ST STM32F215RG, STM32F215VG, STM32F215ZG, STM32F215RE, STM32F215VE User Manual

...
0 (0)

STM32F215xx

STM32F217xx

ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, crypto, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Features

Core: ARM 32-bit Cortex™-M3 CPU with Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution performance from Flash memory, frequency up to 120 MHz, memory protection unit,

150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)

Memories

Up to 1 Mbyte of Flash memory

512 bytes of OTP memory

Up to 128 + 4 Kbytes of SRAM

Flexible static memory controller that supports Compact Flash, SRAM, PSRAM, NOR and NAND memories

LCD parallel interface, 8080/6800 modes

Clock, reset and supply management

From 1.8 to 3.6 V application supply and I/Os

POR, PDR, PVD and BOR

4 to 26 MHz crystal oscillator

Internal 16 MHz factory-trimmed RC (1% accuracy at 25 °C)

32 kHz oscillator for RTC with calibration

Internal 32 kHz RC with calibration

Low power

Sleep, Stop and Standby modes

VBAT supply for RTC, 20 × 32 bit backup registers, and optional 4 KB backup SRAM

3 × 12-bit, 0.5 µs A/D converters

up to 24 channels

up to 6 MSPS in triple interleaved mode

2 × 12-bit D/A converters

General-purpose DMA

16-stream DMA controller with centralized FIFOs and burst support

Up to 17 timers

Up to twelve 16-bit and two 32-bit timers, up to 120 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input

Debug mode

Serial wire debug (SWD) & JTAG interfaces

Cortex-M3 Embedded Trace Macrocell™

Datasheet production data

 

 

FBGA

LQFP64 (10 × 10 mm)

 

 

 

 

UFBGA176

LQFP100 (14 × 14 mm)

 

LQFP144 (20 × 20 mm)

(10 × 10 mm)

LQFP176 (24 × 24 mm)(1)

 

 

 

Up to 140 I/O ports with interrupt capability:

Up to 136 fast I/Os up to 60 MHz

Up to 138 5 V-tolerant I/Os

Up to 15 communication interfaces

Up to 3 × I2C interfaces (SMBus/PMBus)

Up to 4 USARTs and 2 UARTs (7.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control)

Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S to achieve audio class accuracy via audio PLL or external PLL

2 × CAN interfaces (2.0B Active)

SDIO interface

Advanced connectivity

USB 2.0 full-speed device/host/OTG controller with on-chip PHY

USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI

10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII

8- to 14-bit parallel camera interface: up to 48 Mbyte/s

Cryptographic acceleration

Hardware acceleration for AES 128, 192, 256, Triple DES, HASH (MD5, SHA-1)

Analog true random number generator

CRC calculation unit

96-bit unique ID

Analog true random number generator

Table 1. Device summary

Reference

Part number

STM32F215RG, STM32F215VG, STM32F215xx STM32F215ZG, STM32F215RE,

STM32F215VE, STM32F215ZE

STM32F217VG, STM32F217IG, STM32F217xx STM32F217ZG, STM32F217VE,

STM32F217IE, STM32F217ZE

April 2012

Doc ID 17050 Rev 7

1/168

This is information on a product in full production.

www.st.com

Contents

STM32F21xxx

 

 

Contents

1

Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

2

Description . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.1

Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

2.2

Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

 

2.2.1

ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . .

17

 

 

2.2.2

Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . .

17

 

 

2.2.3

Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

 

2.2.4

Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

 

2.2.5

CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . .

18

 

 

2.2.6

Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

 

2.2.7

Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

 

2.2.8

DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

2.2.9

Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

2.2.10

Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . .

20

 

 

2.2.11

External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . .

20

 

 

2.2.12

Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

 

2.2.13

Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

 

2.2.14

Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

 

2.2.15

Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

 

2.2.16

Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

 

2.2.17

Real-time clock (RTC), backup SRAM and backup registers . . . . . . . .

23

 

 

2.2.18

Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

 

2.2.19

VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

 

2.2.20

Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

 

2.2.21

Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

 

2.2.22

Universal synchronous/asynchronous receiver transmitters

 

 

 

 

(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

 

2.2.23

Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

 

2.2.24

Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

 

2.2.25

SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

2.2.26Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 29

2.2.27

Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

2.2.28

Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . .

30

2/168

Doc ID 17050 Rev 7

STM32F21xxx

Contents

 

 

2.2.29 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 30 2.2.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.32 Cryptographic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.33 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.34 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.35 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.36 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.37 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.38 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.39 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3

Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

4

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

5

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

 

5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

5.3

Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

62

 

5.3.1

General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

62

 

5.3.2

VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

 

5.3.3

Operating conditions at power-up / power-down (regulator ON) . . . . . .

66

5.3.4Operating conditions at power-up / power-down (regulator OFF) . . . . . 66

5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 67 5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Doc ID 17050 Rev 7

3/168

Contents

STM32F21xxx

 

 

5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 88 5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 93 5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.24 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 140 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 140 5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6

Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

 

6.1

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

 

6.2

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

148

7

Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149

Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150

 

A.1

Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150

 

A.2

Application example with regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . .

