Philips P89C51RA2BA-01, P89C51RA2BBD-01, P89C51RB2BA-01, P89C51RB2BBD-01, P89C51RC2BN-01 User Manual

...
0 (0)

P89C51RA2BA/01 INTEGRATED CIRCUITS

P89C51RA2xx/RB2xx/RC2xx/RD2xx

80C51 8-bit Flash microcontroller family

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

Preliminary data

Supersedes data of 2002 May 20

2002 Jul 18

P s

on o s

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

 

 

DESCRIPTION

The P89C51RA2/RB2/RC2/RD2xx contains a non-volatile 8KB/16KB/32KB/64KB Flash program memory that is both parallel programmable and serial In-System and In-Application Programmable. In-System Programming (ISP) allows the user to download new code while the microcontroller sits in the application. In-Application Programming (IAP) means that the microcontroller fetches new program code and reprograms itself while in the system. This allows for remote programming over a modem link.

A default serial loader (boot loader) program in ROM allows serial

In-System programming of the Flash memory via the UART without the need for a loader in the Flash code. For In-Application Programming, the user program erases and reprograms the Flash memory by use of standard routines contained in ROM.

The device supports 6-clock/12-clock mode selection by programming a Flash bit using parallel programming or

In-System Programming. In addition, an SFR bit (X2) in the clock control register (CKCON) also selects between 6-clock/12-clock mode.

Additionally, when in 6-clock mode, peripherals may use either 6 clocks per machine cycle or 12 clocks per machine cycle. This choice is available individually for each peripheral and is selected by bits in the CKCON register.

This device is a Single-Chip 8-Bit Microcontroller manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The instruction set is 100% compatible with the 80C51 instruction set.

The device also has four 8-bit I/O ports, three 16-bit timer/event counters, a multi-source, four-priority-level, nested interrupt structure, an enhanced UART and on-chip oscillator and timing circuits.

The added features of the P89C51RA2/RB2/RC2/RD2xx make it a powerful microcontroller for applications that require pulse width modulation, high-speed I/O and up/down counting capabilities such as motor control.

FEATURES

80C51 Central Processing Unit

On-chip Flash Program Memory with In-System Programming

(ISP) and In-Application Programming (IAP) capability

Boot ROM contains low level Flash programming routines for downloading via the UART

Can be programmed by the end-user application (IAP)

Parallel programming with 87C51 compatible hardware interface to programmer

Supports 6-clock/12-clock mode via parallel programmer (default clock mode after ChipErase is 12-clock)

6-clock/12-clock mode Flash bit erasable and programmable via ISP

6-clock/12-clock mode programmable ªon-the-flyº by SFR bit

Peripherals (PCA, timers, UART) may use either 6-clock or 12-clock mode while the CPU is in 6-clock mode

Speed up to 20 MHz with 6-clock cycles per machine cycle

(40 MHz equivalent performance); up to 33 MHz with 12 clocks per machine cycle

Fully static operation

RAM expandable externally to 64 kbytes

Four interrupt priority levels

Seven interrupt sources

Four 8-bit I/O ports

Full-duplex enhanced UART

±Framing error detection

±Automatic address recognition

Power control modes

±Clock can be stopped and resumed

±Idle mode

±Power down mode

Programmable clock-out pin

Second DPTR register

Asynchronous port reset

Low EMI (inhibit ALE)

Programmable Counter Array (PCA)

±PWM

±Capture/compare

2002 Jul 18

2

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

SELECTION TABLE

Type

 

Memory

 

 

Timers

 

 

 

Serial

 

 

 

 

 

 

 

 

 

 

 

 

 

Interfaces

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bits/ch.ADC

PinsI/O

Interrupts (Ext.)/Levels

Program Security

DefaultClock Rate

Optional ClockRate

Resetactive low/high?

 

RAM

ROM

OTP

Flash

Timersof#

PWM

PCA

WD

UART

 

CI2

CAN

 

SPI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

P89C51RD2xx

1K

±

±

64K

4

 

±

±

 

±

±

32

7(2)/4

12-clk

6-clk

H

P89C51RC2xx

512B

±

±

32K

4

 

±

±

 

±

±

32

7(2)/4

12-clk

6-clk

H

P89C51RB2xx

512B

±

±

16K

4

 

±

±

 

±

±

32

7(2)/4

12-clk

6-clk

H

P89C51RA2xx

512B

±

±

8K

4

 

±

±

 

±

±

32

7(2)/4

12-clk

6-clk

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Max.

Freq.

Freq.

Freq.

Range

Range

at 6-clk

at

3V

at 5V

/ 12-clk

(MHz)

(MHz)

(MHz)

 

 

 

20/33

 

±

0-20/33

20/33

 

±

0-20/33

20/33

 

±

0-20/33

20/33

 

±

0-20/33

 

 

 

 

NOTE:

1. P89C51Rx2Hxx devices have a 6-clk default clock rate (12-clk optional). Please also see Device Comparison Table.

DEVICE COMPARISON TABLE

Item

1st generation of Rx2 devices

2nd generation of Rx2 devices

Difference

 

 

(this data sheet)

 

 

 

 

 

Type description

P89C51Rx2Hxx(x)

P89C51Rx2xx(x)

No more letter `H'

 

 

 

 

Programming algo-

When using a parallel programmer,

When using a parallel programmer, be

Different programming algorithm

rithm

be sure to select

sure to select P89C51Rx2xx(x) de-

due to process change

 

P89C51Rx2Hxx(x) devices

vices (no more letter `H')

 

 

 

 

 

Clock mode (I)

6-clk default, OTP configuration bit

12-clk default, Flash configuration bit

More flexibility for the end user,

 

to program to 12-clk mode using

to program to 6-clk mode using paral-

more compatibility to older

 

parallel programmer (cannot be

lel programmer or ISP (can be repro-

P89C51Rx+ parts

 

programmed back to 6-clk)

grammed)

 

 

 

 

 

Clock mode (II)

N/A

6-clock/12-clock mode programmable

Clock mode can be changed by

 

 

ªon the flyº by SFR bit X2 (CKCON.0)

software

 

 

 

 

Peripheral clock

N/A

Peripherals can be run in 12-clk mode

More flexibility, lower power con-

modes

 

while CPU runs in 6-clk mode

sumption

 

 

 

 

Flash block structure

Two 8-Kbyte blocks

2±16 4-Kbyte blocks

More flexibility

 

1±3 16-Kbyte blocks

 

 

ORDERING INFORMATION

 

PART ORDER

MEMORY

TEMPERATURE

VOLTAGE

FREQUENCY (MHz)

 

 

NUMBER1

FLASH

RAM

RANGE (°C)

RANGE

6-CLOCK

12-CLOCK

DWG #

 

AND PACKAGE

 

 

 

 

 

 

MODE

MODE

 

 

 

 

 

 

 

 

1.

P89C51RA2BA/01

8 KB

512 B

0 to +70, PLCC

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT187-2

 

 

 

 

 

 

 

 

 

2.

P89C51RA2BBD/01

8 KB

512 B

0 to +70, LQFP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT389-1

 

 

 

 

 

 

 

 

 

3.

P89C51RB2BA/01

16 KB

512 B

0 to +70, PLCC

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT187-2

 

 

 

 

 

 

 

 

 

4.

