

15

H9

 

 

 

 

 

 

VCCH±

2

A3

 

 

VCCH+

19

A7

 

 

VCCL±

4

D1

 

 

VCCL+

17

D9

 

 

SHDN1

8

J2

 

 

 

 

 

 

SHDN2

9

J4

 

 

 

 

 

 

DGND

12

J7

 

 

 

 

 

 

PAD

1, 10, 11, 20

N/A

 

 

 

 

 

 

NC

7, 13, 14

N/A

 

 

 

 

 

 

 

 

 

 

2

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

pin assignments

MicroStar Junior (GQE) PACKAGE

(TOP VIEW)

 

 

 

CCH±

 

 

 

CCH+

 

 

 

 

 

V

 

 

 

V

 

 

 

1

2

3

4

5

6

7

8

9

A

NC

NC

 

NC

NC

NC

 

NC

NC

B

 

NC

NC

NC

NC

NC

NC

NC

2OUT

1OUT

 

 

 

 

 

 

 

 

C

NC

NC

 

NC

NC

NC

NC

NC

NC

D

 

NC

NC

NC

NC

NC

NC

NC

VCCL+

VCCL±

 

 

 

 

 

 

 

 

 

E

NC

NC

NC

NC

NC

NC

NC

NC

NC

F

 

NC

NC

NC

NC

NC

NC

NC

 

1IN±

 

 

 

 

 

 

 

 

2IN±

G

NC

NC

NC

NC

NC

NC

NC

NC

NC

H

 

NC

NC

NC

NC

NC

NC

NC

2IN+

1IN+

 

 

 

 

 

 

 

 

J

NC

 

NC

 

NC

NC

 

NC

NC

 

 

SHDN1

 

SHDN2

 

 

DGND

 

 

NOTE: Shaded terminals are used for thermal connection to the ground plane.

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

3

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

functional block diagram (SOIC package)

 

 

19

VCCH+

 

 

 

1OUT

3

18

2OUT

 

 

 

 

17

VCCL+

 

 

 

1IN±

5

16

2IN±

±

±

1IN+

6

15

2IN+

+

+

VCCH±

2

 

 

VCCL±

4

 

 

 

 

 

SHDN1

8

12

DGND

SHDN2

9

 

 

NOTE A: Terminals 1, 10, 11, and 20 are internally connected to the thermal pad.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)²

Supply voltage, VCC(L) and VCC(H) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 33 V

Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . ±VCCH

Output current, IO (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 800 mA

Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . ± 4 V

Total power dissipation at (or below) 25°C free-air temperature

 

(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

See Dissipation Rating Table

Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 150°C

Operating free-air temperature, TA, C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 0°C to 70°C

I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . ±40°C to 85°C

Storage temperature, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . ±65°C to 125°C

Lead temperature 1,6 mm (1/16 in) from case for 10 seconds . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 300°C

²Stresses beyond those listed under ªabsolute maximum ratingsº may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under ªrecommended operating conditionsº is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. VCC(L) must always be less than or equal to VCC(H)

2.The THS6032 incorporates a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could permanently damage the device. See the Thermal Information section for more information about utilizing the PowerPAD thermally enhanced packages.

DISSIPATION RATING TABLE³

PACKAGE

θJA

θJC

TA = 25°C

(°C/W)

(°C/W)

POWER RATING

 

 

 

 

 

DWP

21.5

0.37

5.8 W

 

 

 

 

GQE

37.8

4.56

3.3 W

³This data was taken using 2 oz. trace and copper pad that is soldered directly to a JEDEC standard 4 layer 3 in × 3 in PCB.

4

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

recommended operating conditions

 

 

MIN

NOM

MAX

UNIT

 

 

 

 

 

 

 

VCC(L) ± Class G mode

± 3

± 5

± VCCH

V

Supply voltage

VCC(L) ± Class AB mode

0

0

0

V

 

VCC(H)

± 5

± 15

± 16

V

Operating free-air temperatures, TA

C-suffix

0

 

70

°C

 

 

 

 

I-suffix

± 40

 

85

 

 

 

 

 

 

 

 

 

electrical characteristics, VCC(L) = ±5 V, VCC(H) = ±15 V, RL = 25 Ω,TA = 25 °C (unless otherwise noted) dynamic performance

 

PARAMETER

TEST CONDITIONS

MIN TYP

MAX

UNIT

 

 

 

 

 

 

 

 

 