151

 

A.3

USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . .

151

 

A.4

USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . .

153

 

A.5

Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

154

 

A.6

Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

8

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

159

4/168

Doc ID 17050 Rev 7

STM32F21xxx

List of tables

 

 

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F215xx and STM32F217xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 12 Table 3. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 4. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 5. STM32F21x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 6. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 7. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 8. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 9. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 10. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 11. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 12. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 63 Table 13. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 14. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 66 Table 15. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 66 Table 16. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 17. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 18. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 70 Table 19. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 20. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 21. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 76

Table 22. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 76 Table 23. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 24. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 25. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 26. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 27. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 28. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 29. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 30. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 31. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 32. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 33. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 34. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 35. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 36. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 37. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 38. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 39. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 40. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 41. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 42. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 43. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 44. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 45. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 46. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Doc ID 17050 Rev 7

5/168

List of tables

STM32F21xxx

 

 

Table 47. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 48. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 49. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 50. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 51. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 52. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 53. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 54. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 55. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 56. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 57. Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 58. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 59. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 60. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 61. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 62. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 63. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 64. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 65. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 66. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Table 67. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 68. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Table 69. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 123 Table 70. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 124 Table 71. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 72. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 73. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 74. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 75. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 76. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 77. Switching characteristics for PC Card/CF read and write cycles in

attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 78. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 137 Table 79. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Table 80. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 81. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 82. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Table 83. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Table 84. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 143 Table 85. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 144 Table 86. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data. . . . . . . . 145 Table 87. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data . 146 Table 88. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 147 Table 89. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 90. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table 91. Main applications versus package for STM32F2xxx microcontrollers . . . . . . . . . . . . . . . 150 Table 92. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6/168

Doc ID 17050 Rev 7

STM32F21xxx

List of figures

 

 

List of figures

Figure 1.

Compatible board design between STM32F10xx and STM32F2xx

 

 

for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

Figure 2.

Compatible board design between STM32F10xx and STM32F2xx

 

 

for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

Figure 3.

Compatible board design between STM32F10xx and STM32F2xx

 

 

for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

Figure 4.

Compatible board design between STM32F10xx and STM32F2xx

 

 

for LQFP176 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

Figure 5.

STM32F21x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

Figure 6.

Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Figure 7.

Startup in regulator OFF: slow VDD slope

 

 

- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . .

22

Figure 8.

Startup in regulator OFF: fast VDD slope

 

 

- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . .

23

Figure 9.

STM32F21x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

Figure 10.

STM32F21x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

Figure 11.

STM32F21x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

Figure 12.

STM32F21x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

Figure 13.

STM32F21x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

Figure 14.

Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

Figure 15.

Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

Figure 16.

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

Figure 17.

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

Figure 18.

Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

Figure 19.

Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

Figure 20.

External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

Figure 21.

Typical current consumption vs temperature, Run mode, code with data

 

 

processing running from RAM, and peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

Figure 22.

Typical current consumption vs temperature, Run mode, code with data

 

 

processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

Figure 23.

Typical current consumption vs temperature, Run mode, code with data

 

 

processing running from Flash, ART accelerator OFF, peripherals ON . . . . . . . . . . . . . . .

72

Figure 24.

Typical current consumption vs temperature, Run mode, code with data

 

 

processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . .

72

Figure 25.

Typical current consumption vs temperature in Sleep mode,

 

 

peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

74

Figure 26.

Typical current consumption vs temperature in Sleep mode,

 

 

peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

74

Figure 27.

Typical current consumption vs temperature in Stop mode . . . . . . . . . . . . . . . . . . . . . . . .

75

Figure 28.

High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81

Figure 29.

Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81

Figure 30.

Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

Figure 31.

Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

83

Figure 32.

ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

Figure 33.

ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

85

Figure 34.

PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

Figure 35.

PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

Figure 36.

I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

Doc ID 17050 Rev 7

7/168

List of figures

STM32F21xxx

Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

. 99

Figure 38. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

103

Figure 39. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

105

Figure 40. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

105

Figure 41. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

106

Figure 42. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

108

Figure 43. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

108

Figure 44. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . .

. . . . . . . .

110

Figure 45. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

111

Figure 46. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

112

Figure 47. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

112

Figure 48. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

113

Figure 49. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

116

Figure 50. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

117

Figure 51. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . .

. . . . . . . .

118

Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . .

. . . . . . . .

118

Figure 53. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

121

Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . .

. . . . . . . .

123

Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . .

. . . . . . . .

124

Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . .

. . . . . . . .

125

Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . .

. . . . . . . .

126

Figure 58. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . .

. . . . . . . .

127

Figure 59. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

129

Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . .

. . . . . . . .

