Philips P80C31SFBB, P87C51UFAA, P87C51UBAA, P87C51SFPN, P87C51SFBB Datasheet

...
0 (0)


80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
Product specification
Supersedes data of 1999 Apr 01
2000 Jan 20
INTEGRATED CIRCUITS
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2
2000 Jan 20 853–0169 23001
DESCRIPTION
The Philips 8XC51/31 is a high-performance static 80C51 design
fabricated with Philips high-density CMOS technology with operation
from 2.7V to 5.5V .
The 8XC51/31 contains a 4k × 8 ROM, a 128 × 8 RAM, 32 I/O lines,
three 16-bit counter/timers, a six-source, four-priority level nested
interrupt structure, a serial I/O port for either multi-processor
communications, I/O expansion or full duplex UART, and on-chip
oscillator and clock circuits.
In addition, the device is a low power static design which offers a
wide range of operating frequencies down to zero. Two software
selectable modes of power reduction—idle mode and power-down
mode are available. The idle mode freezes the CPU while allowing
the RAM, timers, serial port, and interrupt system to continue
functioning. The power-down mode saves the RAM contents but
freezes the oscillator, causing all other chip functions to be
inoperative. Since the design is static, the clock can be stopped
without loss of user data and then the execution resumed from the
point the clock was stopped.
SELECTION TABLE
For applications requiring more ROM and RAM,
see the 8XC52/54/58/80C32, 8XC51FA/FB/FC/80C51FA,
and 8XC51RA+/RB+/RC+/80C51RA+ data sheet.
ROM/EPROM
Memory Size
(X by 8)
RAM Size
(X by 8)
Programmable
Timer Counter
(PCA)
Hardware
Watch Dog
Timer
80C31/8XC51
0K/4K 128 No No
80C32/8XC52/54/58
0K/8K/16K/32K 256 No No
80C51FA/8XC51FA/FB/FC
0K/8K/16K/32K 256 Yes No
80C51RA+/8XC51RA+/RB+/RC+
0K/8K/16K/32K 512 Yes Yes
8XC51RD+
64K 1024 Yes Yes
FEA TURES
8051 Central Processing Unit
4k × 8 ROM (80C51)
128 × 8 RAM
Three 16-bit counter/timers
Boolean processor
Full static operation
Low voltage (2.7V to 5.5V@ 16MHz) operation
Memory addressing capability
64k ROM and 64k RAM
Power control modes:
Clock can be stopped and resumed
Idle mode
Power-down mode
CMOS and TTL compatible
TWO speed ranges at V
CC
= 5V
0 to 16MHz
0 to 33MHz
Three package styles
Extended temperature ranges
Dual Data Pointers
Security bits:
ROM (2 bits)
OTP/EPROM (3 bits)
Encryption array—64 bytes
4 level priority interrupt
6 interrupt sources
Four 8-bit I/O ports
Full–duplex enhanced UART
Framing error detection
Automatic address recognition
Programmable clock out
Asynchronous port reset
Low EMI (inhibit ALE)
Wake-up from Power Down by an external interrupt (8XC51)
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
3
80C51/87C51 AND 80C31 ORDERING INFORMATION
MEMORY SIZE
4K × 8
ROMless
TEMPERATURE RANGE °C
AND PACKAGE
VOLTAGE
RANGE
FREQ.
(MHz)
DWG.
#
ROM P80C51SBPN
OTP P87C51SBPN
P80C31SBPN
0
to
+
70
,
Plastic
D
u
al
In
-
line
Package
2
.
7V
to
5
.
5V
0
to
16
SOT129
-
1
ROM P80C51SBAA
p
OTP P87C51SBAA
P80C31SBAA
0
to
+
70
,
Plastic
Leaded
Chip
Carrier
2
.
7V
to
5
.
5V
0
to
16
SOT187
-
2
ROM P80C51SBBB
OTP P87C51SBBB
P80C31SBBB
0
to
+
70
,
Plastic
Q
u
ad
Flat
Pack
2
.
7V
to
5
.
5V
0
to
16
SOT307
-
2
ROM P80C51SFPN
OTP P87C51SFPN
P80C31SFPN
40
to
+
85
,
Plastic
D
u
al
In
-
line
Package
2
.
