ST ST72324J6, ST72324K6, ST72324J4, ST72324K4, ST72324J2 User Manual

...
0 (0)

ST72324Jx ST72324Kx

5V RANGE 8-BIT MCU WITH 8 TO 32K FLASH, 10-BIT ADC, 4 TIMERS, SPI, SCI INTERFACE

NOT FOR NEW DESIGN

Memories

8 to 32K dual voltage High Density Flash (HDFlash) with read-out protection capability. InApplication Programming and In-Circuit Programming for HDFlash devices

384 to 1K bytes RAM

HDFlash endurance: 100 cycles, data retention: 20 years at 55°C

Clock, Reset And Supply Management

Enhanced low voltage supervisor (LVD) for main supply with programmable reset thresholds and auxiliary voltage detector (AVD) with interrupt capability

Clock sources: crystal/ceramic resonator oscillators, internal RC oscillator, clock security system and bypass for external clock

PLL for 2x frequency multiplication

Four Power Saving Modes: Halt, Active-Halt, Wait and Slow

Interrupt Management

Nested interrupt controller

10 interrupt vectors plus TRAP and RESET

9/6 external interrupt lines (on 4 vectors)

Up to 32 I/O Ports

32/24 multifunctional bidirectional I/O lines

22/17 alternate function lines

12/10 high sink outputs

4 Timers

Main Clock Controller with: Real time base, Beep and Clock-out capabilities

Configurable watchdog timer

16-bit Timer A with: 1 input capture, 1 output compare, external clock input, PWM and pulse generator modes

16-bit Timer B with: 2 input captures, 2 output compares, PWM and pulse generator modes

Device Summary

TQFP32 7 x 7

TQFP44 10 x 10

SDIP42

SDIP32

400 mil

600 mil

 

2 Communication Interfaces

SPI synchronous serial interface

SCI asynchronous serial interface

1 Analog Peripheral (low current coupling)

10-bit ADC with up to 12 robust input ports

Instruction Set

8-bit Data Manipulation

63 Basic Instructions

17 main Addressing Modes

8 x 8 Unsigned Multiply Instruction

Development Tools

Full hardware/software development package

In-Circuit Testing capability

Features

ST72324J6

 

ST72324J4

 

ST72324J2

ST72324K61

 

ST72324K41

 

ST72324JK21

 

 

 

Program memory -

Flash 32K

 

Flash 16K

 

Flash 8K

bytes

 

 

 

 

 

 

 

 

 

 

 

 

 

RAM (stack) - bytes

1024 (256)

 

512 (256)

 

384 (256)

 

 

 

 

 

 

Voltage Range

 

 

3.8V to 5.5V

 

 

 

 

 

 

 

Temp. Range

 

 

up to -40°C to +125°C

 

 

 

 

 

Packages

 

SDIP42, TQFP44 10x10,SDIP32, TQFP32 7x7

 

1For new designs in standard and industrial applications, use ST72324B(J/K) order codes, refer to separate datasheet

April 2008

Rev. 5

1/164

1

Table of Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

5.2

MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

5.3

CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

6.3.2 Asynchronous External RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

6.3.3

External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

6.3.4 Internal Low Voltage Detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

6.3.5

Internal Watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

6.4 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

6.4.1 Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.4.2 Auxiliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.4.3 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.4.4 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 38

8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2/164

2

Table of Contents

8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

9.2

FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

 

9.2.1

Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

 

9.2.2

Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

 

9.2.3

Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

9.3

I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

9.4

LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

9.5

INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

 

9.5.1

I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 54 10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 56

10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2.3 Real Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.3 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.3.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.3.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.4 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.4.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.4.4 Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.4.5 Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.4.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3/164

1

Table of Contents

 

10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 86

10.4.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

10.5 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

10.5.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

10.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92

10.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

10.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100

10.6 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

106

10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.6.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.6.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

110

11.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

110

11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117

12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117

12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

118

12.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

118

12.3.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.4 LVD/AVD CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.4.1 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . 119 12.4.2 Auxiliary Voltage Detector (AVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 12.5 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.5.1 CURRENT CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.5.2 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

12.5.3 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4/164

1

Table of Contents

12.6 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

12.6.1 General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

12.6.2 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

12.6.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125

12.6.4 RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

127

12.6.5 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

128

12.7 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

12.7.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12.7.2 FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12.8 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.8.1 Functional EMS (Electro Magnetic Susceptibility) . . . . . . . . . . . . . . . . . . . . . . . . 130 12.8.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 12.8.3 Absolute Maximum Ratings (Electrical Sensitivity) . . . . . . . . . . . . . . . . . . . . . . . . 132 12.9 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.9.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.9.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12.10 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12.10.1Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 12.10.2ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.11 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