P89C51RB2BBD/01

16 KB

512 B

0 to +70, LQFP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT389-1

 

 

 

 

 

 

 

 

 

5.

P89C51RC2BN/01

32 KB

512 B

0 to +70, PDIP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT129-1

 

 

 

 

 

 

 

 

 

6.

P89C51RC2BA/01

32 KB

512 B

0 to +70, PLCC

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT187-2

 

 

 

 

 

 

 

 

 

7.

P89C51RC2FA/01

32 KB

512 B

±40 to +85, PLCC

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT187-2

 

 

 

 

 

 

 

 

 

8.

P89C51RC2BBD/01

32 KB

512 B

0 to +70, LQFP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT389-1

 

 

 

 

 

 

 

 

 

9.

P89C51RC2FBD/01

32 KB

512 B

±40 to +85, LQFP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT389-1

 

 

 

 

 

 

 

 

 

10.

P89C51RD2BN/01

64 KB

1024 B

0 to +70, PDIP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT129-1

 

 

 

 

 

 

 

 

 

11.

P89C51RD2BA/01

64 KB

1024 B

0 to +70, PLCC

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT187-2

 

 

 

 

 

 

 

 

 

12.

P89C51RD2BBD/01

64 KB

1024 B

0 to +70, LQFP

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT389-1

 

 

 

 

 

 

 

 

 

13.

P89C51RD2FA/01

64 KB

1024 B

±40 to +85, PLCC

4.5±5.5 V

0 to 20 MHz

0 to 33 MHz

SOT187-2

 

 

 

 

 

 

 

 

 

NOTE:

1. The Part Marking will not include the ª/01º.

2002 Jul 18

3

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

BLOCK DIAGRAM 1

 

 

ACCELERATED 80C51 CPU

 

 

(12-CLK MODE, 6-CLK MODE)

 

8K / 16K / 32K /

 

 

64 KBYTE

 

 

CODE FLASH

 

 

 

FULL-DUPLEX

 

 

ENHANCED UART

 

512 / 1024 BYTE

 

 

DATA RAM

 

 

 

TIMER 0

 

 

TIMER 1

 

PORT 3

 

 

CONFIGURABLE I/Os

 

 

 

TIMER 2

 

PORT 2

 

 

CONFIGURABLE I/Os

 

 

 

PROGRAMMABLE

 

 

COUNTER ARRAY

 

PORT 1

(PCA)

 

 

 

CONFIGURABLE I/Os

 

 

 

WATCHDOG TIMER

 

PORT 0

 

 

CONFIGURABLE I/Os

 

CRYSTAL OR

OSCILLATOR

 

RESONATOR

 

 

 

 

su01606

2002 Jul 18

 

4

Philips P89C51RA2BA-01, P89C51RA2BBD-01, P89C51RB2BA-01, P89C51RB2BBD-01, P89C51RC2BN-01 User Manual

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

BLOCK DIAGRAM ± CPU ORIENTED

 

 

 

 

P0.0±P0.7

P2.0±P2.7

 

 

 

 

 

 

PORT 0

PORT 2

 

 

 

 

 

 

DRIVERS

DRIVERS

 

 

VCC

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

RAM ADDR

RAM

PORT 0

PORT 2

FLASH

 

 

REGISTER

 

LATCH

LATCH

 

 

 

 

 

 

 

 

 

8

 

B

 

ACC

 

 

STACK

 

 

REGISTER

 

 

 

POINTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROGRAM

 

 

 

 

 

TMP1

 

ADDRESS

 

 

 

 

TMP2

 

REGISTER

 

 

 

 

ALU

 

 

BUFFER

 

 

 

 

 

 

 

 

 

 

 

 

SFRs

 

 

 

 

 

 

 

TIMERS

 

PC

 

 

 

 

 

 

 

 

 

 

 

PSW

P.C.A.

 

INCRE-

 

 

 

 

 

 

MENTER

 

 

 

 

 

 

 

 

 

 

 

 

 

8

16

 

 

 

 

 

 

 

PROGRAM

 

 

 

 

 

 

 

COUNTER

PSEN

 

INSTRUCTION

REGISTER

 

 

 

 

ALE

TIMING

 

 

 

DPTR'S

EAVPP

AND

 

 

 

MULTIPLE

CONTROL

 

 

 

 

RST

 

 

 

 

 

 

PD

 

 

PORT 1

 

PORT 3

 

 

 

 

 

LATCH

 

LATCH

 

 

OSCILLATOR

 

 

 

 

 

 

 

 

PORT 1

 

PORT 3

 

 

 

 

 

DRIVERS

 

DRIVERS

 

 

XTAL1

 

XTAL2

 

 

 

 

 

 

 

 

P1.0±P1.7

 

P3.0±P3.7

 

 

 

 

 

 

 

 

SU01065

2002 Jul 18

 

 

 

 

5

 

 

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

LOGIC SYMBOL

 

 

VCC

VSS

 

 

 

XTAL1

 

 

 

 

 

0

ADDRESS AND

 

 

 

PORT

DATA BUS

 

 

 

 

 

 

XTAL2

 

 

 

 

 

 

T2

 

 

 

1

T2EX

 

 

RST

 

 

 

PORT

 

 

 

EA/VPP

 

 

 

 

 

 

 

PSEN

 

 

FUNCTIONSSECONDARY

ALE/PROG

2PORT

 

RxD

3PORT

 

 

 

 

 

 

TxD

 

 

 

 

INT0

 

 

 

 

INT1

 

 

ADDRESS BUS

 

T0

 

 

 

 

 

 

 

T1

 

 

 

 

WR

 

 

 

 

RD

 

 

 

 

 

 

 

SU01302

PINNING

Plastic Dual In-Line Package

 

T2/P1.0

 

 

 

 

 

 

VCC

 

1

 

 

 

40

 

T2EX/P1.1

 

 

 

 

 

 

 

 

 

 

2

 

 

 

39

 

P0.0/AD0

 

ECI/P1.2

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

38

 

P0.1/AD1

 

 

 

 

 

 

 

 

 

 

 

 

 

CEX0/P1.3

4

 

 

 

37

 

P0.2/AD2

CEX1/P1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

36

 

P0.3/AD3

 

 

 

 

 

 

 

 

 

 

 

 

 

CEX2/P1.5

6

 

 

 

35

 

P0.4/AD4

 

 

 

 

 

 

 

 

 

 

 

 

 

CEX3/P1.6

7

 

 

 

34

 

P0.5/AD5

 

 

 

 

 

 

 

 

 

 

 

 

 

CEX4/P1.7

8

 

 

 

33

 

P0.6/AD6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RST

9

 

 

 

32

 

P0.7/AD7

 

 

 

 

 

DUAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RxD/P3.0

10

 

31

 

EA/VPP

 

 

 

 

IN-LINE

 

 

 

 

 

 

 

TxD/P3.1

11

PACKAGE

30

 

 

 

 

 

 

ALE/PROG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

29

 

 

 

 

 

 

INT0/P3.2

 

 

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

28

 

P2.7/A15

 

INT1/P3.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0/P3.4

14

 

 

 

27

 

P2.6/A14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1/P3.5

15

 

 

 

26

 

P2.5/A13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

25

 

P2.4/A12

 

WR/P3.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

 

 

 

24

 

P2.3/A11

 

RD/P3.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL2

18

 

 

 

23

 