7V
to
5
.
5V
0
to
16
SOT129
-
1
ROM P80C51SFAA
p
OTP P87C51SFAA
P80C31SFAA
40
to
+
85
,
Plastic
Leaded
Chip
Carrier
2
.
7V
to
5
.
5V
0
to
16
SOT187
-
2
ROM P80C51SFBB
OTP P87C51SFBB
P80C31SFBB
40
to
+
85
,
Plastic
Q
u
ad
Flat
Pack
2
.
7V
to
5
.
5V
0
to
16
SOT307
-
2
ROM P80C51UBAA
p
OTP P87C51UBAA
P80C31UBAA
0
to
+
70
,
Plastic
Leaded
Chip
Carrier
5V
0
to
33
SOT187
-
2
ROM P80C51UBPN
OTP P87C51UBPN
P80C31UBPN
0
to
+
70
,
Plastic
D
u
al
In
-
line
Package
5V
0
to
33
SOT129
-
1
ROM P80C51UBBB
OTP P87C51UBBB
P80C31UBBB
0
to
+
70
,
Plastic
Q
u
ad
Flat
Pack
5V
0
to
33
SOT307
-
2
ROM P80C51UFAA
p
OTP P87C51UFAA
P80C31UFAA
40
to
+
85
,
Plastic
Leaded
Chip
Carrier
5V
0
to
33
SOT187
-
2
ROM P80C51UFPN
OTP P87C51UFPN
P80C31UFPN
40
to
+
85
,
Plastic
D
u
al
In
-
line
Package
5V
0
to
33
SOT129
-
1
ROM P80C51UFBB
OTP P87C51UFBB
P80C31UFBB
40
to
+
85
,
Plastic
Q
u
ad
Flat
Pack
5V
0
to
33
SOT307
-
2
80C51/87C51 AND 80C31 ORDERING INFORMATION
DEVICE NUMBER (P87C51) OPERATING FREQUENCY, MAX (S) TEMPERATURE RANGE (B) PACKAGE (AA)
P80C51 ROM S = 16 MHz
B = 0_ to +70_C
AA = PLCC
P87C51 OTP U = 33 MHz
F = –40_C to +85_C
BB = PQFP
P80C31 ROMless PN = PDIP
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
4
BLOCK DIAGRAM
SU00845
PSEN
EAV
PP
ALE/PROG
RST
XTAL1 XTAL2
V
CC
V
SS
PORT 0
DRIVERS
PORT 2
DRIVERS
RAM ADDR
REGISTER
RAM
PORT 0
LATCH
PORT 2
LATCH
ROM/EPROM
REGISTER
B
ACC
STACK
POINTER
TMP2
TMP1
ALU
TIMING
AND
CONTROL
INSTRUCTION
REGISTER
PD
OSCILLATOR
PSW
PORT 1
LATCH
PORT 3
LATCH
PORT 1
DRIVERS
PORT 3
DRIVERS
PROGRAM
ADDRESS
REGISTER
BUFFER
PC
INCRE-
MENTER
PROGRAM
COUNTER
DPTR’S
MULTIPLE
P1.0–P1.7
P3.0–P3.7
P0.0–P0.7 P2.0–P2.7
SFRs
TIMERS
8
8 16
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
5
LOGIC SYMBOL
PORT 0
PORT 1PORT 2
PORT 3
ADDRESS AND
DATA BUS
ADDRESS BUS
T2
T2EX
RxD
TxD
INT0
INT1
T0
T1
WR
RD
SECONDARY FUNCTIONS
RST
EA/V
PP
PSEN
ALE/PROG
V
SS
V
CC
XTAL1
XTAL2
SU00830
PIN CONFIGURA TIONS
SU01063
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
T2/P1.0
T2EX/P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
RST
RxD/P3.0
TxD/P3.1
INT0
/P3.2
INT1
/P3.3
T0/P3.4
T1/P3.5
P1.7
WR
/P3.6
RD
/P3.7
XTAL2
XTAL1
V
SS
P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
PSEN
ALE
EA
/V
PP
P0.7/AD7
P0.6/AD6
P0.5/AD5
P0.4/AD4
P0.3/AD3
P0.2/AD2
P0.1/AD1
P0.0/AD0
V
CC
DUAL
IN-LINE
PACKAGE
PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS
SU01062
LCC
6140
7
17
39
29
18 28
Pin Function
1 NIC*
2 P1.0/T2
3 P1.1/T2EX
4 P1.2
5 P1.3
6 P1.4
7 P1.5
8 P1.6
9 P1.7
10 RST
11 P3.0/RxD
12 NIC*
13 P3.1/TxD
14 P3.2/INT0
15 P3.3/INT1
Pin Function
16 P3.4/T0
17 P3.5/T1
18 P3.6/WR
19 P3.7/RD
20 XTAL2
21 XTAL1
22 V
SS
23 NIC*
24 P2.0/A8
25 P2.1/A9
26 P2.2/A10
27 P2.3/A11
28 P2.4/A12
29 P2.5/A13