12.11.116-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

12.12 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 140

12.12.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

12.13 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

12.13.1Analog Power Supply and Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

144

12.13.2General PCB Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

144

12.13.3ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

145

13 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

146

13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 13.3 SOLDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . 150

14.1

FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150

14.2

FLASH DEVICE ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

152

14.3

SILICON IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

154

14.4

DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

155

 

14.4.1 Socket and Emulator Adapter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156

14.5

ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

15 KNOWN LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

15.1 ALL DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

15.1.1 External RC option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.1.2 CSS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.1.3 Safe Connection of OSC1/OSC2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.1.4 Unexpected Reset Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.1.5 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . . . . . . . . . . 159 15.1.6 External Interrupt Missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5/164

1

Table of Contents

15.1.7 16-bit Timer PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15.1.8 SCI Wrong Break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15.2 FLASH DEVICES ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

15.2.1 Internal RC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

16 IMPORTANT NOTES ON ST72F324B FLASH DEVICES: . . . . . . . . . . . . . . . . . . . . . . . . . . 162

16.1 RESET PIN LOGIC LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

16.2 WAKE-UP FROM ACTIVE HALT MODE USING EXTERNAL INTERRUPTS . . . . . . . 162

16.3 PLL JITTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

16.4 ACTIVE HALT POWER CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

16.5 TIMER A REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

17 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

To obtain the most recent version of this datasheet,

please check at www.st.com>products>technical literature>datasheet.

Please also pay special attention to the Section “KNOWN LIMITATIONS” on page 159.

6/164

1

ST ST72324J6, ST72324K6, ST72324J4, ST72324K4, ST72324J2 User Manual

ST72324Jx ST72324Kx

1 INTRODUCTION

The ST72324 devices are members of the ST7 microcontroller family designed for the 5V operating range.

The 32-pin devices are designed for mid-range applications

The 42/44-pin devices target the same range of applications requiring more than 24 I/O ports.

For a description of the differences between ST72324 and ST72324B devices refer to Section 14.2 on page 152

All devices are based on a common industrystandard 8-bit core, featuring an enhanced instruc-

Figure 1. Device Block Diagram

tion set and are available with FLASH program memory.

Under software control, all devices can be placed in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or stand-by state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8-BIT CORE

 

 

 

 

 

 

 

 

ALU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

CONTROL

 

 

 

 

 

 

 

VPP

 

 

 

 

 

 

 

 

 

 

VSS

 

 

VDD

 

 

 

LVD

 

 

 

OSC1

OSC2

PF7:6,4,2:0 (6 bits on J devices) (5 bits on K devices)

PE1:0 (2 bits)

PD5:0 (6 bits on J devices) (2 bits on K devices)

VAREF

OSC

MCC/RTC/BEEP

PORT F

TIMER A

BEEP

PORT E

SCI

PORT D

10-BIT ADC

VSSA

BUS DATA AND ADDRESS

PROGRAM

MEMORY

(8K - 32K Bytes)

RAM

(384 - 1024 Bytes)

WATCHDOG

PORT A

PORT B

PORT C

TIMER B

SPI

PA7:3

(5 bits on J devices) (4 bits on K devices)

PB4:0

(5 bits on J devices) (3 bits on K devices)

PC7:0 (8 bits)

7/164

3

ST72324Jx ST72324Kx

2 PIN DESCRIPTION

Figure 2. 42-Pin SDIP and 44-Pin TQFP Package Pinouts

 

PE0/ TDO

2

OSC1

OSC2

2

 

RESET

/ ICCSEL

PA7(HS)

PA6(HS)

PA5(HS)

PA4(HS)

 

 

 

 

 

 

 

 

 

V

V

 

V

 

 

 

 

 

DD

 

 

SS

 

 

PP

 

 

 

 

 

 

 

RDI / PE1

44 43 42 41 40 39 38 37 36 35 34

VSS_1

1

 

 

 

 

 

 

 

 

 

 

33

PB0

2

 

 

 

 

 

 

 

 

 

 

32

VDD_1

PB1

3

ei2

 

 

 

 

 

 

 

 

ei0

31

PA3 (HS)

PB2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

30

PC7 / SS / AIN15

 

 

 

 

 

 

 

 

 

 

PB3

5

 

 

 

 

 

 

 

 

 

 

29

PC6 / SCK / ICCCLK

(HS) PB4

6

ei3

 

 

 

 

 

 

 