130

Figure 61. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

131

Figure 62. PC Card/CompactFlash controller waveforms for common memory read access . . . . . .

132

Figure 63. PC Card/CompactFlash controller waveforms for common memory write access . . . . . .

133

Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read

 

 

 

access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

134

Figure 65. PC Card/CompactFlash controller waveforms for attribute memory write

 

 

 

access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

135

Figure 66. PC Card/CompactFlash controller waveforms for I/O space read access . . . .

. . . . . . . .

135

Figure 67. PC Card/CompactFlash controller waveforms for I/O space write access . . . .

. . . . . . . .

136

Figure 68. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

138

Figure 69. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

138

Figure 70. NAND controller waveforms for common memory read access . . . . . . . . . . . .

. . . . . . . .

139

Figure 71. NAND controller waveforms for common memory write access. . . . . . . . . . . .

. . . . . . . .

139

Figure 72. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

140

Figure 73. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

141

Figure 74. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . .

. . . . . . . .

143

Figure 75.

Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

143

Figure 76. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . .

. . . . . . . .

144

Figure 77.

Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

144

Figure 78. LQFP144, 20 x 20 mm, 144-pin low-profile quad

 

 

 

flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

145

Figure 79.

Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

145

Figure 80. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . .

146

Figure 81. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline . 147

Figure 82. Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

151

Figure 83. USB OTG FS (full speed) device-only connection . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

151

Figure 84. USB OTG FS (full speed) host-only connection . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

152

Figure 85.

OTG FS (full speed) connection dual-role with internal PHY . . . . . . . . . . . . . .

. . . . . . . .

152

8/168

Doc ID 17050 Rev 7

STM32F21xxx

List of figures

Figure 86. OTG HS (high speed) device connection, host and dual-role

 

 

in high-speed mode with external PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 153

Figure 87. Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 154

Figure 88. Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 154

Figure 89. Audio player solution using PLL, PLLI2S, USB and 1 crystal . . . . . . . . . . . . . .

. . . . . . . . 155

Figure 90. Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 155

Figure 91. Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . .

. . . . . . . . 156

Figure 92.

Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . .

. . . . . . . . 156

Figure 93.

MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 157

Figure 94.

RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 157

Figure 95.

RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 158

Doc ID 17050 Rev 7

9/168

Introduction

STM32F21xxx

 

 

1 Introduction

This datasheet provides the description of the STM32F215xx and STM32F217xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1: Full compatibility throughout the family.

The STM32F215xx and STM32F217xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F21x devices throughout the document.

For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).

The reference and Flash programming manuals are both available from the

STMicroelectronics website www.st.com.

For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

10/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

2 Description

The STM32F21x family is based on the high-performance ARM® Cortex™-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator™) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), a cryptographic acceleration cell, and a camera interface for CMOS sensors. The devices also feature standard peripherals.

Up to three I2Cs

Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.

4 USARTs and 2 UARTs

A USB OTG full-speed with high-speed capability (with the ULPI)

A second USB OTG (full-speed)

Two CANs

An SDIO interface

Ethernet and camera interface available on STM32F217xx devices only.

The STM32F215xx and STM32F217xx devices operate in the –40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply.A comprehensive set of power-saving modes allow the design of low-power applications.

STM32F215xx and STM32F217xx devices are offered in four packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.These features make the STM32F215xx and STM32F217xx microcontroller family suitable for a wide range of applications:

Motor drive and application control

Medical equipment

Industrial applications: PLC, inverters, circuit breakers

Printers, and scanners

Alarm systems, video intercom, and HVAC

Home audio appliances

Figure 5 shows the general block diagram of the device family.

Doc ID 17050 Rev 7

11/168

12/168

7 Rev 17050 ID Doc

Table 2.

STM32F215xx and STM32F217xx: features and peripheral counts

 

 

 

 

 

 

 

 

 

 

 

Peripherals

STM32F215Rx

STM32F215Vx

STM32F215Zx

 

STM32F217Vx

STM32F217Zx

STM32F217Ix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flash memory in Kbytes

512

 

1024

512

 

1024

512

 

1024

 

512

 

1024

512

 

1024

512

 

1024

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM in Kbytes

 

System

 

 

 

 

 

 

 

 

 

128(112+16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Backup

 

4

 

4

 

4

 

 

4

 

4

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSMC memory controller

 

No

 

 

 

 

 

 

 

 

 

Yes(1)

 

 

 

 

 

 

Ethernet(2)

 

 

 

 

 

 

No

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

General-purpose

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timers

 

Advanced-control

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random number generator

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI / (I2S)

 

 

 

 

 

 

 

 

 

3 (2)(3)

 

 

 

 

 

 

 

 

 

 

I2C

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

USARTUART

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

Communication

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

interfaces

 

USB OTG FS

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USB OTG HS

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Camera interface(2)

 

 

 

 

No

 

 

 

 

 

 

 

 

 

Yes

 

 

 