30 P2.6/A14
Pin Function
31 P2.7/A15
32 PSEN
33 ALE
34 NIC*
35 EA/V
PP
36 P0.7/AD7
37 P0.6/AD6
38 P0.5/AD5
39 P0.4/AD4
40 P0.3/AD3
41 P0.2/AD2
42 P0.1/AD1
43 P0.0/AD0
44 V
CC
* NO INTERNAL CONNECTION
PLASTIC QUAD FLAT PACK
PIN FUNCTIONS
SU01064
PQFP
44 34
1
11
33
23
12 22
Pin Function
1 P1.5
2 P1.6
3 P1.7
4 RST
5 P3.0/RxD
6 NIC*
7 P3.1/TxD
8 P3.2/INT0
9 P3.3/INT1
10 P3.4/T0
11 P3.5/T1
12 P3.6/WR
13 P3.7/RD
14 XTAL2
15 XTAL1
Pin Function
16 V
SS
17 NIC*
18 P2.0/A8
19 P2.1/A9
20 P2.2/A10
21 P2.3/A11
22 P2.4/A12
23 P2.5/A13
24 P2.6/A14
25 P2.7/A15
26 PSEN
27 ALE
28 NIC*
29 EA
/V
PP
30 P0.7/AD7
Pin Function
31 P0.6/AD6
32 P0.5/AD5
33 P0.4/AD4
34 P0.3/AD3
35 P0.2/AD2
36 P0.1/AD1
37 P0.0/AD0
38 V
CC
39 NIC*
40 P1.0/T2
41 P1.1/T2EX
42 P1.2
43 P1.3
44 P1.4
* NO INTERNAL CONNECTION
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
6
PIN DESCRIPTIONS
PIN NUMBER
MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION
V
SS
20 22 16 I Ground: 0V reference.
V
CC
40 44 38 I Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
P0.0–0.7 39–32 43–36 37–30 I/O Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed
low-order address and data bus during accesses to external program and data memory. In
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the
code bytes during program verification and received code bytes during EPROM
programming. External pull-ups are required during program verification.
P1.0–P1.7 1–8 2–9 40–44,
1–3
I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,
port 1 pins that are externally pulled low will source current because of the internal pull-ups.
(See DC Electrical Characteristics: I
IL
). Port 1 also receives the low-order address byte
during program memory verification. Alternate functions for Port 1 include:
1 2 40 I/O T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out).
2 3 41 I T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction control.
P2.0–P2.7 21–28 24–31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,
port 2 pins that are externally being pulled low will source current because of the internal
pull-ups. (See DC Electrical Characteristics: I
IL
). Port 2 emits the high-order address byte
during fetches from external program memory and during accesses to external data memory
that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal
pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses
(MOV @Ri), port 2 emits the contents of the P2 special function register. Some Port 2 pins
receive the high order address bits during EPROM programming and verification.
P3.0–P3.7 10–17 11,
13–19
5,
7–13
I/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,
port 3 pins that are externally being pulled low will source current because of the pull-ups.