P2.2/A10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL1

19

 

 

 

22

 

P2.1/A9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

20

 

 

 

21

 

P2.0/A8

 

 

 

 

 

 

 

 

 

 

 

 

 

Plastic Leaded Chip Carrier

6

1

40

7

 

39

 

LCC

 

17

 

29

18

 

28

Pin

Function

Pin

Function

Pin

Function

1

NIC*

16

P3.4/T0

31

P2.7/A15

2

P1.0/T2

17

P3.5/T1

32

 

 

 

 

PSEN

3

P1.1/T2EX

18

 

 

 

 

 

 

 

 

 

P3.6/WR

 

33

ALE/PROG

4

P1.2/ECI

19

 

 

 

34

NIC*

P3.7/RD

 

5

P1.3/CEX0

20

XTAL2

35

 

 

EA/VPP

6

P1.4/CEX1

21

XTAL1

36

P0.7/AD7

7

P1.5/CEX2

22

VSS

37

P0.6/AD6

8

P1.6/CEX3

23

NIC*

38

P0.5/AD5

9

P1.7/CEX4

24

P2.0/A8

39

P0.4/AD4

10

RST

25

P2.1/A9

40

P0.3/AD3

11

P3.0/RxD

26

P2.2/A10

41

P0.2/AD2

12

NIC*

27

P2.3/A11

42

P0.1/AD1

13

P3.1/TxD

28

P2.4/A12

43

P0.0/AD0

14

 

 

 

29

P2.5/A13

44

VCC

P3.2/INT0

 

15

 

 

 

30

P2.6/A14

 

 

 

 

 

P3.3/INT1

 

 

 

 

 

 

* NO INTERNAL CONNECTION

 

 

 

 

 

SU00023

Plastic Quad Flat Pack

 

 

 

 

 

 

 

 

44

 

 

 

 

34

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

12

 

 

 

 

22

 

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin

Function

Pin

Function

 

 

 

 

Pin

Function

1

P1.5/CEX2

16

VSS

31

P0.6/AD6

2

P1.6/CEX3

17

NIC*

32

P0.5/AD5

3

P1.7/CEX4

18

P2.0/A8

33

P0.4/AD4

4

RST

19

P2.1/A9

34

P0.3/AD3

5

P3.0/RxD

20

P2.2/A10

35

P0.2/AD2

6

NIC*

21

P2.3/A11

36

P0.1/AD1

7

P3.1/TxD

22

P2.4/A12

37

P0.0/AD0

8

 

 

 

 

 

23

P2.5/A13

38

VCC

P3.2/INT0

 

9

 

 

 

 

 

24

P2.6/A14

39

NIC*

P3.3/INT1

 

10

P3.4/T0

25

P2.7/A15

40

P1.0/T2

11

P3.5/T1

26

 

 

 

 

41

P1.1/T2EX

PSEN

12

 

 

 

 

27

 

 

 

 

42

P1.2/ECI

P3.6/WR

 

ALE/PROG

13

 

 

 

28

NIC*

43

P1.3/CEX0

P3.7/RD

 

14

XTAL2

29

 

 

44

P1.4/CEX1

EA/VPP

15

XTAL1

30

P0.7/AD7

 

 

 

 

 

 

 

* NO INTERNAL CONNECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU00021

2002 Jul 18

6

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

PIN DESCRIPTIONS

MNEMONIC

 

PIN NUMBER

 

TYPE

 

 

 

 

 

NAME AND FUNCTION

 

 

 

 

 

 

 

 

 

 

PDIP

 

PLCC

 

LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

20

 

22

 

16

I

Ground: 0 V reference.

VCC

40

 

44

 

38

I

Power Supply: This is the power supply voltage for normal, idle, and power-down

 

 

 

 

 

 

 

operation.

P0.0±0.7

39±32

 

43±36

 

37±30

I/O

Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s

 

 

 

 

 

 

 

written to them float and can be used as high-impedance inputs. Port 0 is also the

 

 

 

 

 

 

 

multiplexed low-order address and data bus during accesses to external program

 

 

 

 

 

 

 

and data memory. In this application, it uses strong internal pull-ups when emitting 1s.

P1.0±P1.7

1±8

 

2±9

 

40±44,

I/O

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins.

 

 

 

 

 

1±3

 

Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and

 

 

 

 

 

 

 

can be used as inputs. As inputs, port 1 pins that are externally pulled low will

 

 

 

 

 

 

 

source current because of the internal pull-ups. (See DC Electrical Characteristics:

 

 

 

 

 

 

 

IIL).

 

 

 

 

 

 

 

Alternate functions for P89C51RA2/RB2/RC2/RD2xx Port 1 include:

 

1

 

2

 

40

I/O

 

T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable

 

 

 

 

 

 

 

 

Clock-Out)

 

2

 

3

 

41

I

 

T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control

 

3

 

4

 

42

I

 

ECI (P1.2): External Clock Input to the PCA

 

4

 

5

 

43

I/O

 

CEX0 (P1.3): Capture/Compare External I/O for PCA module 0

 

5

 

6

 

44

I/O

 

CEX1 (P1.4): Capture/Compare External I/O for PCA module 1

 

6

 

7

 

1

I/O

 

CEX2 (P1.5): Capture/Compare External I/O for PCA module 2

 

7

 

8

 

2

I/O

 

CEX3 (P1.6): Capture/Compare External I/O for PCA module 3

 

8

 

9

 

3

I/O

 

CEX4 (P1.7): Capture/Compare External I/O for PCA module 4

P2.0±P2.7

21±28

 

24±31

 

18±25

I/O

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that

 

 

 

 

 

 

 

have 1s written to them are pulled high by the internal pull-ups and can be used as

 

 

 

 

 

 

 

inputs. As inputs, port 2 pins that are externally being pulled low will source current

 

 

 

 

 

 

 

because of the internal pull-ups. (See DC Electrical Characteristics: IIL). Port 2

 

 

 

 

 

 

 

emits the high-order address byte during fetches from external program memory

 

 

 

 

 

 

 

and during accesses to external data memory that use 16-bit addresses (MOVX

 

 

 

 

 

 

 

@DPTR). In this application, it uses strong internal pull-ups when emitting 1s.

 

 

 

 

 

 

 

During accesses to external data memory that use 8-bit addresses (MOV @Ri),

 

 

 

 

 

 

 

port 2 emits the contents of the P2 special function register.

P3.0±P3.7

10±17

 

11,

 

5, 7±13

I/O

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that

 

 

 

13±19

 

 

 

have 1s written to them are pulled high by the internal pull-ups and can be used as

 

 

 

 

 

 

 

inputs. As inputs, port 3 pins that are externally being pulled low will source current

 

 

 

 

 

 

 

because of the pull-ups. (See DC Electrical Characteristics: IIL). Port 3 also serves

 

 

 

 

 

 

 

the special features of the P89C51RA2/RB2/RC2/RD2xx, as listed below:

 

10

 

11

 

5

I

 

RxD (P3.0): Serial input port

 

11

 

13

 

7

O

 

TxD (P3.1): Serial output port

 

12

 

14

 

8

I

 

 

 

 

 

(P3.2): External interrupt

 

 

 

 

INT0

 

13

 

15

 

9

I

 

 

 

 

(P3.3): External interrupt

 

 

 

 

INT1

 

14

 

16

 

10

I

 

T0 (P3.4): Timer 0 external input

 

15

 

17

 

11

I

 

T1 (P3.5): Timer 1 external input

 

16

 

18

 

12

O

 

 

 

(P3.6): External data memory write strobe

 

 

 

 

WR

 

17

 

19

 

13

O

 

 

(P3.7): External data memory read strobe

 

 

 

 

RD

RST

9

 

10

 

4

I

Reset: A high on this pin for two machine cycles while the oscillator is running,

 

 

 

 

 

 

 

resets the device. An internal resistor to VSS permits a power-on reset using only

 

 

 

 

 

 

 

an external capacitor to VCC.