Gain = 1, RF = 1.3 kΩ

RL = 25 Ω

65

 

MHz

 

Small signal bandwidth (±3 dB)

RL = 100 Ω

100

 

 

 

 

 

 

Gain = 2, RF = 1.1 kΩ

RL = 25 Ω

60

 

MHz

 

 

 

BW

 

RL = 100 Ω

70

 

 

 

 

 

 

Bandwidth for 0.1 dB flatness

Gain = 1

 

30

 

MHz

 

 

 

 

 

 

Gain = 2

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full power bandwidth²

VOPP = 20 V

 

19

 

MHz

SR

Slew rate³

Gain = 5,

VO(PP) = 20 V

1200

 

V/µs

ts

Settling time to 0.1%

Gain = 1, RL = 25 Ω,

5 V Step

120

 

ns

² Full power bandwidth = slew rate/2π VPEAK

³ Slew rate is defined from the 25% to the 75% output levels.

noise/distortion performance

 

PARAMETER

 

TEST CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

 

 

 

THD

Total harmonic distortion

VO = 20 V(pp), Gain = 5,

f = 1 MHz

 

± 62

 

dBc

VO = 2 V(pp), Gain = 2,

f = 1 MHz

 

± 69

 

 

 

 

 

 

 

 

Vn

Input voltage noise

f = 10 kHz

 

 

 

2.4

 

nV/√

 

 

 

 

 

 

Hz

 

 

 

 

 

In+

 

11

 

 

 

 

In

Input current noise

f = 10 kHz

 

 

 

nV/√ Hz

 

I

 

15

 

 

 

 

 

 

 

 

 

 

 

Differential gain error

Gain = 2,

NTSC

RL = 150 Ω

 

0.016%

 

 

 

 

 

RL = 25 Ω

 

0.020%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential phase error

Gain = 2,

NTSC

RL = 150 Ω

 

0.04°

 

 

 

 

 

RL = 25 Ω

 

0.30°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crosstalk

f = 1 MHz, Gain = 2,

RF = 1.1 kΩ

 

± 62

 

dB

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

5

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

electrical characteristics, VCC(L) = ±5 V, VCC(H) = ±15 V, RL = 25 Ω,TA = 25 °C (unless otherwise noted)

(continued)

dc performance

 

PARAMETER

TEST CONDITIONS

MIN TYP

MAX

UNIT

 

 

 

 

 

 

Z(t)

Open loop transimpedance

RL = 1 kΩ

2

 

VIO

Input offset voltage

TA = 25°C

1.5

5

mV

TA = full range

 

7

 

 

 

 

 

Offset voltage drift

 

 

10

µV/°C

 

 

 

 

 

 

 

Differential offset voltage

TA = 25°C

0.5

3

mV

 

TA = full range

 

6

 

 

 

 

 

Negative input bias current

TA = 25°C

1.5

9

 

IIB

TA = full range

 

12

µA

 

 

Positive input bias current

TA = 25°C

1.5

9

 

 

 

TA = full range

 

12

 

 

 

 

 

input characteristics

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

VICR

Input common-mode voltage range

 

± 13.2

± 13.4

 

V

CMRR

Common-mode rejection ratio

TA = full range

64

72

 

dB

ri

Input resistance

Inverting terminal

 

15

 

Ω

Non inverting terminal

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential input capacitance

 

 

1.4

 

pF

 

 

 

 

 

 

 

output characteristics

 

PARAMETER

 

TEST CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

 

 

VO

Output voltage

Single-ended

RL = 25

Ω

± 10.5

± 11

 

V

Differential

RL = 50

Ω

± 21

± 22

 

 

 

 

 

I

Output current²

 

R

L

= 25

Ω

400

440

 

mA

O

 

 

 

 

 

 

 

 

 

I

Short-circuit current²

 

 

 

 

 

800

 

mA

SC

 

 

 

 

 

 

 

 

 

 

²A heat sink is required to keep junction temperature below absolute maximum when an output is heavily loaded or shorted. See ªabsolute maximum ratings.º

power supply

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

VCC

Operating range

VCCL

 

0

± 5 ±VCCH

V

VCCH

 

± 5

± 15

± 16.5

 

 

 

 

 

 

VCCL

TA = 25°C

 

4.3

5.8

mA

ICC

Quiescent current (per amplifier)

TA = full range

 

 

6.2

 

 

 

 

VCCH

TA = 25°C

 