(See DC Electrical Characteristics: I
IL
). Port 3 also serves the special features of the 80C51
family, as listed below:
10 11 5 I RxD (P3.0): Serial input port
11 13 7 O TxD (P3.1): Serial output port
12 14 8 I INT0 (P3.2): External interrupt
13 15 9 I INT1 (P3.3): External interrupt
14 16 10 I T0 (P3.4): Timer 0 external input
15 17 11 I T1 (P3.5): Timer 1 external input
16 18 12 O WR (P3.6): External data memory write strobe
17 19 13 O RD (P3.7): External data memory read strobe
RST 9 10 4 I Reset: A high on this pin for two machine cycles while the oscillator is running, resets the
device. An internal diffused resistor to V
SS
permits a power-on reset using only an external
capacitor to V
CC
.
ALE/PROG 30 33 27 O Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the
address during an access to external memory. In normal operation, ALE is emitted at a
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.
Note that one ALE pulse is skipped during each access to external data memory. This pin is
also the program pulse input (PROG
) during EPROM programming. ALE can be disabled by
setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.
PSEN 29 32 26 O Program Store Enable: The read strobe to external program memory. When the 8XC51/31
is executing code from the external program memory, PSEN is activated twice each
machine cycle, except that two PSEN activations are skipped during each access to
external data memory. PSEN is not activated during fetches from internal program memory.
EA/V
PP
31 35 29 I External Access Enable/Programming Supply Voltage: EA must be externally held low
to enable the device to fetch code from external program memory locations 0000H and
0FFFH. If EA
is held high, the device executes from internal program memory unless the
program counter contains an address greater than 0FFFH. This pin also receives the
12.75V programming supply voltage (V
PP
) during EPROM programming. If security bit 1 is
programmed, EA will be internally latched on Reset.
XTAL1 19 21 15 I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator
circuits.
XTAL2 18 20 14 O Crystal 2: Output from the inverting oscillator amplifier.
NOTE:
To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than V
CC
+ 0.5V or V
SS
– 0.5V, respectively.
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
7
Table 1. 8XC51/80C31 Special Function Registers
SYMBOL DESCRIPTION
DIRECT
ADDRESS
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB LSB
RESET
VALUE
ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H
AUXR# Auxiliary 8EH AO xxxxxxx0B
AUXR1# Auxiliary 1 A2H LPEP
2
WUPD
3
0 DPS xxx000x0B
B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H
DPTR: Data Pointer (2 bytes)
DPH Data Pointer High 83H 00H
DPL Data Pointer Low 82H 00H
AF AE AD AC AB AA A9 A8
IE* Interrupt Enable A8H EA ET2 ES ET1 EX1 ET0 EX0 0x000000B
BF BE BD BC BB BA B9 B8
IP* Interrupt Priority B8H PT2 PS PT1 PX1 PT0 PX0 xx000000B
B7 B6 B5 B4 B3 B2 B1 B0
IPH# Interrupt Priority High B7H PT2H PSH PT1H PX1H PT0H PX0H xx000000B
87 86 85 84 83 82 81 80
P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH
97 96 95 94 93 92 91 90
P1* Port 1 90H T2EX T2 FFH
A7 A6 A5 A4 A3 A2 A1 A0
P2* Port 2 A0H AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 FFH
B7 B6 B5 B4 B3 B2 B1 B0
P3* Port 3 B0H RD WR T1 T0 INT1 INT0 TxD RxD FFH
PCON#
1
Power Control 87H SMOD1 SMOD0 POF GF1 GF0 PD IDL 00xx0000B
D7 D6 D5 D4 D3 D2 D1 D0
PSW* Program Status Word D0H CY AC F0 RS1 RS0 OV P 000000x0B
RACAP2H# Timer 2 Capture High CBH 00H
RACAP2L# Timer 2 Capture Low CAH 00H
SADDR# Slave Address A9H 00H
SADEN# Slave Address Mask B9H 00H
SBUF Serial Data Buffer 99H xxxxxxxxB
9F 9E 9D 9C 9B 9A 99 98
SCON* Serial Control 98H
SM0/FE
SM1 SM2 REN TB8 RB8 TI RI 00H
SP Stack Pointer 81H 07H
8F 8E 8D 8C 8B 8A 89 88
TCON* Timer Control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H
CF CE CD CC CB CA C9 C8
T2CON* Timer 2 Control C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H
T2MOD# Timer 2 Mode Control C9H T2OE DCEN xxxxxx00B
TH0 Timer High 0 8CH 00H
TH1 Timer High 1 8DH 00H
TH2# Timer High 2 CDH 00H
TL0 Timer Low 0 8AH 00H
TL1 Timer Low 1 8BH 00H
TL2# Timer Low 2 CCH 00H
TMOD Timer Mode 89H GA TE C/T M1 M0 GATE C/T M1 M0 00H
* SFRs are bit addressable.