 

 

28

PC5 / MOSI / AIN14

AIN0 / PD0

7

 

 

 

 

 

 

 

 

 

 

27

PC4 / MISO / ICCDATA

AIN1 / PD1

8

 

 

 

 

 

 

 

 

 

 

26

PC3 (HS) / ICAP1_B

AIN2 / PD2

9

 

 

 

 

 

 

 

 

 

 

25

PC2 (HS) / ICAP2_B

AIN3 / PD3

10

 

 

 

ei1

 

 

 

 

 

 

24

PC1 / OCMP1_B / AIN13

AIN4 / PD4

11

 

 

 

 

 

 

 

 

 

 

23

PC0 / OCMP2_B / AIN12

12 13 14 15 16 17 18 19 20 21 22

AIN5 / PD5

 

AREF

SSA

MCO/ AIN8 / PF0

BEEP / (HS) PF1

(HS) PF2

OCMP1A / AIN10 / PF4

ICAP1A / (HS) PF6

EXTCLKA / (HS) PF7

 

V

V

(HS) PB4

 

 

 

 

ei3

 

 

 

42

 

 

1

 

 

 

 

 

 

 

 

 

 

AIN0 / PD0

 

 

2

 

 

 

ei2

 

41

 

 

 

 

 

 

AIN1 / PD1

 

 

3

 

 

 

 

40

 

 

 

 

 

 

 

AIN2 / PD2

 

 

4

 

 

 

 

 

39

 

 

 

 

 

 

 

AIN3 / PD3

 

 

5

 

 

 

 

 

38

 

 

 

 

 

 

 

AIN4 / PD4

 

 

6

 

 

 

 

 

37

 

 

 

 

 

 

 

AIN5 / PD5

 

 

7

 

 

 

 

 

36

 

 

 

 

 

 

 

VAREF

 

 

8

 

 

 

 

 

35

 

 

 

 

 

 

 

VSSA

 

 

9

 

 

 

 

 

34

 

 

 

 

 

 

 

MCO / AIN8 / PF0

 

 

10

 

 

 

 

 

33

 

 

 

 

 

 

 

BEEP / (HS) PF1

 

 

11

 

ei1

 

 

 

32

 

 

 

 

 

 

(HS) PF2

 

 

12

 

 

 

 

 

31

 

 

 

 

 

 

 

AIN10 / OCMP1_A / PF4

 

 

13

 

 

 

 

 

30

 

 

 

 

 

 

 

ICAP1_A / (HS) PF6

 

 

14

 

 

 

 

 

29

 

 

 

 

 

 

 

EXTCLK_A / (HS) PF7

 

 

15

 

 

 

 

 

28

 

 

 

 

 

 

 

AIN12 / OCMP2_B / PC0

 

 

16

 

 

 

 

 

27

 

 

 

 

 

 

 

AIN13 / OCMP1_B / PC1

 

 

17

 

 

 

 

 

26

 

 

 

 

 

 

 

ICAP2_B/ (HS) PC2

 

 

18

 

 

 

 

 

25

 

 

 

 

 

 

 

ICAP1_B / (HS) PC3

 

 

19

 

 

 

ei0

 

24

 

 

 

 

 

 

ICCDATA / MISO / PC4

 

 

20

 

 

 

 

 

23

 

 

 

 

 

 

 

AIN14 / MOSI / PC5

 

 

21

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DD 0

SS 0

V

V

PB3

PB2

PB1

PB0

PE1 / RDI

PE0 / TDO

VDD_2

OSC1

OSC2

VSS_2

RESET

VPP / ICCSEL

PA7 (HS)

PA6 (HS)

PA5 (HS)

PA4 (HS)

VSS_1

VDD_1

PA3 (HS)

PC7 / SS / AIN15

PC6 / SCK / ICCCLK

(HS)

20mA high sink capability

eix

associated external interrupt vector

8/164

ST72324Jx ST72324Kx

PIN DESCRIPTION (Cont’d)

Figure 3. 32-Pin SDIP Package Pinout

(HS) PB4

 

 

 

 

 

 

 

 

 

PB3

 

 

1

 

ei3

 

ei2

32

 

 

 

 

 

 

 

 

 

AIN0 / PD0

 

 

 

 

 

PB0

 

 

2

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

AIN1 / PD1

 

 

 

 

 

 

 

PE1 / RDI

 

3

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

VAREF

 

4

 

 

 

 

29

 

 

PE0 / TDO

 

 

 

 

 

 

 

 

 

VSSA

 

5

 

 

 

 

28

 

 