Encryption

 

 

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GPIOs

 

 

 

51

 

82

 

114

 

 

82

 

114

 

140

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDIO

 

 

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12-bit ADC

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of channels

 

16

 

16

 

24

 

 

16

 

24

 

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12-bit DAC

 

 

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

Number of channels

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

Maximum CPU frequency

 

 

 

 

 

 

 

 

 

120 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating voltage

 

 

 

 

 

 

 

 

 

 

 

1.8 V to 3.6 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating temperatures

 

 

 

 

 

 

Ambient temperatures: –40 to +85 °C /–40 to +105 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Junction temperature: –40 to + 125 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package

 

 

 

LQFP64

LQFP100

LQFP144

 

LQFP100

LQFP144

UFBGA176, LQFP176

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16or 8- bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2.Camera interface and Ethernet are available only in STM32F217x devices.

3.The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

Description

STM32F21xxx

STM32F21xxx

Description

 

 

2.1Full compatibility throughout the family

The STM32F215xx and STM32F217xx constitute the STM32F21x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle.

The STM32F215xx and STM32F217xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F215xx and STM32F217xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F21x family remains simple as only a few pins are impacted.

Figure 3, Figure 4, and Figure 1 provide compatible board designs between the STM32F21x and the STM32F10xxx family.

Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

48

 

VSS

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

47

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 Ω resistor or soldering bridge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

present for the STM32F10xx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

configuration, not present in the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STM32F2xx configuration

64

 

 

 

 

 

 

 

17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ai15962b

Doc ID 17050 Rev 7

13/168

6$$633

Description

STM32F21xxx

 

 

Figure 2. Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

633

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

633

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

633 Ω RESISTORIOR SOLDERINGNBRIDGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRESENTSFOR THE 34- & XX

 

 

2&5

 

 

 

 

 

 

 

 

 

 

 

 

 

CONFIGURATION NOT PRESENT IN THE

 

 

 

 

 

 

 

 

 

 

 

 

 

34- & XX CONFIGURATIONI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

633

6$$ 633

4WOO Ω RESISTORSSCONNECTED TO

633 FOR THE 34- & XX6$$ 633 OR .#RFOR THE 34- & XX

633 FOR 34- & XX 6$$ FOR 34- & XX

AI C

Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

 

 

 

 

633

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

633

 

 

 

 

 

 

633

 

 

 

 

 

 

Ω RESISTORIOR SOLDERINGNBRIDGE

 

 

 

 

 

 

PRESENTSFOR THE 34- & XX

 

 

2&5

 

 

 

CONFIGURATION NOT PRESENT IN THE

 

 

 

 

 

34- & XX CONFIGURATIONI

 

 

 

 

 

 

 

 

 

 

 

 

6$$

6

 

 

 

633

 

 

33

 

 

 

 

 

 

4WOO Ω RESISTORSSCONNECTED TO

6$$

633

 

 

 

633 FOR THE 34- & XX

 

 

 

6$$ 633 OR .#RFOR THE 34- & XX

 

 

 

 

 

 

 

 

 

AI C

1. RFU = reserved for future use.

14/168

Doc ID 17050 Rev 7

STM32F21xxx

 

Description

 

 

 

 

 

Figure 4. Compatible board design between STM32F10xx and STM32F2xx

 

for LQFP176 package

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2&5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6$$ 633

4WOO Ω RESISTORSSCONNECTED TO633 FOR THE 34- & XX6$$ 633 OR .#RFOR THE 34- & XX

-3 6

1. RFU = reserved for future use.

Doc ID 17050 Rev 7

15/168

ST STM32F215RG, STM32F215VG, STM32F215ZG, STM32F215RE, STM32F215VE User Manual

Description

STM32F21xxx

 

 

2.2Device overview

Figure 5. STM32F21x block diagram

.*4234 *4$) )

 

 

 

 

 

 

 

%XTERNAL MEMORY

 

 

 

 

#,+ .%.; = !; =

 

 

 

 

 

 

 

 

 

 

 

$; = /%. 7%.

*4#+ 37#,+

*4!' 37

 

 

-05

 

CONTROLLERL &3-#

 

 

 

 

 

 

 

 

 

 

 

.",; = ., =.2%'

*4$/ 37$ *4$/

 

%4-

 

 

.6)#

 

32!- !032!- ./2 &LASH

 

 

 

 

42!#%#,+

 

 

 

 

 

 

 

 

.7!)4 )/2$9 #$

 

 

 

 

 

 

 

0# #ARD# !4! .!.$ &LASH

&)&/&)&/

 

 

 

 

 

 

 

 

 

 

 

 

 

.)/2$ $)/72 )).4; =

42!#%$; =

!2-2#ORTEX -

 

 

 

 

 

 

 

 

 

 

4$%3 !%3

 

 

 

 

 

 

 

).4. 4.))3 AS !&

 

 

-(Z

 

) "53

 

!##%, #!#(%

&LASH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-

 

 

 

 

 

 

!244ACCELERATOR $ "53

-BYTE

 

(!3(

 

 

 

 

 

 

 

 

3 "53

 

 

 

 

 

 

 

-)) OR 2-)) AS !&

%THERNET -!#

$-!