ALE

30

 

33

 

27

O

Address Latch Enable: Output pulse for latching the low byte of the address

 

 

 

 

 

 

 

during an access to external memory. In normal operation, ALE is emitted twice

 

 

 

 

 

 

 

every machine cycle, and can be used for external timing or clocking. Note that one

 

 

 

 

 

 

 

ALE pulse is skipped during each access to external data memory. ALE can be

 

 

 

 

 

 

 

disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a

 

 

 

 

 

 

 

MOVX instruction.

2002 Jul 18

7

Philips Semiconductors Preliminary data

 

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

 

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNEMONIC

 

PIN NUMBER

 

TYPE

 

 

 

 

 

NAME AND FUNCTION

 

 

 

 

 

 

 

 

 

 

 

PDIP

 

PLCC

 

LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

32

 

26

O

Program Store Enable: The read strobe to external program memory. When

 

PSEN

 

 

 

 

 

 

 

 

 

 

 

 

executing code from the external program memory,

PSEN

is activated twice each

 

 

 

 

 

 

 

 

 

 

machine cycle, except that two

PSEN

activations are skipped during each access

 

 

 

 

 

 

 

 

 

 

to external data memory.

PSEN

is not activated during fetches from internal

 

 

 

 

 

 

 

 

 

 

program memory.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

35

 

29

I

External Access Enable/Programming Supply Voltage:

 

must be externally

 

EA/VPP

 

 

EA

 

 

 

 

 

 

 

 

 

 

held low to enable the device to fetch code from external program memory

 

 

 

 

 

 

 

 

 

 

locations. If

EA

is held high, the device executes from internal program memory.

 

 

 

 

 

 

 

 

 

 

The value on the

EA

pin is latched when RST is released and any subsequent

 

 

 

 

 

 

 

 

 

 

changes have no effect. This pin also receives the programming supply voltage

 

 

 

 

 

 

 

 

 

 

(VPP) during Flash programming.

 

XTAL1

19

 

21

 

15

I

Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock

 

 

 

 

 

 

 

 

 

 

generator circuits.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL2

18

 

20

 

14

O

Crystal 2: Output from the inverting oscillator amplifier.

NOTE:

) must not be higher than V

 

+ 0.5 V or less than V

 

± 0.5 V.

To avoid ªlatch-upº effect at power-on, the voltage on any pin (other than V

CC

SS

PP

 

 

2002 Jul 18

8

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

Table 1. Special Function Registers

SYMBOL

DESCRIPTION

DIRECT

 

BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION

RESET

ADDRESS

MSB

 

 

 

 

 

 

 

 

 

 

 

 

LSB

VALUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACC*

Accumulator

E0H

 

E7

 

E6

E5

E4

 

E3

 

E2

E1

E0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR#

Auxiliary

8EH

±

 

±

 

±

±

±

 

±

 

EXTRAM

AO

xxxxxx00B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR1#

Auxiliary 1

A2H

±

 

±

 

ENBOOT

±

 

GF2

0

 

±

DPS

xxxxxxx0B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B*

B register

F0H

 

F7

 

F6

F5

F4

 

F3

 

F2

F1

F0

00H

CCAP0H#

Module 0 Capture High

FAH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP1H#

Module 1 Capture High

FBH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP2H#

Module 2 Capture High

FCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP3H#

Module 3 Capture High

FDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP4H#

Module 4 Capture High

FEH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP0L#

Module 0 Capture Low

EAH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP1L#

Module 1 Capture Low

EBH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP2L#

Module 2 Capture Low

ECH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP3L#

Module 3 Capture Low

EDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CCAP4L#

Module 4 Capture Low

EEH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCAPM0#

Module 0 Mode

DAH

±

 

ECOM

CAPP

CAPN

 

MAT

 

TOG

PWM

ECCF

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCAPM1#

Module 1 Mode

DBH

±

 

ECOM

CAPP

CAPN

 

MAT

 

TOG

PWM

ECCF

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCAPM2#

Module 2 Mode

DCH

±

 

ECOM

CAPP

CAPN

 

MAT

 

TOG

PWM

ECCF

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCAPM3#

Module 3 Mode

DDH

±

 

ECOM

CAPP

CAPN

 

MAT

 

TOG

PWM

ECCF

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCAPM4#

Module 4 Mode

DEH

±

 

ECOM

CAPP

CAPN

 

MAT

 

TOG

PWM

ECCF

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DF

 

DE

DD

DC

 

DB

 

DA

D9

D8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCON*#

PCA Counter Control

D8H

 

CF

 

CR

±

CCF4

CCF3

CCF2

CCF1

CCF0

00x00000B

CH#

PCA Counter High

F9H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CKCON#

Clock control

8FH

±

 

WDX2

PCAX2

SIX2

T2X2

T1X2

T0X2

X2

x0000000B

CL#

PCA Counter Low

E9H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMOD#

PCA Counter Mode

D9H

CIDL

WDTE

±

±

±

 

CPS1

CPS0

ECF

00xxx000B

DPTR:

Data Pointer (2 bytes)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPH

Data Pointer High

83H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

DPL

Data Pointer Low

82H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

AF

 

AE

AD

AC

 

AB

 

AA

A9

A8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IE*

Interrupt Enable 0

A8H

 

EA

 

EC

ET2

ES

 

ET1

 

EX1

ET0

EX0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BF

 

BE

BD

BC

 

BB

 

BA

B9

B8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP*

Interrupt Priority

B8H

±

 

PPC

PT2

PS

 

PT1

 

PX1

PT0

PX0

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPH#

Interrupt Priority High

B7H

±

 

PPCH

PT2H

PSH

PT1H

PX1H

PT0H

PX0H

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87

 

86

 

85

84

83

 

82

 

81

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0*

Port 0

80H

AD7

AD6

AD5

AD4

 

AD3

 

AD2

AD1

AD0

FFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97

 

96

 

95

94

93

 

92

 

91

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1*

Port 1

90H

CEX4

CEX3

CEX2

CEX1

CEX0

 

ECI

T2EX

T2

FFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A7

 

A6

A5

A4

 

A3

 

A2

A1

A0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2*

Port 2

A0H

AD15

AD14

AD13

AD12

AD11

AD10

AD9

AD8

FFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B7

 

B6

B5

B4

 

B3

 

B2

B1

B0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3*

Port 3

B0H

 

RD

 

 

WR

 

T1

T0

 

INT1

 

 

INT0

 

TxD

RxD

FFH

PCON#1

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Control

87H

SMOD1

SMOD0

±

POF

 

GF1

 

GF0

PD

IDL

00xxx000B

*SFRs are bit addressable.

# SFRs are modified from or added to the 80C51 SFRs.

± Reserved bits.