4

5

mA

 

 

 

 

 

TA = full range

 

 

5.5

 

 

 

 

 

 

 

 

VCCL

TA = 25°C

90

100

 

dB

 

 

 

 

 

 

PSRR

Power supply rejection ratio

TA = full range

80

 

 

 

 

 

 

VCCH

TA = 25°C

69

80

 

dB

 

 

 

 

 

 

 

 

 

 

 

TA = full range

66

 

 

6

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

electrical characteristics, VCC(L) = ±5 V, VCC(H) = ±15 V, RL = 25 Ω,TA = 25 °C (unless otherwise noted)

(continued)

shutdown characteristics

 

PARAMETER

TEST CONDITIONS

MIN TYP

MAX

UNIT

 

 

 

 

 

 

VIL

Shutdown voltage for power up

Relative to DGND terminal

 

0.8

V

VIH

Shutdown voltage for power down

Relative to DGND terminal

2

 

V

IIH

Shutdown input current-high

V(SHDN) = 5 V

 

 

200

300

µA

IIL

Shutdown input current-low

V(SHDN) = 0.5

V

 

20

40

µA

Zo

Output impedance (while in shutdown state)

V(SHDN) = 2.5

V,

f = 1 MHz

0.5

 

Ω

ICCL

Supply current (per amplifier) (while in shutdown state)

V(SHDN) = 2.5

V,

VO = 0 V

0.05

0.2

mA

ICCH

2.4

3

 

 

 

 

 

t

Disable time²

 

 

 

1.1

 

µS

dis

 

 

 

 

 

 

 

t

Enable time²

 

 

 

1.5

 

µS

en

 

 

 

 

 

 

 

²Disable/enable time begins when the logic signal is applied to the shutdown terminal and ends when the supply current has reached half of its final value.

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

7

Texas Instruments THS6032IGQER, THS6032IDWPR, THS6032IDWP, THS6032CGQER, THS6032EVM Datasheet

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

TYPICAL CHARACTERISTICS

OUTPUT AMPLITUDE

OUTPUT AMPLITUDE

 

 

 

vs

 

 

 

 

vs

 

 

 

 

FREQUENCY

 

 

 

FREQUENCY

 

 

 

2

 

 

 

 

 

0.4

 

 

 

 

 

1

RF = 1 kΩ

RF = 1.3 kΩ

 

 

0.3

VCC(H) = ± 15 V

 

 

 

 

 

 

VCC(L) = ± 5 V

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0.2

Gain = +1

 

 

dB±

dB±

 

 

 

 

dB±

 

 

 

±1

 

 

 

 

VO = 0.2 VRMS

 

 

 

 

 

 

 

 

 

 

RL = 25 Ω

 

 

 

Amplitude

 

RF = 1.5 kΩ

 

 

Amplitude

0.1

 

 

 

Amplitude

±2

 

 

 

RF = 1 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±0.0

 

 

 

 

±3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

±4

VCC(L) = ± 5 V

 

 

 

Output

±0.1

 

 

 

Output

 

 

 

±0.2

 

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

 

RF = 1.3 kΩ

 

 

 

 

±5

Gain = +1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±6

RL = 25 Ω

 

 

 

 

±0.3

RF = 1.5 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

±7

VO = 0.2 VRMS

 

 

 

 

±0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 k

1 M

10 M

100 M

500 M

 

100 k

1 M

10 M

100 M

500 M

 

 

f ± Frequency ± Hz

 

 

 

f ± Frequency ± Hz

 

 

 

OUTPUT AMPLITUDE

 

 

 

vs

 

 

 

FREQUENCY

 

8

 

 

 

 

7

RF = 820 Ω

 

RF = 1.1 kΩ

 

6

 

 

 

 

5

 

 

 

 

4

RF = 1.3 kΩ

 

 

 

 

 

3

 

 

 

 

2

VCC(H) = ± 15 V

 

 

 

 

 

 

 

1

VCC(L) = ± 5 V

 

 

 

Gain = +2

 

 

 

 

 

 

 

0

RL = 25 Ω

 

 

 

±1

VO = 0.4 VRMS

 

 

 

 

 

 

 

100 k

1 M

10 M

100 M

500 M

 

f ± Frequency ± Hz

 

Figure 1

Figure 2

 

 

OUTPUT AMPLITUDE

 

 

 

OUTPUT AMPLITUDE

 

 

 

 

vs

 

 

 

 

vs

 