VDD_2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCO / AIN8 / PF0

 

6

 

ei1

 

 

27

 

 

OSC1

 

BEEP / (HS) PF1

 

7

 

 

 

26

 

 

OSC2

 

 

 

 

 

 

 

 

 

OCMP1_A / AIN10 / PF4

 

8

 

 

 

 

25

 

 

VSS_2

 

 

 

 

 

 

 

 

 

ICAP1_A / (HS) PF6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

24

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

EXTCLK_A / (HS) PF7

 

10

 

 

 

23

 

 

VPP / ICCSEL

 

 

 

 

 

 

AIN12 / OCMP2_B / PC0

 

11

 

 

 

22

 

 

PA7 (HS)

 

 

 

 

 

 

 

 

AIN13 / OCMP1_B / PC1

 

12

 

 

 

21

 

 

PA6 (HS)

 

 

 

 

 

 

 

 

ICAP2_B / (HS) PC2

 

13

 

 

 

20

 

 

PA4 (HS)

 

 

 

 

 

 

 

 

ICAP1_B / (HS) PC3

 

14

 

 

ei0

19

 

 

PA3 (HS)

 

 

 

 

 

 

 

ICCDATA/ MISO / PC4

 

 

 

 

 

PC7 /

 

 

/ AIN15

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

18

SS

 

 

 

 

 

 

AIN14 / MOSI / PC5

 

16

 

 

 

17

 

 

PC6 / SCK / ICCCLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(HS)

20mA high sink capability

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eix

associated external interrupt vector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 32-Pin TQFP 7x7 Package Pinout

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/ AIN1

/ AIN0

(HS)

 

PB3 PB0

/ RDI

/ TDO

_2

 

 

 

 

 

 

 

 

 

 

PD1

PD0

PB4

 

PE1

PE0

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

 

 

 

VAREF

32 31 30

29 28 27 26 25

 

OSC1

 

1

 

ei3

 

ei2

 

 

24

 

 

VSSA

2

 

 

 

 

23

 

OSC2

 

 

 

 

 

 

 

 

 

MCO / AIN8 / PF0

3

 

 

 

 

 

 

22

 

VSS_2

 

BEEP / (HS) PF1

ei1

 

 

 

 

 

21

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

RESET

 

OCMP1_A / AIN10 / PF4

5

 

 

 

 

 

 

20

 

VPP / ICCSEL

ICAP1_A / (HS) PF6

6

 

 

 

 

 

 

19

 

PA7 (HS)

 

EXTCLK_A / (HS) PF7

7

 

 

 

 

 

 

18

 

PA6 (HS)

 

AIN12 / OCMP2_B / PC0

8

 

 

 

 

 

ei0 17

 

PA4 (HS)

 

 

9

10 11 12 13 14 15 16

 

 

 

 

 

 

 

 

 

AIN13 / OCMP1 B / PC1

ICAP2 B / (HS) PC2

ICAP1 B / (HS) PC3

ICCDATA / MISO / PC4

AIN14 / MOSI / PC5

ICCCLK / SCK / PC6

 

AIN15 / SS / PC7

(HS) PA3

 

 

(HS) 20mA high sink capability

eix associated external interrupt vector

9/164

1

ST72324Jx ST72324Kx

PIN DESCRIPTION (Cont’d)

For external pin connection guidelines, refer to See “ELECTRICAL CHARACTERISTICS” on page 116.

Legend / Abbreviations for Table 1:

Type:

I = input, O = output, S = supply

Input level:

A = Dedicated analog input

In/Output level: C = CMOS 0.3VDD/0.7VDD

Output level:

CT= CMOS 0.3VDD/0.7VDD with input trigger

HS = 20mA high sink (on N-buffer only)

Port and control configuration:

Input:

float = floating, wpu = weak pull-up, int = interrupt 1), ana = analog ports

Output:

OD = open drain 2), PP = push-pull

Refer to “I/O PORTS” on page 45 for more details on the software configuration of the I/O ports.

The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state.