1. Reset value depends on reset source.

2002 Jul 18

9

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

Table 1. Special Function Registers (Continued)

SYMBOL

DESCRIPTION

DIRECT

BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION

RESET

ADDRESS

MSB

 

 

 

 

 

 

 

 

 

 

 

 

LSB

VALUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D7

D6

D5

D4

D3

D2

D1

D0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSW*

Program Status Word

D0H

CY

AC

F0

RS1

RS0

OV

F1

P

00000000B

RCAP2H#

Timer 2 Capture High

CBH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCAP2L#

Timer 2 Capture Low

CAH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

SADDR#

Slave Address

A9H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

SADEN#

Slave Address Mask

B9H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

SBUF

Serial Data Buffer

99H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

 

 

 

9F

9E

9D

9C

9B

9A

99

98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCON*

Serial Control

98H

SM0/FE

SM1

SM2

REN

TB8

RB8

TI

RI

00H

SP

Stack Pointer

81H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07H

8F

8E

8D

8C

8B

8A

89

88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCON*

Timer Control

88H

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CF

CE

CD

CC

CB

CA

C9

C8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2CON*

Timer 2 Control

C8H

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

C/T2

CP/RL2

00H

T2MOD#

Timer 2 Mode Control

C9H

±

±

 

±

±

±

±

 

T2OE

DCEN

xxxxxx00B

TH0

Timer High 0

8CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TH1

Timer High 1

8DH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

TH2#

Timer High 2

CDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

TL0

Timer Low 0

8AH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

TL1

Timer Low 1

8BH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

TL2#

Timer Low 2

CCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMOD

Timer Mode

89H

GATE

C/T

 

M1

M0

GATE

C/T

M1

M0

00H

WDTRST

Watchdog Timer Reset

A6H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*SFRs are bit addressable.

# SFRs are modified from or added to the 80C51 SFRs.

± Reserved bits.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. Minimum and maximum high and low times specified in the data sheet must be observed.

This device is configured at the factory to operate using 12 clock periods per machine cycle, referred to in this datasheet as ª12-clock modeº. It may be optionally configured on commercially available

Flash programming equipment or via ISP or via software to operate at 6 clocks per machine cycle, referred to in this datasheet as ª6-clock modeº. (This yields performance equivalent to twice that of standard 80C51 family devices). Also see next page.

2002 Jul 18

10

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

CLOCK CONTROL REGISTER (CKCON)

This device provides control of the 6-clock/12-clock mode by means of both an SFR bit (X2) and a Flash bit (FX2, located in the Security

Block). The Flash clock control bit, FX2, when programmed (6-clock mode) supercedes the X2 bit (CKCON.0).

The CKCON register also provides individual control of the clock rates for the peripherals devices. When running in 6-clock mode each peripheral may be individually clocked from either fosc/6 or fosc/12. When in 12-clock mode, all peripheral devices will use fosc/12. The CKCON register is shown below.

CKCON

Address = 8Fh

 

 

 

 

 

 

 

Reset Value = x0000000B

 

Not Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±

WDX2

PCAX2

SIX2

T2X2

T1X2

T0X2

X2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIT

 

SYMBOL

FUNCTION

 

 

 

 

 

 

 

CKCON.7

±

 

Reserved.

 

 

 

 

 

 

 

CKCON.6

WDX2

Watchdog clock; 0 = 6 clocks for each WDT clock, 1 = 12 clocks for each WDT clock

CKCON.5

PCAX2

PCA clock; 0 = 6 clocks for each PCA clock, 1 = 12 clocks for each PCA clock

CKCON.4

SIX2

UART clock; 0 = 6 clocks for each UART clock, 1 = 12 clocks for each UART clock

CKCON.3

T2X2

Timer2 clock; 0 = 6 clocks for each Timer2 clock, 1 = 12 clocks for each Timer2 clock

CKCON.2

T1X2

Timer1 clock; 0 = 6 clocks for each Timer1 clock, 1 = 12 clocks for each Timer1 clock

CKCON.1

T0X2

Timer0 clock; 0 = 6 clocks for each Timer0 clock, 1 = 12 clocks for each Timer0 clock

CKCON.0

X2

CPU clock; 1 = 6 clocks for each machine cycle, 0 = 12 clocks for each machine cycle

 

 

 

 

 

 

 

 

 

 

 

 

SU01607

Bits 1 through 6 only apply if 6 clocks per machine cycle is chosen (i.e.± Bit 0 = 1). If Bit 0 = 0 (12 clocks per machine cycle) then all peripherals will have 12 clocks per machine cycle as their clock source.

Also please note that the clock divider applies to the serial port for modes 0 & 2 (fixed baud rate modes). This is because modes 1 & 3

(variable baud rate modes) use either Timer 1 or Timer 2.

Below is the truth table for the peripheral input clock sources.

FX2 clock mode bit

X2

Peripheral clock

CPU MODE

Peripheral Clock Rate

 

 

mode bit

 

 

 

 

(e.g., T0X2)

 

 

 

 

 

 

 

erased

0

x

12-clock (default)

12-clock (default)

 

 

 

 

 

erased

1

0

6-clock

6-clock

 

 

 

 

 

erased

1

1

6-clock

12-clock

 

 

 

 

 

programmed

x

0

6-clock

6-clock

 

 

 

 

 

programmed

x

1

6-clock

12-clock

 

 

 

 

 

RESET

A reset is accomplished by holding the RST pin high for at least two machine cycles (12 oscillator periods in 6-clock mode, or 24 oscillator periods in 12-clock mode), while the oscillator is running. To ensure a good power-on reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. At power-on, the voltage on VCC and RST must come up at the same time for a proper start-up. Ports 1, 2, and 3 will asynchronously be driven to their reset condition when a voltage above VIH1 (min.) is applied to RST.

The value on the EA pin is latched when RST is deasserted and has no further effect.

2002 Jul 18

11

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

LOW POWER MODES Stop Clock Mode

The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and

Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.

Idle Mode

In the idle mode (see Table 2), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

To save even more power, a Power Down mode (see Table 2) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2 V and care must be taken to return VCC to the minimum specified operating voltages before the Power Down Mode is terminated.

Either a hardware reset or external interrupt can be used to exit from

Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down, the reset or external interrupt should not be executed before VCC is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

POWER-ON FLAG

Design Consideration

When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control.

On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE Mode

The ONCE (ªOn-Circuit Emulationº) Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:

1.Pull ALE low while the device is in reset and PSEN is high;

2.Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit.

Normal operation is restored when a normal reset is applied.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0.

This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

1.to input the external clock for Timer/Counter 2, or

2.to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a

16 MHz operating frequency in 12-clock mode (122 Hz to 8 MHz in 6-clock mode).

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

Oscillator Frequency

n (65536 RCAP2H, RCAP2L)

n =

2 in 6-clock mode

 

4 in 12-clock mode

The Power-On Flag (POF) is set by on-chip circuitry when the VCC level on the P89C51RA2/RB2/RC2/RD2xx rises from 0 to 5 V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The VCC level must remain above 3 V for the POF to remain unaffected by the VCC level.

Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.