# SFRs are modified from or added to the 80C51 SFRs.
Reserved bits.
1. Reset value depends on reset source.
2. LPEP – Low Power EPROM operation (OTP/EPROM only)
3. Not available on 80C31.
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
8
OSCILLA T OR CHARACTERISTICS
XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier . The pins can be configured for use as an on-chip
oscillator, as shown in the logic symbol.
To drive the device from an external clock source, XTAL1 should be
driven while XTAL2 is left unconnected. There are no requirements
on the duty cycle of the external clock signal, because the input to
the internal clock circuitry is through a divide-by-two flip-flop.
However, minimum and maximum high and low times specified in
the data sheet must be observed.
Reset
A reset is accomplished by holding the RST pin high for at least two
machine cycles (24 oscillator periods), while the oscillator is running.
To insure a good power-up reset, the RST pin must be high long
enough to allow the oscillator time to start up (normally a few
milliseconds) plus two machine cycles.
Stop Clock Mode
The static design enables the clock speed to be reduced down to
0 MHz (stopped). When the oscillator is stopped, the RAM and
Special Function Registers retain their values. This mode allows
step-by-step utilization and permits reduced system power
consumption by lowering the clock frequency down to any value. For
lowest power consumption the Power Down mode is suggested.
Idle Mode
In idle mode (see Table 2), the CPU puts itself to sleep while all of
the on-chip peripherals stay active. The instruction to invoke the idle
mode is the last instruction executed in the normal operating mode
before the idle mode is activated. The CPU contents, the on-chip
RAM, and all of the special function registers remain intact during
this mode. The idle mode can be terminated either by any enabled
interrupt (at which time the process is picked up at the interrupt
service routine and continued), or by a hardware reset which starts
the processor in the same manner as a power-on reset.
Power-Down Mode
To save even more power, a Power Down mode (see Table 2) can
be invoked by software. In this mode, the oscillator is stopped and
the instruction that invoked Power Down is the last instruction
executed. The on-chip RAM and Special Function Registers retain
their values down to 2.0V and care must be taken to return V
CC
to
the minimum specified operating voltages before the Power Down
Mode is terminated.
For the 87C51 and 80C51 either a hardware reset or external
interrupt can be used to exit from Power Down. Reset redefines all
the SFRs but does not change the on-chip RAM. An external
interrupt allows both the SFRs and the on-chip RAM to retain their
values. WUPD (AUXR1.3–Wakeup from Power Down) enables or
disables the wakeup from power down with external interrupt.
Where:
WUPD = 0 Disable
WUPD = 1 Enable
To properly terminate Power Down the reset or external interrupt
should not be executed before V
CC
is restored to its normal
operating level and must be held active long enough for the
oscillator to restart and stabilize (normally less than 10ms).
With an external interrupt, INT0 or INT1 must be enabled and
configured as level-sensitive. Holding the pin low restarts the
oscillator but bringing the pin back high completes the exit. Once the
interrupt is serviced, the next instruction to be executed after RETI
will be the one following the instruction that put the device into
Power Down.
For the 80C31, wakeup from power down is always enabled.
LPEP
The eprom array contains some analog circuits that are not required
when V
CC
is less than 4V, but are required for a V
CC
greater than
4V. The LPEP bit (AUXR.4), when set, will powerdown these analog
circuits resulting in a reduced supply current. This bit should be set
ONLY for applications that operate at a V
CC
less tan 4V.
Design Consideration
When the idle mode is terminated by a hardware reset, the device
normally resumes program execution, from where it left off, up to
two machine cycles before the internal reset algorithm takes
control. On-chip hardware inhibits access to internal RAM in this
event, but access to the port pins is not inhibited. To eliminate the
possibility of an unexpected write when Idle is terminated by reset,
the instruction following the one that invokes Idle should not be
one that writes to a port pin or to external memory.