Table 1. Device Pin Description

 

Pin n°

 

 

 

Level

 

 

Port

 

 

Main

 

 

 

 

 

 

 

 

Type

 

 

 

 

 

 

 

 

 

 

 

TQFP44

SDIP42

TQFP32

SDIP32

Pin Name

Input

Output

float

Input

ana

Output

function

Alternate Function

 

wpu

int

OD

PP

(after

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reset)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

1

30

1

PB4 (HS)

I/O

CT

HS

X

ei3

 

X

X

Port B4

 

 

 

7

2

31

2

PD0/AIN0

I/O

CT

 

X

X

 

X

X

X

Port D0

ADC Analog Input 0

8

3

32

3

PD1/AIN1

I/O

CT

 

X

X

 

X

X

X

Port D1

ADC Analog Input 1

9

4

 

 

PD2/AIN2

I/O

CT

 

X

X

 

X

X

X

Port D2

ADC Analog Input 2

10

5

 

 

PD3/AIN3

I/O

CT

 

X

X

 

X

X

X

Port D3

ADC Analog Input 3

11

6

 

 

PD4/AIN4

I/O

CT

 

X

X

 

X

X

X

Port D4

ADC Analog Input 4

12

7

 

 

PD5/AIN5

I/O

CT

 

X

X

 

X

X

X

Port D5

ADC Analog Input 5

13

8

1

4

VAREF

S

 

 

 

 

 

 

 

 

Analog Reference Voltage for ADC

14

9

2

5

VSSA

S

 

 

 

 

 

 

 

 

Analog Ground Voltage

 

15

10

3

6

PF0/MCO/AIN8

I/O

CT

 

X

ei1

X

X

X

Port F0

Main clock

 

ADC Analog

 

out (fCPU)

 

Input 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

11

4

7

PF1 (HS)/BEEP

I/O

CT

HS

X

ei1

 

X

X

Port F1

Beep signal output

17

12

 

 

PF2 (HS)

I/O

CT

HS

X

 

ei1

 

X

X

Port F2

 

 

 

 

 

 

 

PF4/OCMP1_A/

 

 

 

X

 

 

 

 

 

 

Timer A Out-

 

ADC Analog

18

13

5

8

AIN10

I/O

CT

 

X

 

X

X

X

Port F4

put Com-

 

Input 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pare 1

 

 

19

14

6

9

PF6 (HS)/ICAP1_A

I/O

CT

HS

X

X

 

 

X

X

Port F6

Timer A Input Capture 1

20

15

7

10

PF7 (HS)/

I/O

CT

HS

X

X

 

 

X

X

Port F7

Timer A External Clock

EXTCLK_A

 

 

Source

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

 

 

VDD_0

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

22

 

 

 

VSS_0

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

 

 

 

 

PC0/OCMP2_B/

 

 

 

X

 

 

 

 

 

 

Timer B Out-

 

ADC Analog

23

16

8

11

AIN12

I/O

CT

 

X

 

X

X

X

Port C0

put Com-

 

Input 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pare 2

 

 

10/164

1

ST72324Jx ST72324Kx

 

Pin n°

 

 

 

 

 

 

 

Level

 

 

Port

 

 

Main

 

 

 

 

 

 

 

 

 

 

 

 

Type

 

 

 

 

 

 

 

 

 

 

 

TQFP44

SDIP42

TQFP32

SDIP32

 

 

Pin Name

Input

Output

float

Input

ana

Output

function

 

Alternate Function

 

 

 

 

 

wpu

int

OD

PP

(after

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reset)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC1/OCMP1_B/

 

 

 

X

 

 

 

 

 

 

 

Timer B Out-

ADC Analog

24

17

9

12

 

AIN13

I/O

CT

 

X

 

X

X

X

Port C1

 

put Com-

Input 13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pare 1

 

25

18

10

13

PC2 (HS)/ICAP2_B

I/O

CT

HS

X

X

 

 

X

X

Port C2

Timer B Input Capture 2

26

19

11

14

PC3 (HS)/ICAP1_B

I/O

CT

HS

X

X

 

 

X

X

Port C3

Timer B Input Capture 1

 

 

 

 

 

PC4/MISO/ICCDA-

 

 

 

 

 

 

 

 

 

 

 

SPI Master

ICC Data In-

27

20

12

15

 

I/O

CT

 

X

X

 

 

X

X

Port C4

 

In / Slave

 

TA

 

 

 

 

put

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Out Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI Master

ADC Analog

28

21

13

16

PC5/MOSI/AIN14

I/O

CT

 

X

X

 

X

X

X

Port C5

Out / Slave

 

 

Input 14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Data

 

29

22

14

17

PC6/SCK/ICCCLK

I/O

CT

 

X

X

 

 

X

X

Port C6

 

SPI Serial

ICC Clock

 

 

 

 

Clock

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI Slave

ADC Analog

30

23

15

18

 

PC7/SS/AIN15

I/O

CT

 

X

X

 

X

X

X

Port C7

 

Select (ac-

 

 

 

 

Input 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tive low)

 

31

24

16

19

PA3 (HS)

I/O

CT

HS

X

 

ei0

 