Table 2. External Pin Status During Idle and Power-Down Mode

 

 

 

 

 

 

 

 

 

 

MODE

PROGRAM MEMORY

ALE

 

PSEN

PORT 0

PORT 1

PORT 2

PORT 3

Idle

Internal

1

 

1

 

Data

Data

Data

Data

 

 

 

 

 

 

 

 

 

 

Idle

External

1

 

1

 

Float

Data

Address

Data

 

 

 

 

 

 

 

 

 

 

Power-down

Internal

0

 

0

 

Data

Data

Data

Data

 

 

 

 

 

 

 

 

 

 

Power-down

External

0

 

0

 

Float

Data

Data

Data

 

 

 

 

 

 

 

 

 

 

2002 Jul 18

12

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

TIMER 0 AND TIMER 1 OPERATION

Timer 0 and Timer 1

The ªTimerº or ªCounterº function is selected by control bits C/Tin the Special Function Register TMOD. These two Timer/Counters have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timers/Counters. Mode 3 is different. The four operating modes are described in the following text.

Mode 0

Mode 1

Mode 1 is the same as Mode 0, except that the Timer register is being run with all 16 bits.

Mode 2

Mode 2 configures the Timer register as an 8-bit Counter (TLn) with automatic reload, as shown in Figure 4. Overflow from TLn not only sets TFn, but also reloads TLn with the contents of THn, which is preset by software. The reload leaves THn unchanged.

Mode 2 operation is the same for Timer 0 as for Timer 1.

Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit Counter with a divide-by-32 prescaler. Figure 2 shows the Mode 0 operation.

In this mode, the Timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the Timer interrupt flag TFn. The counted input is enabled to the Timer when TRn = 1 and either GATE = 0 or INTn = 1. (Setting GATE = 1 allows the Timer to be controlled by external input INTn, to facilitate pulse width measurements). TRn is a control bit in the Special Function Register TCON (Figure 3).

The 13-bit register consists of all 8 bits of THn and the lower 5 bits of TLn. The upper 3 bits of TLn are indeterminate and should be ignored. Setting the run flag (TRn) does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer 1. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer

0 (TMOD.3).

Mode 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 5. TL0 uses the Timer 0 control bits: C/T, GATE, TR0, and TF0 as well as pin INT0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus,

TH0 now controls the ªTimer 1º interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer on the counter. With Timer 0 in Mode 3, an 80C51 can look like it has three Timer/Counters. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.

TMOD

Address = 89H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = 00H

 

Not Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

6

 

5

4

3

 

2

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GATE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C/T

 

M1

M0

GATE

 

C/T

 

M1

 

M0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMER 1

 

 

 

TIMER 0

 

 

 

 

 

BIT

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMOD.3/

GATE

 

Gating control when set. Timer/Counter ªnº is enabled only while

 

 

 

 

ªINTnº pin is high and

 

TMOD.7

 

 

 

 

ªTRnº control pin is set. when cleared Timer ªnº is enabled whenever ªTRnº control bit is set.

 

TMOD.2/

 

 

 

 

Timer or Counter Selector cleared for Timer operation (input from internal system clock.)

 

C/T

 

 

 

TMOD.6

 

 

 

 

Set for Counter operation (input from ªTnº input pin).

 

 

 

 

 

 

 

M1

M0

OPERATING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

8048 Timer: ªTLnº serves as 5-bit prescaler.

 

 

 

 

 

 

 

 

01 16-bit Timer/Counter: ªTHnº and ªTLnº are cascaded; there is no prescaler.

10 8-bit auto-reload Timer/Counter: ªTHnº holds a value which is to be reloaded into ªTLnº each time it overflows.

11 (Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits. TH0 is an 8-bit timer only controlled by Timer 1 control bits.

1

1

(Timer 1) Timer/Counter 1 stopped.

SU01580

Figure 1. Timer/Counter 0/1 Mode Control (TMOD) Register

2002 Jul 18

13

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

OSC

d*

 

 

 

 

 

 

C/T = 0

TLn

THn

 

 

 

 

 

TFn

Interrupt

 

 

 

(5 Bits)

(8 Bits)

 

C/T = 1

 

 

 

 

Tn Pin

 

 

Control

 

 

 

 

TRn

 

 

 

 

 

Timer n

 

 

 

 

 

 

Gate bit

 

 

 

 

 

 

INTn Pin

 

 

 

 

 

 

*d = 6 in 6-clock mode; d = 12 in 12-clock mode.

 

 

 

 

SU01618

 

 

 

 

 

 

 

Figure 2.

Timer/Counter 0/1 Mode 0: 13-Bit Timer/Counter

 

 

TCON

Address = 88H

 

 

 

 

 

 

 

 

Reset Value = 00H

 

Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

6

5

4

3

2

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TF1

TR1

TF0

TR0

IE1

IT1

IE0

 

IT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIT

 

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

TCON.7

TF1

Timer 1 overflow flag. Set by hardware on Timer/Counter overflow.

 

 

 

 

 

 

Cleared by hardware when processor vectors to interrupt routine, or clearing the bit in software.

TCON.6

TR1

Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter on/off.

TCON.5

TF0

Timer 0 overflow flag. Set by hardware on Timer/Counter overflow.

 

 

 

 

 

 

Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software.

TCON.4

TR0

Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter on/off.

TCON.3

IE1

Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected.

 

 

 

 

Cleared when interrupt processed.

 

 

 

 

 

 

TCON.2

IT1

Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered

 

 

 

 

external interrupts.

 

 

 

 

 

 

 

TCON.1

IE0

Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected.

 

 

 

 

Cleared when interrupt processed.

 

 

 

 

 

 

TCON.0

IT0

Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level

 

 

 

 

triggered external interrupts.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01516

Figure 3. Timer/Counter 0/1 Control (TCON) Register

2002 Jul 18

14

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

OSC

d*

 

 

 

 

 

 

C/T = 0

TLn

 

 

 

 

 

TFn

Interrupt

 

 

 

(8 Bits)

 

 

C/T = 1

 

 

 

 

Tn Pin

 

Control

 

 

 

 

 

 

 

 

TRn

 

Reload

 

 

Timer n

 

 

 

 

 

Gate bit

 

 

 

 

 

 

 

 

THn

 

 

INTn Pin

 

 

(8 Bits)

 

 

 

 

 

 

 

*d = 6 in 6-clock mode; d = 12 in 12-clock mode.

 

 

 

SU01619

 

 

Figure 4.

Timer/Counter 0/1 Mode 2: 8-Bit Auto-Reload

 

 

OSC

d*

 

 

 

 

 

 

C/T = 0

 

 

 

 

 

TL0

TF0

Interrupt

 

 

 

(8 Bits)

 

 

C/T = 1

 

 

T0 Pin

Control

 

 

TR0

Timer 0

 

Gate bit

 

INT0 Pin

 

 

 

 

 

 

 

 

 

 

 

 

TH0

 

TF1

 

Interrupt

 

 

 

d*

 

 

 

 

 

 

 

 

 

 

OSC

 

 

 

 

 

 

 

 

(8 Bits)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control

 

 

 

 

*d = 6 in 6-clock mode; d = 12 in 12-clock mode.

TR1

 

 

 

 

 

SU01620

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Timer/Counter 0 Mode 3: Two 8-Bit Counters

2002 Jul 18

15

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

TIMER 2 OPERATION

Timer 2

Timer 2 is a 16-bit Timer/Counter which can operate as either an event timer or an event counter, as selected by C/T2 in the special function register T2CON (see Figure 6). Timer 2 has three operating modes: Capture, Auto-reload (up or down counting), and Baud Rate Generator, which are selected by bits in the T2CON as shown in Table 3.