ONCE Mode
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and
debugging of systems without the device having to be removed from
the circuit. The ONCE Mode is invoked by:
1. Pull ALE low while the device is in reset and PSEN
is high;
2. Hold ALE low as RST is deactivated.
While the device is in ONCE Mode, the Port 0 pins go into a float
state, and the other port pins and ALE and PSEN
are weakly pulled
high. The oscillator circuit remains active. While the 8XC51/31 is in
this mode, an emulator or test CPU can be used to drive the circuit.
Normal operation is restored when a normal reset is applied.
Table 2. External Pin Status During Idle and Power-Down Modes
MODE PROGRAM MEMORY ALE PSEN PORT 0 PORT 1 PORT 2 PORT 3
Idle Internal 1 1 Data Data Data Data
Idle External 1 1 Float Data Address Data
Power-down Internal 0 0 Data Data Data Data
Power-down External 0 0 Float Data Data Data
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
9
Programmable Clock-Out
A 50% duty cycle clock can be programmed to come out on P1.0.
This pin, besides being a regular I/O pin, has two alternate
functions. It can be programmed:
1. to input the external clock for Timer/Counter 2, or
2. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a
16MHz operating frequency.
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit
TR2 (T2CON.2) also must be set to start the timer.
The Clock-Out frequency depends on the oscillator frequency and
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)
as shown in this equation:
Oscillator Frequency
4 (65536 * RCAP2H, RCAP2L)
Where:
(RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L
taken as a 16-bit unsigned integer.
In the Clock-Out mode Timer 2 roll-overs will not generate an
interrupt. This is similar to when it is used as a baud-rate generator.
It is possible to use Timer 2 as a baud-rate generator and a clock
generator simultaneously. Note, however, that the baud-rate and the
Clock-Out frequency will be the same.
TIMER 2 OPERATION
Timer 2
Timer 2 is a 16-bit Timer/Counter which can operate as either an
event timer or an event counter, as selected by C/T
2* in the special
function register T2CON (see Figure 1). Timer 2 has three operating
modes:Capture, Auto-reload (up or down counting) ,and Baud Rate
Generator, which are selected by bits in the T2CON as shown in
Table 3.
Capture Mode
In the capture mode there are two options which are selected by bit
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or
counter (as selected by C/T2* in T2CON) which, upon overflowing
sets bit TF2, the timer 2 overflow bit. This bit can be used to
generate an interrupt (by enabling the Timer 2 interrupt bit in the
IE register). If EXEN2= 1, Timer 2 operates as described above, but
with the added feature that a 1- to -0 transition at external input
T2EX causes the current value in the Timer 2 registers, TL2 and
TH2, to be captured into registers RCAP2L and RCAP2H,
respectively. In addition, the transition at T2EX causes bit EXF2 in
T2CON to be set, and EXF2 like TF2 can generate an interrupt
(which vectors to the same location as Timer 2 overflow interrupt.
The Timer 2 interrupt service routine can interrogate TF2 and EXF2
to determine which event caused the interrupt). The capture mode is
illustrated in Figure 2 (There is no reload value for TL2 and TH2 in
this mode. Even when a capture event occurs from T2EX, the
counter keeps on counting T2EX pin transitions or osc/12 pulses.).
Auto-Reload Mode (Up or Down Counter)
In the 16-bit auto-reload mode, Timer 2 can be configured (as either
a timer or counter (C/T2* in T2CON)) then programmed to count up
or down. The counting direction is determined by bit DCEN(Down
Counter Enable) which is located in the T2MOD register (see
Figure 3). When reset is applied the DCEN=0 which means Timer 2
will default to counting up. If DCEN bit is set, Timer 2 can count up
or down depending on the value of the T2EX pin.
Figure 4 shows Timer 2 which will count up automatically since
DCEN=0. In this mode there are two options selected by bit EXEN2
in T2CON register. If EXEN2=0, then T imer 2 counts up to 0FFFFH
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L
and RCAP2H. The values in RCAP2L and RCAP2H are preset by
software means.