 

 

 

FREQUENCY

 

 

 

 

FREQUENCY

 

 

 

6.4

 

 

 

 

 

16

 

 

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

15

RF = 330 Ω

 

 

 

6.3

VCC(L) = ± 5 V

 

 

 

 

 

 

 

 

 

 

Gain = +2

 

 

 

 

14

 

 

 

 

± dB

6.2

RL = 25 Ω

 

 

 

± dB

 

 

 

 

 

 

 

 

 

 

 

 

6.1

VO = 0.4 VRMS

 

 

 

13

RF = 820 Ω

 

 

 

Amplitude

 

 

 

 

Amplitude

 

 

 

 

 

 

 

 

 

 

 

 

 

6.0

RF = 820 Ω

 

 

 

12

RF = 1.5 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

5.9

RF = 1.1 kΩ

 

 

Output

10

VCC(L) = ± 5 V

 

 

 

5.8

 

 

 

 

 

 

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

 

 

 

 

 

 

9

Gain = +5

 

 

 

 

 

RF = 1.3 kΩ

 

 

 

 

 

 

 

 

 

5.7

 

 

 

 

8

RL= 25 Ω

 

 

 

 

5.6

 

 

 

 

 

7

Vo = 0.2 VRMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 k

1 M

10 M

100 M

500 M

 

100k

1M

10M

100M

500M

 

 

f ± Frequency ± Hz

 

 

 

 

f ± Frequency ± Hz

 

 

Output Amplitude ± dB

Figure 3

OUTPUT AMPLITUDE vs

FREQUENCY

22

21

 

 

RF = 510 Ω

 

 

 

 

 

20

 

 

 

 

19

 

 

 

 

18

RF = 1 kΩ

 

 

 

 

 

 

17

 

 

 

 

16

VCC(H) = ± 15 V

 

 

 

15

VCC(L) = ± 5 V

 

 

 

Gain = +10

 

 

 

14

RL= 25 Ω

 

 

 

Vo = 0.2 VRMS

 

 

 

 

 

 

 

13

 

 

 

 

100k

1M

10M

100M

500M

 

f ± Frequency ± Hz

 

Figure 4

Figure 5

Figure 6

 

 

CLASS-AB MODE OUTPUT AMPLITUDE

OUTPUT AMPLITUDE

 

vs

vs

SMALL AND LARGE SIGNAL

FREQUENCY

FREQUENCY

FREQUENCY RESPONSE

Class-AB Mode Output Amplitude ± dB

8

 

 

 

 

 

8

 

 

 

 

 

18

 

 

 

VCC(H) = ± 15 V

 

6

 

 

 

 

 

 

Gain = +2, RF = 1.1 kΩ

 

 

dBV±

12

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

VCC(L) = ± 5 V

 

 

 

 

 

 

dB±AmplitudeOutput

 

 

 

 

VoltageOutputNormalized

VO(PP) = 4 V

 

 

G = +2

 

 

 

4

 

 

 

 

VO(PP) = 0.25 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

RF =1.1 kΩ

 

 

 

 

 

 

 

 

VO(PP) = 2 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

6

 

 

 

 

 

 

2

VCC(H) = ± 15 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gain = +1, RF = 1.3 kΩ

 

 

 

V

O(PP)

= 1 V

 

 

 

 

VCC(L) = GND

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

±2

 

 

 

 

 

VO(PP) = 0.5 V

 

 

 

 

G = +1

 

 

 

 

 

 

 

 

 

 

 

 

±2

RF =1.3 kΩ

 

 

 

 

 

 

 

 

 

±6

 

 

 

 

 

 

 

 

 

±4 VCC(H) = ± 15 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±4

RL = 25 Ω

 

 

 

±6

VCC(L) = ± 5 V

 

 

 

±

±12

 

 

 

 

 

 

 

 

 

RL = 100 Ω

 

 

 

O

Gain = +1

 

 

 

 

 

VI = 0.2 VRMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIN = 0.2 VRMS

 

 

 

V

RL = 25 Ω

RF = 1.3 k Ω

 

 

±6

 

 

 

 

 

±8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±18

 

 

 

 

 

 

100 k

1 M

10 M

100 M

500 M

 

100 k

1 M

10 M

100 M

500 M

 

100 k

1 M

10 M

100 M

500 M

 

 

f ± Frequency ± Hz

 

 

 

 

f ± Frequency ± Hz

 

 