!(" MATRIXBUS

 

 

 

 

 

 

2.'

 

 

 

32!-- +"

 

&)&/ &)&/

#AMERA

 

(39.# 639.#

-$)/ AS !&

 

 

 

&)&/

 

 

 

 

 

 

 

 

 

 

 

INTERFACE

0)8#,+ $; =

 

 

 

 

 

 

 

 

 

 

 

 

$0 $-

0(9

 

53"

 

$-!

32!- +"

 

 

 

 

 

 

 

 

 

5,0) #+ $ $)2 340 .84

/4' (3

 

&)&/

 

 

 

 

 

53"

0(9

$0

3#, 3$! ).4. )$ )6"53 3/&

 

 

 

 

 

!(" -(Z

 

 

$-

 

 

 

 

 

 

 

/4'4&3

 

 

 

 

 

3TREAMS

 

 

 

 

$-!

 

 

 

 

 

 

3#, ,3$! ).4. )$ )6"53 3/&

 

 

 

 

&)&/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-(Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$-!

 

3TREAMS

 

 

 

 

 

 

 

0OWER MANAGMT

 

 

 

 

 

&)&/

 

 

 

 

 

 

6$$

6$$ TO 6

 

 

 

 

 

 

 

 

 

 

6OLTAGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGULATOR

 

633

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 TO 6

 

 

 

 

 

 

 

 

 

 

 

 

6$$!

 

6$$

 

 

6#!0 6#!0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0!; =

 

'0)/ 0/24 !

 

 

 

 

 

2# (3

/20

3UPPLY

 

 

 

 

 

 

 

 

SUPERVISION

 

 

 

 

 

 

 

 

2ESET

 

 

 

 

 

 

 

 

 

 

 

 

 

2# ,3

0/2 0$2

 

 

 

 

 

 

 

 

 

 

 

 

 

)NT

6$$! 633!

0"; =

 

'0)/ 0/24 "

 

 

 

 

 

 

"/2

 

 

 

 

 

 

 

0,,

 

 

.234

 

 

 

 

 

 

 

 

 

 

 

 

 

06$

 

0#; =

 

'0)/ 0/24 #

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6$$! 6$$

 

0$; =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'0)/ 0/24 $

 

 

 

 

 

 

 

84!, /3##

/3#?).

0%; =

 

 

 

 

 

 

 

 

 

 

 

 

 

-(Z

/3#?/54

 

'0)/ 0/24 %

 

 

 

 

 

 

 

)7$'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!'4

 

 

 

 

 

0&; =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'0)/ 0/24 &

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3TANDBY

 

 

6"!4 TO T6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0'; =

 

 

 

 

 

 

 

 

 

 

 

 

INTERFACE

 

 

 

'0)/ 0/24 '

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6"!4

 

 

 

 

 

 

 

0#,+X

 

 

 

/3# ?).

0(; =

 

'0)/ 0/24 (

 

 

 

 

 

 

84!, K(Z

 

 

 

 

 

 

,3

/3# ?/54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24#

 

 

0); =

 

'0)/ 0/24 )

 

 

 

 

 

 

 

 

 

24#?!&

 

 

 

 

 

 

 

 

 

!75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,3

"ACKUP REGISTER

24#?!&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+" "+302!-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4)- B

 

CHANNELS %422AS !&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4)- B

 

CHANNELS %422AS !&

 

 

 

 

 

 

 

 

 

 

 

-!

 

 

4)- B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHANNELS %422AS !&

 

 

 

 

 

 

 

 

!(" !0"

 

!(" !0"

 

 

4)- B

 

CHANNELS

!&

%84 )4 7+50

 

 

 

 

 

 

(Z

 

4)- B

CHANNELS AS !&

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

$; =

3$)/ --#

 

&)&/

 

 

 

 

 

!0"

 

4)-

B

CHANNEL ASA!&

#-$ #+ AS !&

 

 

 

 

 

 

 

 

 

 

 

COMPL CHANNELS 4)- ?#(; =.

 

 

 

 

 

 

 

 

 

 

 

4)-

B

CHANNEL ASA!&

CHANNELS 4)- ?#(; = %42

 

4)- 07-

B

 

 

 

 

 

 

 

 

 

"+). AS.!&

 

 

 

 

 

 

 

 

 

 

 

SMCARD

 

 

 

 

 

 

 

 

 

 

 

 

 

53!24

28 48 #+

COMPL CHANNELS 4)- ?#(; =.

 

4)- 07-

B

 

 

 

 

 

 

CHANNELS 4)- ?#(; = %42

 

 

 

 

77$'

 

 

 

 

IR$!