Capture Mode

In the capture mode there are two options which are selected by bit

EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or counter (as selected by C/T2 in T2CON) which, upon overflowing sets bit TF2, the timer 2 overflow bit. This bit can be used to generate an interrupt (by enabling the Timer 2 interrupt bit in the

IE register). If EXEN2= 1, Timer 2 operates as described above, but with the added feature that a 1- to -0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2 like TF2 can generate an interrupt

(which vectors to the same location as Timer 2 overflow interrupt. The Timer 2 interrupt service routine can interrogate TF2 and EXF2 to determine which event caused the interrupt). The capture mode is illustrated in Figure 7 (There is no reload value for TL2 and TH2 in this mode. Even when a capture event occurs from T2EX, the counter keeps on counting T2EX pin transitions or osc/6 pulses (osc/12 in 12-clock mode).).

Counter Enable) which is located in the T2MOD register (see Figure 8). When reset is applied the DCEN=0 which means Timer 2 will default to counting up. If DCEN bit is set, Timer 2 can count up or down depending on the value of the T2EX pin.

Figure 9 shows Timer 2 which will count up automatically since

DCEN=0. In this mode there are two options selected by bit EXEN2 in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH and sets the TF2 (Overflow Flag) bit upon overflow. This causes the

Timer 2 registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H. The values in RCAP2L and RCAP2H are preset by software means.

If EXEN2=1, then a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be generated when either TF2 or EXF2 are 1.

In Figure 10 DCEN=1 which enables Timer 2 to count up or down. This mode allows pin T2EX to control the direction of count. When a logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will overflow at 0FFFFH and set the TF2 flag, which can then generate an interrupt, if the interrupt is enabled. This timer overflow also causes the 16-bit value in RCAP2L and RCAP2H to be reloaded into the timer registers TL2 and TH2.

When a logic 0 is applied at pin T2EX this causes Timer 2 to count down. The timer will underflow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets the TF2 flag and causes 0FFFFH to be reloaded into the timer registers TL2 and TH2.

Auto-Reload Mode (Up or Down Counter)

In the 16-bit auto-reload mode, Timer 2 can be configured (as either a timer or counter [C/T2 in T2CON]) then programmed to count up or down. The counting direction is determined by bit DCEN (Down

The external flag EXF2 toggles when Timer 2 underflows or overflows. This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag does not generate an interrupt in this mode of operation.

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

 

 

(LSB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TF2

 

EXF2

RCLK

TCLK

EXEN2

TR2

 

 

2

 

 

 

 

 

 

 

 

 

 

C/T

CP/RL2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Position

Name and Significance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TF2

T2CON.7

Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set

 

 

 

 

 

 

 

when either RCLK or TCLK = 1.

 

 

 

 

 

 

 

 

 

 

 

EXF2

T2CON.6

Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and

 

 

 

 

 

 

 

EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2

 

 

 

 

 

 

 

interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down

 

 

 

 

 

 

 

counter mode (DCEN = 1).

 

 

 

 

 

 

 

 

 

 

 

 

RCLK

T2CON.5

Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock

 

 

 

 

 

 

 

in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.

 

TCLK

T2CON.4

Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock

 

 

 

 

 

 

 

in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.

 

EXEN2

T2CON.3

Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative

 

 

 

 

 

 

 

transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to

 

 

 

 

 

 

 

ignore events at T2EX.

 

 

 

 

 

 

 

 

 

 

 

 

TR2

T2CON.2

Start/stop control for Timer 2. A logic 1 starts the timer.

 

 

 

 

 

 

 

 

 

 

 

 

 

T2CON.1

Timer or counter select. (Timer 2)

 

 

 

 

 

 

 

 

 

 

 

C/T2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = Internal timer (OSC/6 in 6-clock mode or OSC/12 in 12-clock mode)

 

 

 

 

 

 

 

 

1 = External event counter (falling edge triggered).

 

 

 

 

 

 

 

 

 

 

 

2

T2CON.0

Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When

 

CP/RL

 

 

 

 

 

 

 

cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when

 

 

 

 

 

 

 

EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload

 

 

 

 

 

 

 

on Timer 2 overflow.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01251

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Timer/Counter 2 (T2CON) Control Register

2002 Jul 18

16

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

Table 3. Timer 2 Operating Modes

RCLK + TCLK

CP/RL2

 

TR2

 

MODE

0

0

 

1

16-bit Auto-reload

 

0

1

 

1

16-bit Capture

 

1

X

 

1

Baud rate generator

 

X

X

 

0

(off)

 

OSC

n*

 

 

 

 

 

C/T2 = 0

 

 

 

 

 

 

 

TL2

TH2

TF2

 

 

 

(8 BITS)

(8 BITS)

 

 

 

 

 

C/T2 = 1

 

 

 

 

T2 Pin

 

 

Control

 

 

 

 

 

 

 

 

 

TR2

Capture

 

 

 

 

 

 

 

 

Transition

 

 

 

Timer 2

 

Detector

 

 

 

Interrupt

 

 

 

RCAP2L

RCAP2H

 

T2EX Pin

 

 

 

 

EXF2

 

Control

 

 

 

 

 

EXEN2

 

 

 

SU01252

 

 

 

 

 

* n = 6 in 6-clock mode, or 12 in 12-clock mode.

 

 

 

 

Figure 7. Timer 2 in Capture Mode

T2MOD

Address = 0C9H

 

 

 

 

 

 

 

Reset Value = XXXX XX00B

 

Not Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ð

 

Ð

Ð

 

Ð

Ð

Ð

T2OE

DCEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

7

 

6

5

 

4

3

2

1

0

 

 

Symbol

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ð

Not implemented, reserved for future use.*

 

 

 

 

 

 

 

T2OE

Timer 2 Output Enable bit.

 

 

 

 

 

 

 

 

 

DCEN

Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.

* User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is

indeterminate.

SU00729

Figure 8. Timer 2 Mode (T2MOD) Control Register

2002 Jul 18

17

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

OSC

n*

 

 

 

C/T2 = 0

 

 

 

 

TL2

TH2

 

 

(8 BITS)

(8 BITS)

 

C/T2 = 1

 

 

T2 PIN

 

CONTROL

 

 

 

 

 

TR2

RELOAD

 

 

 

 

 

TRANSITION

 

 

 

DETECTOR

RCAP2L

RCAP2H

 

 

 

TF2

 

 

 

TIMER 2

 

 

 

INTERRUPT

T2EX PIN

 

 

EXF2

 

CONTROL

 

 

 

EXEN2

 

SU01253

* n = 6 in 6-clock mode, or 12 in 12-clock mode.

 

 

Figure 9. Timer 2 in Auto-Reload Mode (DCEN = 0)

 

 

(DOWN COUNTING RELOAD VALUE)

 

 

 

 

FFH

FFH

TOGGLE

 

 

 

 

 

 

 

 

 

 

 

EXF2

OSC

n*

C/T2 = 0

 

 

 

 

 

 

 

OVERFLOW

 

 

 

TL2

TH2

TF2

INTERRUPT

 

T2 PIN

C/T2 = 1

 

 

 

 

 

CONTROL

 

 

 

 

 

TR2

 

COUNT

 

 

 

 

 

 

 

 

 

 

DIRECTION

 

 

 

 

 

1 = UP

 

 

 

 

 

0 = DOWN

 

 

 

RCAP2L

RCAP2H

 

 

 

 

(UP COUNTING RELOAD VALUE)

T2EX PIN

 

* n = 6 in 6-clock mode, or 12 in 12-clock mode.