 

 

 

f ± Frequency ± Hz

 

 

 

 

Figure 7

 

 

 

 

Figure 8

 

 

 

 

 

 

Figure 9

 

 

8

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

THS6032 LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

TYPICAL CHARACTERISTICS

 

CLASS-G MODE DISTORTION

SMALL AND LARGE SIGNAL

vs

FREQUENCY RESPONSE

FREQUENCY

 

24

 

 

VCC(H) = ± 15 V

 

 

±20

 

 

 

VoltageOutputNormalized± ± dBV

 

VO(PP) = 8 V

 

 

 

VCC(H) = ± 15 V

 

 

18

VCC(L) = ± 5 V

 

DistortionModeG-Class± dBc

±30

VCC(L) = ± 5 V to ± 7.5 V

THD

 

 

 

 

 

±6

 

 

 

 

 

±40

Gain = +2

 

 

VO(PP) = 4 V

 

 

 

RF = 1.1 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

±50

RL = 25 Ω

 

 

 

 

 

 

 

 

 

 

VO(PP) = 2 V

 

 

 

 

VO(PP) = 2 V

 

 

 

 

 

 

 

 

6

 

 

 

 

±60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VO(PP) = 1 V

 

 

 

 

±70

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VO(PP) = 0.5 V

 

 

 

 

±80

3rd Harmonic

 

 

 

 

 

 

 

 

 

O

 

Gain = +2

 

 

 

 

 

±90

2nd Harmonic

 

 

 

 

 

 

 

 

 

 

 

V

 

RL = 25 Ω

RF = 1.1 k Ω

 

 

 

 

 

 

 

 

±12

 

 

 

±100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 k

1 M

 

10 M

100 M

500 M

 

100 k

1 M

10 M

20 M

 

 

f ± Frequency ± Hz

 

 

 

 

f ± Frequency ± Hz

 

 

CLASS-AB MODE DISTORTION

 

 

 

vs

 

 

 

 

FREQUENCY

 

 

±20

 

 

 

± dBc

±30

VCC(H) = ± 15 V

THD

VCC(L)

= GND

 

±40

Gain = +2

 

Distortion

RF = 1.1 kΩ

 

 

 

±50

RL = 25 Ω

 

VO(PP)

= 2 V

 

 

 

±60

 

 

 

Mode

 

 

 

±70

 

 

 

-AB

 

 

 

±80

 

3rd Harmonic

Class

 

 

 

 

±90

 

2nd Harmonic

 

 

 

 

 

±100

 

 

 

 

100 k

 

1 M

10 M 20 M

 

 

 

f ± Frequency ± Hz

 

Figure 10

Figure 11

Figure 12

 

 

2ND ORDER DISTORTION

 

 

 

3RD ORDER DISTORTION

 

 

 

 

THD

 

 

 

 

vs

 

 

 

 

 

vs

 

 

 

 

 

vs

 

 

 

 

OUTPUT VOLTAGE

 

 

 

OUTPUT VOLTAGE

 

 

 

OUTPUT VOLTAGE

 

 

±50

 

 

VCC(H) = ± 15 V

 

 

±50

 

 

VCC(H) = ± 15 V

 

 

±50

 

 

 

 

 

±55

 

 

 

 

±55

 

 

 

 

±55

VCC(L) = GND

 

 

 

 

 

 

Gain = +5

 

 

 

 

Gain = +5

 

DistortionHarmonicTotal± dBc

 

 

 

 

DistortionOrder2ND± dBc

±60

 

 

RF= 1.1 kΩ

 

DistortionOrder3RD± dBc

±60

VCC(L) = GND

 

RF= 1.1 kΩ

 

±60

 

VCC(L) = ± 6 V

 

 

 

RL = 25 Ω

 

 

 

RL = 25 Ω

 

 

 

 

 

±65

VCC(L) = ± 5 V

 

f = 1 MHz

 

±65

 

 

f = 1 MHz

 

±65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±70

 

 

 

 

 

±70

 

 

 

 

 

±70

VCC(L) = ± 5 V

VCC(L) = ± 7.5 V

 

 

±75

 

 

 

 

 

±75

 

 

 

 

 

±75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

 

VCC(L) = ± 7.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

±80

 

 

 

 

±80

VCC(L) = ± 6 V

 

 

 

±80

 

 

Gain = +5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF= 1.1 kΩ

 

 

±85

 

VCC(L) = ± 6 V

 