#43 243 AS !&

"+). AS.!&

 

 

 

 

 

 

 

 

 

 

 

53!24

SMCARD

28 48 #+

 

4)-

B

 

 

 

 

 

 

 

 

CHANNELS ASA!&

 

 

 

 

 

 

 

 

 

 

 

 

IR$!

#43 243 AS !&

CHANNELAAS !&

 

4)- B

 

 

 

 

 

 

 

 

 

5!24

 

28 48 AS !&

CHANNELAAS !&

 

4)-

B

 

 

 

 

 

 

 

(Z

 

5!24

 

28 48 AS !&

28 48 #+

SMCARD

53!24

 

-(Z

 

 

 

B

-

 

30) ) 3

 

-/3) $/54 -)3/ $). 3#+ #+

 

 

 

4)-

 

 

.33 73 -#+ AS !&

#43 243 ASA!&

IR$!

 

 

 

 

(Z

 

 

 

!0"

 

 

 

 

-/3) $/54 -)3/ $). 3#+ #+

 

SMCARD

 

 

 

 

 

 

 

 

 

30) ) 3

 

28 48 #+

53!24

 

-

 

 

 

B

 

 

 

 

 

4)-

 

 

.33 73 -#+ AS !&

#43 243 ASS!&

IR$!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!0"

 

 

 

 

) # 3-"53

 

3#, 3$! 3-"! AS !&

-/3) -)3/

 

 

30)

 

 

 

!0"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3#+ .33 ASS!&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6$$!

 

 

 

 

 

 

 

 

 

) # 3-"53

 

3#, 3$! 3-"! AS !&

6$$2%&?!$#

53!24 -"PS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4EMPERATUREUSENSOR

 

 

 

 

 

 

) # 3-"53

 

3#, 3$! 3-"! AS !&

ANALOG INPUTS COMMON

 

 

 

 

 

 

 

 

6$$!

 

 

 

 

!$#

 

 

 

 

 

 

 

 

 

 

 

 

TO THE !$#S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$!#

 

 

 

 

 

 

 

ANALOG INPUTSGCOMMON

 

!$#

 

 

 

 

)4&

 

 

BX#!.

&)&/

48 28

TO THE !$# #

 

)&

 

 

 

 

 

 

 

!$#

 

$!#

 

 

 

 

 

 

ANALOG INPUTSGTO !$#

 

 

 

 

 

 

 

 

BX#!.

 

 

 

 

 

 

 

 

 

 

 

 

48 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$!# ?/54 $!# ?/54

 

 

 

 

 

AI C

 

 

 

 

 

 

 

 

AS !&

 

AS !&

 

 

 

 

 

 

1.The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 60 MHz.

2.USB OTG FS, Camera interface and Ethernet are available only in STM32F217xx devices.

16/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

2.2.1ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

With its embedded ARM core, the STM32F21x family is compatible with all ARM tools and software.

Figure 5 shows the general block diagram of the STM32F21x family.

2.2.2Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M3 processors. It balances the inherent performance advantage of the ARM Cortex-M3 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher operating frequencies.

To release the processor full 150 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz.

2.2.3Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can

dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.4Embedded Flash memory

The STM32F21x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.

The devices also feature 512 bytes of OTP memory that can be used to store critical user data such as Ethernet MAC addresses or cryptographic keys.

Doc ID 17050 Rev 7

17/168

Description

STM32F21xxx

 

 

2.2.5CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.6Embedded SRAM

All STM32F21x products embed:

Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0 wait states

4 Kbytes of backup SRAM.

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.2.7Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 6. Multi-AHB matrix

 

 

 

 

!2-

 

 

 

 

 

 

 

 

'0

 

 

 

 

 

 

 

 

#ORTEX -

 

 

$-!

 

 

)BUS

 

$BUS

 

3BUS

 

$-!?0

!?-%-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

3

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

"USUMATRIX 3

'0

-!#

53"3/4'

$-!

%THERNET

(3

$-!?-%-

$-!?0

%4(%2.%4?-

53"?(3?-

3

3

3

3

 

 

 

- )#/$%

 

 

 

- $#/$%

 

 

 

-

 

 

 

-

 

 

 

-

 

 

 

-

 

 

 

-

!24

!##%,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&LASH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32!-

 

 

 

 

 

 

+BYTE

 

 

 

 

 

 

 

 

 

 

 

 

 

32!-

 

 

 

 

 

 

 

+BYTE

 

 

 

!0"

 

!("

 

 

 

 

 

 

 

PERIPHP

 

 

 

 

 

 

 

 

 

 

!0"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!("

 

 

 

 

 

 

 

 

 

 

 

 

PERIPHP

 

 

 

 

&3-# 3TATIC -EM#TL

AI B

18/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

2.2.8DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

SPI and I2S

I2C

USART and UART

General-purpose, basic and advanced-control timers TIMx

DAC

SDIO

Cryptographic acceleration

Camera interface (DCMI)

ADC.