X

X

Port A3

 

 

32

25

 

 

 

VDD_1

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

33

26

 

 

 

VSS_1

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

34

27

17

20

PA4 (HS)

I/O

CT

HS

X

X

 

 

X

X

Port A4

 

 

35

28

 

 

PA5 (HS)

I/O

CT

HS

X

X

 

 

X

X

Port A5

 

 

36

29

18

21

PA6 (HS)

I/O

C

HS

X

 

 

 

T

 

Port A6 1)

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

37

30

19

22

PA7 (HS)

I/O

C

HS

X

 

 

 

T

 

Port A7 1)

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Must be tied low. In the flash pro-

38

31

20

23

 

VPP /ICCSEL

I

 

 

 

 

 

 

 

 

gramming mode, this pin acts as the

 

 

 

 

 

 

 

 

 

programming voltage input VPP. See

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 12.10.2 for more details.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

32

21

24

 

 

 

 

I/O

CT

 

 

 

 

 

 

 

Top priority non maskable interrupt.

RESET

 

 

 

 

 

 

 

40

33

22

25

 

VSS_2

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

41

34

23

26

OSC2

O

 

 

 

 

 

 

 

 

Resonator oscillator inverter output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

35

24

27

OSC1

I

 

 

 

 

 

 

 

 

External clock input or Resonator os-

 

 

 

 

 

 

 

 

cillator inverter input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

36

25

28

 

VDD_2

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

44

37

26

29

PE0/TDO

I/O

CT

 

X

X

 

 

X

X

Port E0

SCI Transmit Data Out

1

38

27

30

 

PE1/RDI

I/O

CT

 

X

X

 

 

X

X

Port E1

SCI Receive Data In

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Caution: Negative current

2

39

28

31

 

PB0

I/O

CT

 

X

ei2

 

X

X

Port B0

 

injection not allowed on this

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pin5)

 

3

40

 

 

 

PB1

I/O

CT

 

X

ei2

 

X

X

Port B1

 

 

 

4

41

 

 

 

PB2

I/O

CT

 

X

ei2

 

X

X

Port B2

 

 

 

5

42

29

32

 

PB3

I/O

CT

 

X

 

ei2

 

X

X

Port B3

 

 

 

Notes:

1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up

11/164

1

ST72324Jx ST72324Kx

column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.

2.In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to VDD are not implemented). See See “I/O PORTS” on page 45. and Section 12.9 I/O PORT PIN CHARACTERISTICS for more details.

3.OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator; see Section 1 INTRODUCTION and Section 12.6 CLOCK AND TIMING CHARACTERISTICS for more details.

4.On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

5.For details refer to Section 12.9.1 on page 133

12/164

1

ST72324Jx ST72324Kx

3 REGISTER & MEMORY MAP

As shown in Figure 5, the MCU is capable of addressing 64K bytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register locations, up to 1024 bytes of RAM and up to 32 Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.

Figure 5. Memory Map

The highest address bytes contain the user reset and interrupt vectors.

IMPORTANT: Memory locations marked as “Reserved” must never be accessed. Accessing a reserved area can have unpredictable effects on the device.

0000h

 

0080h

 

 

 

 

 

 

HW Registers

Short Addressing

 

 

 

 

 

 

 

 

 

 

 

 

 

(see Table 2)

 

 

 

 

 

 

007Fh

 

RAM (zero page)

 

 

 

 

 

 

00FFh

 

 

 

 

 

0080h

 

 

 

 

 

 

 

 

RAM

0100h

256 Bytes Stack

 

 

 

 

 

 

 

 

 

 

 

 

 

(1024,

 

 

 

 

 

 

 

01FFh

 

 

 

 

 

 

 

512 or 384 Bytes)

 

 

 

 

 

 

047Fh

0200h

16-bit Addressing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0480h

 

 

 

 

 

 

 

Reserved

 

RAM

 

 

 

 

 

 

027Fh

 

 

 

 

 

7FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 047Fh

 

 

 

 

8000h

 

 

 

 

 

Program Memory

 

 

8000h

32 KBytes

 

 

 

 

 

 

 

 

 

 

 

(32K, 16K or 8K)

 

 

C000h

 

 

 

 

FFDFh

 

 

16 KBytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FFE0h

Interrupt & Reset Vectors

 

 

E000h

 

 

 

 

 

 

8 Kbytes

 

 

 

 

 

 

 

 

 

 

 

(see Table 8)

 

 

 

 

 

 

FFFFh

 

 

FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13/164

1

ST72324Jx ST72324Kx

Table 2. Hardware Register Map

Address

Block

Register

Register Name

Reset

Remarks

 

Label

Status

 

 

 

 

 

 

 

 

 

 

 

 

 

0000h

Port A 2)

PADR

Port A Data Register

00h1)

R/W

 

0001h

PADDR

Port A Data Direction Register

00h

R/W

 

0002h

 

PAOR

Port A Option Register

00h

R/W

 

 

 

 

 

 

 

 

0003h

Port B 2)

PBDR

Port B Data Register

00h1)

R/W

 

0004h

PBDDR

Port B Data Direction Register

00h

R/W

 

0005h

 

PBOR

Port B Option Register

00h

R/W

 

 

 

 

 

 

 

 

0006h

 

PCDR

Port C Data Register

00h1)

R/W

 

0007h

Port C

PCDDR

Port C Data Direction Register

00h

R/W

 

0008h

 

PCOR

Port C Option Register

00h

R/W

 

 

 

 

 

 

 

 

0009h

Port D 2)

PDADR

Port D Data Register

00h1)

R/W

 

000Ah

PDDDR

Port D Data Direction Register

00h

R/W

 

000Bh

 

PDOR

Port D Option Register

00h

R/W

 

 

 

 

 

 

 

 

000Ch

 

PEDR

Port E Data Register

00h1)

R/W

 

000Dh

Port E 2)

PEDDR

Port E Data Direction Register

00h

R/W2)

 

000Eh

 

PEOR

Port E Option Register

00h

R/W2)

 

 

 

 

 

 

 

 

000Fh

Port F 2)

PFDR

Port F Data Register

00h1)

R/W

 

0010h

PFDDR

Port F Data Direction Register

00h

R/W

 

0011h

 

PFOR

Port F Option Register

00h

R/W

 

 

 

 

 

 

 

 

0012h

 

 

 

 

 

 

to

 

 

Reserved Area (15 Bytes)

 

 

 

0020h

 

 

 

 

 

 

 

 

 

 

 

 

 

0021h

 

SPIDR

SPI Data I/O Register

xxh

R/W

 

0022h

SPI

SPICR

SPI Control Register

0xh

R/W

 

0023h

 

SPICSR

SPI Control/Status Register

00h

R/W

 

 

 

 

 

 

 

 

0024h

 

ISPR0

Interrupt Software Priority Register 0

FFh

R/W

 

0025h

 

ISPR1

Interrupt Software Priority Register 1

FFh

R/W

 

0026h

ITC

ISPR2

Interrupt Software Priority Register 2

FFh

R/W

 

0027h

ISPR3

Interrupt Software Priority Register 3

FFh

R/W

 

 

 

 

 

 

 

 

 

 

0028h

 

EICR

External Interrupt Control Register

00h

R/W

 

 

 

 

 

 

 

 

0029h

FLASH

FCSR

Flash Control/Status Register

00h

R/W

 

 

 

 

 

 

 

 

002Ah

WATCHDOG

WDGCR

Watchdog Control Register

7Fh

R/W

 

 

 

 

 

 

 

 

002Bh

SI

SICSR

System Integrity Control Status Register

xxh

R/W

 

 

 

 

 

 

 

 

002Ch

MCC

MCCSR

Main Clock Control / Status Register

00h

R/W

 

002Dh

MCCBCR

Main Clock Controller: Beep Control Register

00h

R/W

 

 

 

 

 

 

 

 

 

 

002Eh

 

 

 

 

 

 

to

 

 

Reserved Area (3 Bytes)

 

 

 

0030h

 

 

 

 

 

 

 

 

 

 

 

 

 

14/164

 

 

 

 

 

 

 

 

 

 

 

 

 

1

ST72324Jx ST72324Kx

Address

Block

Register

Register Name

Reset

Remarks

 

Label

Status

 

 

 

 

 

 

 

 

 

 

 

 

 

0031h

 

TACR2

Timer A Control Register 2

00h

R/W

 

0032h

 

TACR1

Timer A Control Register 1

00h

R/W

 

0033h

 

TACSR

Timer A Control/Status Register3)4)

xxxx x0xxb

R/W

 

0034h

 

TAIC1HR

Timer A Input Capture 1 High Register

xxh

Read Only

 

0035h

 

TAIC1LR

Timer A Input Capture 1 Low Register

xxh

Read Only

 

0036h

 

TAOC1HR

Timer A Output Compare 1 High Register

80h

R/W

 

0037h

 

TAOC1LR

Timer A Output Compare 1 Low Register

00h

R/W

 