 

±85

VCC(L) = ± 5 V

VCC(L) = ± 7.5 V

 

 

±85

 

 

RL = 25 Ω

 

 

VCC(L) = GND

 

 

 

 

 

 

 

 

 

±90

 

 

 

 

±90

 

 

 

 

 

±90

 

 

f = 1 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

 

0

5

10

15

20

 

0

5

10

15

20

 

 

VO(PP) ± Output Voltage ± V

 

 

 

VO(PP) ± Output Voltage ± V

 

 

 

VO(PP) ± Output Voltage ± V

 

Figure 13

Figure 14

Figure 15

 

 

CROSSTALK

 

 

 

 

 

 

vs

 

 

 

 

 

FREQUENCY

 

 

 

 

0

 

 

 

 

1400

 

±10

VCC(H) = ± 15 V

 

 

 

 

 

VCC(L) = ± 5 V

 

 

 

1200

 

±20

Gain = +2

 

 

 

 

 

RF = 1.1 kΩ

 

 

s

1000

dB

 

RL = 25 Ω

 

 

± V/

±30

 

 

 

Crosstalk ±

 

 

 

 

± Slew Rate

800

±40

Input = Ch. 2

 

 

 

 

 

 

 

±50

Output = Ch. 1

 

 

600

 

 

 

 

 

 

 

 

 

 

±60

 

Input = Ch. 1

SR

400

 

 

 

 

 

 

Output = Ch. 2

 

 

 

±70

 

 

 

 

200

 

±80

 

 

 

 

0

 

100 k

1 M

10 M

100 M

500 M

 

 

 

f ± Frequency ± Hz

 

 

 

 

SLEW RATE

 

 

 

 

 

vs

 

 

 

 

 

OUTPUT STEP

 

 

 

 

 

 

 

 

 

100

 

VCC(H) = ± 15 V

 

+SR

 

 

 

 

VCC(L) = ± 5 V

 

 

Hz

Hz

 

 

Gain = +5

 

 

 

 

 

 

 

 

 

 

RF = 1.1 kΩ

 

 

nV/

pA/

 

 

RL = 25 Ω

 

±SR

 

 

 

±

±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

± Voltage Noise

± Current Noise

10

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

V

I

 

0

5

10

15

20

 

1

 

 

VO(pp) ± Output Voltage Step ± V

VOLTAGE AND CURRENT NOISE vs

FREQUENCY

 

 

 

VCC(H) = ± 15 V

 

 

 

VCC(L) = ± 5 V

 

 

 

 

TA = 25°C

 

 

 

 

In±

 

 

 

 

In+

 

 

VN

 

 

 

10

100

1 k

10 k

100 k

 

f ± Frequency ± Hz

 

Figure 16

Figure 17

Figure 18

 

 

 

 

 

 

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

9

THS6032

LOW-POWER ADSL CENTRAL-OFFICE LINE DRIVER

SLOS233C ± APRIL1999 ± REVISED MARCH 2000

TYPICAL CHARACTERISTICS

 

 

TRANSIMPEDANCE

 

 

POWER SUPPLY REJECTION RATIO

 

COMMON-MODE REJECTION RATIO

 

 

 

vs

 

 

 

 

 

vs

 

 

 

 

 

vs

 

 

 

 

 

 

FREQUENCY

 

 

 

FREQUENCY

 

 

 

 

FREQUENCY

 

 

 

140

 

 

 

 

dB

120

 

 

 

 

±dB

80

 

 

 

 

 

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

VCC(H) = ± 15 V

 

 

 

 

 

 

± Power Supply Rejection Ratio ±

 

 

 

 

± Common-Mode Rejection Ratio

70

 

 

 

 

120

 

 

VCC(L) = ± 5 V

 

100

 

 

VCC(L) = ± 5 V

 

 

 

VCC(L)

= ± 5 V

 

 

 

 

 

 

 

 

 

 

 

 

Transimpedance ± dBΩ

 

 

 

RL= 1 kΩ

 

 

 

 

Gain = +2

 

60

 

 

RF = 1 kΩ

 

 

 

 

 

 

 

 

 

RF = 1.1 kΩ

 

 

 

RL = 25

Ω

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

RL = 25 Ω

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

60

 

 

±VCC(L)

 

40

 

 

 

 

 

60

 

 

 

 

40

+VCC(L)

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

40

 

 

 

 

20

 

±VCC(H)

 

10

 