2.2.9Flexible static memory controller (FSMC)

The FSMC is embedded in all STM32F21x devices. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

Write FIFO

Code execution from external memory except for NAND Flash and PC Card

Maximum frequency (fHCLK) for external access is 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

Doc ID 17050 Rev 7

19/168

Description

STM32F21xxx

 

 

2.2.10Nested vectored interrupt controller (NVIC)

The STM32F21x devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M3.

The NVIC main features are the following:

Closely coupled NVIC gives low-latency interrupt processing

Interrupt entry vector table address passed directly to the core

Closely coupled NVIC core interface

Allows early processing of interrupts

Processing of late arriving, higher-priority interrupts

Support tail chaining

Processor state automatically saved

Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.2.11External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

2.2.12Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The

16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is

60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

20/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

2.2.13Boot modes

At startup, boot pins are used to select one out of three boot options:

Boot from user Flash

Boot from system memory

Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

2.2.14Power supply schemes

VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins.

VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.

VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and backup registers (through power switch) when VDD is not present.

Refer to Figure 17: Power supply scheme for more details.

2.2.15Power supply supervisor

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit.

The devices also feature an embedded programmable voltage detector (PVD) that monitors

the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher

than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.16Voltage regulator

The regulator has four operating modes:

Regulator ON

Main regulator mode (MR)

Low power regulator (LPR)

Power-down

Regulator OFF

Regulator OFF/internal reset ON

Doc ID 17050 Rev 7

21/168

Description

STM32F21xxx

 

 

Regulator ON

The regulator ON modes are activated by default on LQFP packages. On UFBGA176 package, they are activated by connecting REGOFF to VSS.

VDD minimum value is 1.8 V.

There are three regulator ON modes:

MR is used in nominal regulation mode (Run)

LPR is used in Stop mode

Power-down is used in Standby mode:

The regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

Regulator OFF

Regulator OFF/internal reset ON

On UFBGA176 package, REGOFF must be connected to VDD.

The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD.

The following conditions must be respected:

VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains.

If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to reach 1.8 V, then PA0 should be connected to the NRST pin (see Figure 7).

Otherwise, PA0 should be asserted low externally during POR until VDD reaches 1.8 V (see Figure 8).

In this mode, PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic which is not reset by the NRST pin, when the internal voltage regulator in OFF.

Figure 7. Startup in regulator OFF: slow VDD slope

- power-down reset risen after VCAP_1/VCAP_2 stabilization

6$$

0$2 6

6#!0? 6#!0?

6

6

TIME

0! TIEDTTO .234

.234

TIME

1. This figure is valid both whatever the internal reset mode (ON or OFF).

22/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

Figure 8. Startup in regulator OFF: fast VDD slope

- power-down reset risen before VCAP_1/VCAP_2 stabilization

6$$

0$2 6

6#!0? 6#!0?

6

6

TIME

0! ASSERTEDEEXTERNALLYL

.234

TIME

2.2.17Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F21x devices includes:

The real-time clock (RTC)

4 Kbytes of backup SRAM

20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like area.It can be used to store data which need to be retained in VBAT and standby mode.This memory area is disabled to minimize power consumption (see Section 2.2.18: Low-power modes). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.2.18: Low-power modes).

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or the VBAT pin.

Doc ID 17050 Rev 7

23/168

Description

STM32F21xxx

 

 

2.2.18Low-power modes

The STM32F21x family supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

Note:

The RTC, the IWDG, and the corresponding clock sources are not stopped when the device

 

enters the Stop or Standby mode.

2.2.19

VBAT operation

 

The VBAT pin allows to power the device VBAT domain from an external battery or an

 

external supercapacitor.

 

VBAT operation is activated when VDD is not present.

 

The VBAT pin supplies the RTC, the backup registers and the backup SRAM.

Note:

When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events

 

do not exit it from VBAT operation.

24/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

2.2.20Timers and watchdogs

The STM32F21x devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 3 compares the features of the advanced-control, general-purpose and basic timers.

Table 3.

Timer feature comparison

 

 

 

 

 

Timer type

Timer

Counter

Counter

Prescaler

DMA

Capture/

Complementary

Max

Max

resolution

type

factor

request

compare

output

interface

timer

 

 

 

 

 

generation

channels

 

clock

clock

 

 

 

 

 

 

 

 

 

 

Advanced-

TIM1,

 

Up,

Any integer

 

 

 

 

120

16-bit

Down,

between 1

Yes

4

Yes

60 MHz

control

TIM8

MHz

 

Up/down

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIM2,

 

Up,

Any integer

 

 

 

 

60

 

32-bit

Down,

between 1

Yes

4

No

30 MHz

 

TIM5

MHz

General

 

Up/down

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

purpose

TIM3,

 