 

 

SU01254

Figure 10. Timer 2 Auto Reload Mode (DCEN = 1)

2002 Jul 18

18

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

Timer 1

Overflow

n = 1 in 6-clock mode

n = 2 in 12-clock mode

2

OSC

n

 

 

 

ª0º

ª1º

 

 

 

 

 

 

 

 

C/T2 = 0

 

 

 

 

 

SMOD

 

 

 

 

ª1º

ª0º

 

 

 

TL2

TH2

 

 

 

 

 

 

 

 

 

 

(8-bits)

(8-bits)

 

 

 

RCLK

 

C/T2 = 1

 

 

 

 

 

 

T2 Pin

Control

 

 

 

 

16

 

 

 

 

 

 

 

RX Clock

 

TR2

 

Reload

ª1º

ª0º

 

 

 

 

 

 

 

TCLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transition

 

 

 

 

 

 

 

Detector

RCAP2L

RCAP2H

 

 

16

 

 

 

 

 

TX Clock

 

 

 

 

 

 

T2EX Pin

EXF2

Timer 2

 

 

 

 

 

 

 

Interrupt

 

 

 

 

 

Control

EXEN2

Note availability of additional external interrupt.

SU01629

Figure 11. Timer 2 in Baud Rate Generator Mode

Table 4. Timer 2 Generated Commonly Used

Baud Rates

Baud Rate

 

Timer 2

 

 

Osc Freq

 

 

12-clock

6-clock

RCAP2H

RCAP2L

 

mode

mode

 

 

 

 

 

 

 

 

 

375 k

750 k

12 MHz

FF

FF

9.6 k

19.2 k

12 MHz

FF

D9

4.8 k

9.6 k

12 MHz

FF

B2

2.4 k

4.8 k

12 MHz

FF

64

1.2 k

2.4 k

12 MHz

FE

C8

300

600

12 MHz

FB

1E

110

220

12 MHz

F2

AF

300

600

6 MHz

FD

8F

110

220

6 MHz

F9

57

 

 

 

 

 

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates + Timer 2 Overflow Rate 16

The timer can be configured for either ªtimerº or ªcounterº operation. In many applications, it is configured for ªtimerº operation (C/T2=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e.,

1/6 the oscillator frequency in 6-clock mode, 1/12 the oscillator frequency in 12-clock mode). As a baud rate generator, it increments at the oscillator frequency in 6-clock mode (OSC/2 in 12-clock mode). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

Oscillator Frequency

[ n * [65536 (RCAP2H, RCAP2L)]]

Baud Rate Generator Mode

Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates ± one generated by Timer 1, the other by Timer 2.

Figure 11 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode,in that a rollover in

TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

* n =

16 in 6-clock mode

 

32 in 12-clock mode

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and

RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 11, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt.

Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2

(T2 external enable flag) is set, a 1-to-0 transition in T2EX

(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).

Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

2002 Jul 18

19

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. As a baud rate generator, Timer 2 is incremented every state time (osc/2) or asynchronously from pin T2; under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Table 4 shows commonly used baud rates and how they can be obtained from Timer 2.

Summary of Baud Rate Equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

Baud Rate + Timer 2 Overflow Rate

16

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate +

 

 

fOSC

[ n *

[65536 (RCAP2H, RCAP2L)]]

 

* n =

16 in

6-clock mode

 

 

32 in

12-clock mode

Where fOSC= Oscillator Frequency

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

RCAP2H, RCAP2L + 65536

 

fOSC

 

 

n *

Baud Rate

 

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. see Table 5 for set-up of Timer 2 as a timer. Also see Table 6 for set-up of Timer 2 as a counter.

Table 5. Timer 2 as a Timer

 

 

T2CON

MODE

 

 

 

INTERNAL CONTROL

 

EXTERNAL CONTROL

 

 

 

(Note 1)

 

(Note 2)

 

 

 

 

16-bit Auto-Reload

00H

 

08H

 

 

 

 

16-bit Capture

01H

 

09H

 

 

 

 

Baud rate generator receive and transmit same baud rate

34H

 

36H

 

 

 

 

Receive only

24H

 

26H

 

 

 

 

Transmit only

14H

 

16H

 

 

 

 

Table 6. Timer 2 as a Counter

 

 

 

TMOD

 

MODE

 

 

 

 

INTERNAL CONTROL

 

EXTERNAL CONTROL

 

 

 

 

 

(Note 1)

 

(Note 2)

 

 

 

 

 

16-bit

 

02H

 

0AH

 

 

 

 

 

Auto-Reload

 

03H

 

0BH

 

 

 

 

 

NOTES:

1.Capture/reload occurs only on timer/counter overflow.

2.Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.

2002 Jul 18

20

Philips Semiconductors Preliminary data

80C51 8-bit Flash microcontroller family

P89C51RA2/RB2/RC2/RD2xx

8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM

 

 

 

FULL-DUPLEX ENHANCED UART

The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

Standard UART operation

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost.) The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received (LSB first). The baud rate is fixed at 1/12 the oscillator frequency in

12-clock mode or 1/6 the oscillator frequency in 6-clock mode.

Mode 1: 10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.

Mode 2: 11 bits are transmitted (through TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On

Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Function

Register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency in 12-clock mode or 1/16 or 1/32 the oscillator frequency in 6-clock mode.

Mode 3: 11 bits are transmitted (through TxD) or received

(through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Special Function Register SCON, shown in Figure 12. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

Baud Rates

The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = Oscillator Frequency / 12 (12-clock mode) or / 6 (6-clock mode). The baud rate in Mode 2 depends on the value of bit SMOD in Special

Function Register PCON. If SMOD = 0 (which is the value on reset), and the port pins in 12-clock mode, the baud rate is 1/64 the oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the oscillator frequency, respectively.

Mode 2 Baud Rate =

2SMOD

(Oscillator Frequency)

n

 

Where:

 

n = 64 in 12-clock mode, 32 in 6-clock mode

The baud rates in Modes 1 and 3 are determined by the Timer 1 or

Timer 2 overflow rate.

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator (T2CON.RCLK = 0, T2CON.TCLK = 0), the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 Baud Rate =

2SMOD

(Timer 1 Overflow Rate)

n

 

Where:

 

n = 32 in 12-clock mode, 16 in 6-clock mode

The Timer 1 interrupt should be disabled in this application. The

Timer itself can be configured for either ªtimerº or ªcounterº operation, and in any of its 3 running modes. In the most typical applications, it is configured for ªtimerº operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that case the baud rate is given by the formula:

Mode 1, 3 Baud Rate =

2SMOD

Oscillator Frequency

n

12 [256±(TH1)]

 

Where:

n = 32 in 12-clock mode, 16 in 6-clock mode

One can achieve very low baud rates with Timer 1 by leaving the

Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload. Figure 13 lists various commonly used baud rates and how they can be obtained from

Timer 1.

2002 Jul 18

21

Loading...
+ 47 hidden pages