 

 

 

 

 

 

 

 

 

 

PSRR

 

 

 

CMRR

 

 

 

 

 

 

20

 

 

 

 

0

 

 

 

 

0

 

 

 

 

 

 

1 k

10 k

100 k 1 M

10 M 100 M

1 G

 

10 k

100 k

1 M

10 M

100 M

 

10 k

100 k

1 M

10 M

100 M

 

 

 

f ± Frequency ± Hz

 

 

 

f ± Frequency ± Hz

 

 

 

f ± Frequency ± Hz

 

 

Figure 19

SUPPLY CURRENT vs

FREE-AIR TEMPERATURE

 

6.0

 

 

 

 

 

 

 

 

5.5

VCC(H) = ± 15 V

 

 

 

 

 

VCC(L) = ± 5 V

 

 

 

 

 

mA

 

 

 

 

 

 

5.0

Per Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

±

 

 

 

 

 

 

 

 

Current

4.5

 

ICC(L)

 

 

 

 

4.0

 

 

 

 

 

 

 

± Supply

 

 

 

 

 

 

 

3.5

 

 

 

ICC(H)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

±40

±20

0

20

40

60

80

100

 

 

TA ± Free-Air Temperature ± °C

 

Figure 22

 

 

 

INPUT BIAS CURRENT

 

 

 

 

 

 

 

 

 

 

vs

 

 

 

 

 

 

 

 

 

 

 

FREE-AIR TEMPERATURE

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

1.75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lib+

 

 

 

 

 

 

 

 

 

 

 

 

± µ

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current

1.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bias

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

lib±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

0.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±40

±20

0

20

40

60

80

100

TA ± Free-Air Temperature ± °C

Figure 25

Figure 20

Figure 21

MAXIMUM OUTPUT VOLTAGE

INPUT OFFSET VOLTAGE

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

 

12.0

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

± V

 

VCC(H)= ± 15 V

 

 

 

 

 

 

VCC(H)= ± 15

 

 

 

 

 

11.8

VCC(L)=± 5 V

 

 

 

 

 

±VoltageOffsetInputmV

 

 

 

 

 

 

VoltageOutputMaximum

 

 

 

 

 

 

VCC(L)=± 5 V

 

 

 

 

 

11.0

 

 

 

 

 

 

 

1.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.6

 

 

 

 

+VOUT

 

 

 

 

 

 

 

 

 

 

 

 

11.4

 

 

 

 

 

 

 

 

1.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.2

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±

 

 

 

 

 

 

 

 

±

1.2

 

 

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

IO

 

 

 

 

 

 

 

10.8

 

 

 

±VOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.6

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

±40

±20

0

20

40

60

80

100

 

±40

±20

0

20

40

60

80

100

 

 

TA ± Free-Air Temperature ± °C

 

 

 

TA ± Free-Air Temperature ± °C

 

Figure 23

Figure 24

 

 

 

DIFFERENTIAL GAIN

 

 

 

 

DIFFERENTIAL PHASE

 

 

 

 

 

 

vs

 

 

 

 

 

 

 

 

vs

 

 

 

 

 

 

 

 

LOADING

 

 

 

 

 

 

 

LOADING

 

 

 

 

0.05

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

Gain = 2

 

 

 

 

 

 

 

Gain = 2

 

 

 

 

 

 

 

 

RF = 1.1 kΩ

 

 

 

 

 

 

 

RF = 1.1 kΩ

 

 

 

 

 

 

0.04

40 IRE Modulation

 

 

 

 

 

0.4

40 IRE Modulation

 

 

 

 

± %

 

Worst Case

 

 

 

 

 

± %

 

Worst Case

 

 

 

 

 

 

± 100 IRE Ramp

 

 

 

 

 

± 100 IRE Ramp

 

 

 

 

DifferentialGain

0.03

 

 

PAL

 

 

 

 

DifferentialPhase

0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

 

0.2

 

 

 

 

NTSC

 

 

 

 

 

 

 

 

NTSC

 

 

 

 

 

 

 

 

 

 

 

 

0.01

VCC(H) = ± 15 V

 

 

 

 

 

0.1

 

 

 

VCC(H) = ± 15 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC(L) = ± 5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC(L) = ± 5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

 

1

2

3

4

5

6

7

8

Number of 150 Ω Loads

Number of 150 Ω Loads

Figure 26

Figure 27

10

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

Loading...
+ 21 hidden pages