Up,

Any integer

 

 

 

 

60

 

 

 

 

 

 

 

16-bit

Down,

between 1

Yes

4

No

30 MHz

 

TIM4

MHz

 

 

Up/down

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIM6,

 

 

Any integer

 

 

 

 

60

Basic

16-bit

Up

between 1

Yes

0

No

30 MHz

TIM7

MHz

 

 

 

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any integer

 

 

 

 

120

 

TIM9

16-bit

Up

between 1

No

2

No

60 MHz

 

MHz

 

 

 

 

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIM10,

 

 

Any integer

 

 

 

 

120

 

16-bit

Up

between 1

No

1

No

60 MHz

 

TIM11

MHz

General

 

 

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

purpose

 

 

 

Any integer

 

 

 

 

60

 

 

 

 

 

 

 

 

 

TIM12

16-bit

Up

between 1

No

2

No

30 MHz

 

MHz

 

 

 

 

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIM13,

 

 

Any integer

 

 

 

 

60

 

16-bit

Up

between 1

No

1

No

30 MHz

 

TIM14

MHz

 

 

 

and 65536

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers.

Their 4 independent channels can be used for:

Input capture

Output compare

PWM generation (edgeor center-aligned modes)

One-pulse mode output

Doc ID 17050 Rev 7

25/168

Description

STM32F21xxx

 

 

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0- 100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F21x devices (see Table 3 for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F21x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the

26/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardwareor software-configurable through the option bytes.

The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

A 24-bit downcounter

Autoreload capability

Maskable system interrupt generation when the counter reaches 0

Programmable clock source

2.2.21Inter-integrated circuit interface (I²C)

Up to three I2C bus interfaces can operate in multimaster and slave modes. They can support the Standardand Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.22Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs)

The STM32F21x devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at up to 3.75 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Doc ID 17050 Rev 7

27/168

Description

 

 

 

 

 

 

 

STM32F21xxx

 

 

 

 

 

 

 

 

 

 

 

Table 4.

USART feature comparison

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Max. baud rate

Max. baud rate

 

USART

Standard

Modem

LIN

SPI

 

irDA

Smartcard

in Mbit/s

in Mbit/s

APB

name

features

(RTS/CTS)

master

 

(ISO 7816)

(oversampling

(oversampling

mapping

 

 

 

 

 

 

 

 

by 16)

by 8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

USART1

X

X

X

X

 

X

X

1.87

7.5

(max.

 

 

 

 

 

 

 

 

 

 

60 MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

USART2

X

X

X

X

 

X

X

1.87

3.75

(max.

 

 

 

 

 

 

 

 

 

 

30 MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

USART3

X

X

X

X

 

X

X

1.87

3.75

(max.

 

 

 

 

 

 

 

 

 

 

30 MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

UART4

X

-

X

-

 

X

-

1.87

3.75

(max.

 

 

 

 

 

 

 

 

 

 

30 MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

UART5

X

-

X

-

 

X

-

3.75

3.75

(max.

 

 

 

 

 

 

 

 

 

 

30 MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

USART6

X

X

X

X

 

X

X

3.75

7.5

(max.

 

 

 

 

 

 

 

 

 

 

60 MHz)

 

 

 

 

 

 

 

 

 

 

 

2.2.23Serial peripheral interface (SPI)

The STM32F21x devices feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

2.2.24Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx interfaces can be served by the DMA controller.

28/168

Doc ID 17050 Rev 7

STM32F21xxx

Description

 

 

2.2.25SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.2.26Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral available only on the STM32F217xx devices.

The STM32F217xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F217xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F217xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F217xx.

The STM32F217xx includes the following features:

Supports 10 and 100 Mbit/s rates

Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for details)

Tagged MAC frame support (VLAN support)

Half-duplex (CSMA/CD) and full-duplex operation

MAC control sublayer (control frames) support

32-bit CRC generation and removal

Several address filtering modes for physical and multicast address (multicast and group addresses)

32-bit status code for each transmitted or received frame

Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total

Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input

Triggers interrupt when system time becomes greater than target time

Doc ID 17050 Rev 7

29/168

Description

STM32F21xxx

 

 

2.2.27Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared with any other peripheral.

2.2.28Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing

Supports the session request protocol (SRP) and host negotiation protocol (HNP)

4 bidirectional endpoints

8 host channels with periodic OUT support

HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

Internal FS OTG PHY support

2.2.29Universal serial bus on-the-go high-speed (OTG_HS)

The STM32F21x devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

Combined Rx and Tx FIFO size of 1024× 35 bits with dynamic FIFO sizing

Supports the session request protocol (SRP) and host negotiation protocol (HNP)

6 bidirectional endpoints

12 host channels with periodic OUT support

Internal FS OTG PHY support

External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.

Internal USB DMA

HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

30/168

Doc ID 17050 Rev 7

Loading...
+ 138 hidden pages