If EXEN2=1, then a 16-bit reload can be triggered either by an
overflow or by a 1-to-0 transition at input T2EX. This transition also
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be
generated when either TF2 or EXF2 are 1.
In Figure 5 DCEN=1 which enables Timer 2 to count up or down.
This mode allows pin T2EX to control the direction of count. When a
logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will
overflow at 0FFFFH and set the TF2 flag, which can then generate
an interrupt, if the interrupt is enabled. This timer overflow also
causes the 16–bit value in RCAP2L and RCAP2H to be reloaded
into the timer registers TL2 and TH2.
When a logic 0 is applied at pin T2EX this causes Timer 2 to count
down. The timer will underflow when TL2 and TH2 become equal to
the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets
the TF2 flag and causes 0FFFFH to be reloaded into the timer
registers TL2 and TH2.
The external flag EXF2 toggles when Timer 2 underflows or
overflows. This EXF2 bit can be used as a 17th bit of resolution if
needed. The EXF2 flag does not generate an interrupt in this mode
of operation.
Table 3. Timer 2 Operating Modes
RCLK + TCLK CP/RL2 TR2 MODE
0 0 1 16-bit Auto-reload
0 1 1 16-bit Capture
1 X 1 Baud rate generator
X X 0 (off)
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
10
(MSB) (LSB)
Symbol Position Name and Significance
TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set
when either RCLK or TCLK = 1.
EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2
interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down
counter mode (DCEN = 1).
RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to
ignore events at T2EX.
TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.
C/T2
T2CON.1 Timer or counter select. (Timer 2)
0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).
CP/RL2
T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload
on Timer 2 overflow .
TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2
CP/RL2
SU00728
Figure 1. Timer/Counter 2 (T2CON) Control Register
OSC
÷ 12
C/T2 = 0
C/T2
= 1
TR2
Control
TL2
(8-bits)
TH2
(8-bits)
TF2
RCAP2L RCAP2H
EXEN2
Control
EXF2
Timer 2
Interrupt
T2EX Pin
Transition
Detector
T2 Pin
Capture
SU00066
Figure 2. Timer 2 in Capture Mode
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
11
Not Bit Addressable
Symbol Function
Not implemented, reserved for future use.*
T2OE Timer 2 Output Enable bit.
DCEN Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.
T2OE DCEN
SU00729
76543210
* User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is
indeterminate.
Bit
T2MOD Address = 0C9H Reset Value = XXXX XX00B
Figure 3. Timer 2 Mode (T2MOD) Control Register
OSC
÷ 12
C/T2 = 0
C/T2
= 1
TR2
CONTROL
TL2
(8-BITS)
TH2
(8-BITS)
TF2
RCAP2L RCAP2H
EXEN2
CONTROL
EXF2
TIMER 2
INTERRUPT
T2EX PIN
TRANSITION
DETECTOR
T2 PIN
RELOAD
SU00067
Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)
Philips Semiconductors Product specification
80C51/87C51/80C31
80C51 8-bit microcontroller family
4K/128 OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
2000 Jan 20
12
÷12
C/T2 = 0
C/T2
= 1
TL2 TH2
TR2
CONTROL
T2 PIN
SU00730
FFH FFH
RCAP2L RCAP2H
(UP COUNTING RELOAD VALUE) T2EX PIN
TF2
INTERRUPT
COUNT
DIRECTION
1 = UP
0 = DOWN
EXF2
OVERFLOW
(DOWN COUNTING RELOAD VALUE)
TOGGLE
OSC
Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)
OSC
÷ 2
C/T2 = 0
C/T2
= 1
TR2
Control
TL2
(8-bits)
TH2
(8-bits)
÷ 16
RCAP2L RCAP2H
EXEN2
Control
EXF2
Timer 2
Interrupt
T2EX Pin
Transition
Detector
T2 Pin
Reload
NOTE: OSC. Freq. is divided by 2, not 12.
÷ 2
“0” “1”
RX Clock
÷ 16 TX Clock
“0”“1”
“0”“1”
Timer 1
Overflow
Note availability of additional external interrupt.
SMOD
RCLK
TCLK
SU00068
Figure 6. Timer 2 in Baud Rate Generator Mode
Loading...
+ 26 hidden pages