0038h

TIMER A

TACHR

Timer A Counter High Register

FFh

Read Only

 

0039h

 

TACLR

Timer A Counter Low Register

FCh

Read Only

 

003Ah

 

TAACHR

Timer A Alternate Counter High Register

FFh

Read Only

 

003Bh

 

TAACLR

Timer A Alternate Counter Low Register

FCh

Read Only

 

003Ch

 

TAIC2HR

Timer A Input Capture 2 High Register3)

xxh

Read Only

 

003Dh

 

TAIC2LR

Timer A Input Capture 2 Low Register3)

xxh

Read Only

 

003Eh

 

TAOC2HR

Timer A Output Compare 2 High Register4)

80h

R/W

 

003Fh

 

TAOC2LR

Timer A Output Compare 2 Low Register4)

00h

R/W

 

 

 

 

 

 

 

 

0040h

 

 

Reserved Area (1 Byte)

 

 

 

 

 

 

 

 

 

 

0041h

 

TBCR2

Timer B Control Register 2

00h

R/W

 

0042h

 

TBCR1

Timer B Control Register 1

00h

R/W

 

0043h

 

TBCSR

Timer B Control/Status Register

xxxx x0xxb

R/W

 

0044h

 

TBIC1HR

Timer B Input Capture 1 High Register

xxh

Read Only

 

0045h

 

TBIC1LR

Timer B Input Capture 1 Low Register

xxh

Read Only

 

0046h

 

TBOC1HR

Timer B Output Compare 1 High Register

80h

R/W

 

0047h

 

TBOC1LR

Timer B Output Compare 1 Low Register

00h

R/W

 

0048h

TIMER B

TBCHR

Timer B Counter High Register

FFh

Read Only

 

0049h

 

TBCLR

Timer B Counter Low Register

FCh

Read Only

 

004Ah

 

TBACHR

Timer B Alternate Counter High Register

FFh

Read Only

 

004Bh

 

TBACLR

Timer B Alternate Counter Low Register

FCh

Read Only

 

004Ch

 

TBIC2HR

Timer B Input Capture 2 High Register

xxh

Read Only

 

004Dh

 

TBIC2LR

Timer B Input Capture 2 Low Register

xxh

Read Only

 

004Eh

 

TBOC2HR

Timer B Output Compare 2 High Register

80h

R/W

 

004Fh

 

TBOC2LR

Timer B Output Compare 2 Low Register

00h

R/W

 

 

 

 

 

 

 

 

0050h

 

SCISR

SCI Status Register

C0h

Read Only

 

0051h

 

SCIDR

SCI Data Register

xxh

R/W

 

0052h

 

SCIBRR

SCI Baud Rate Register

00h

R/W

 

0053h

SCI

SCICR1

SCI Control Register 1

x000 0000h

R/W

 

0054h

SCICR2

SCI Control Register 2

00h

R/W

 

 

 

0055h

 

SCIERPR

SCI Extended Receive Prescaler Register

00h

R/W

 

0056h

 

 

Reserved area

---

 

 

0057h

 

SCIETPR

SCI Extended Transmit Prescaler Register

00h

R/W

 

 

 

 

 

 

 

 

0058h

 

 

 

 

 

 

to

 

 

Reserved Area (24 Bytes)

 

 

 

006Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

0070h

 

ADCCSR

Control/Status Register

00h

R/W

 

0071h

ADC

ADCDRH

Data High Register

00h

Read Only

 

0072h

 

ADCDRL

Data Low Register

00h

Read Only

 

 

 

 

 

 

 

 

0073h

 

 

Reserved Area (13 Bytes)

 

 

 

007Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15/164

 

 

 

 

 

 

 

 

1

ST72324Jx ST72324Kx

Legend: x=undefined, R/W=read/write

Notes:

1.The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2.The bits associated with unavailable pins must always keep their reset value.

3.The Timer A Input Capture 2 pin is not available (not bonded).

– In Flash devices:

The TAIC2HR and TAIC2LR registers are not present. Bit 5 of the TACSR register (ICF2) is forced by hardware to 0. Consequently, the corresponding interrupt cannot be used.

4.The Timer A Output Compare 2 pin is not available (not bonded).

The TAOC2HR and TAOC2LR Registers are write only, reading them will return undefined values. Bit 4 of the TACSR register (OCF2) is forced by hardware to 0. Consequently, the corresponding interrupt cannot be used.

Caution: The TAIC2HR and TAIC2LR registers and the ICF2 and OCF2 flags are not present in Flash devices but are present in the emulator. For compatibility with the emulator, it is recommended to perform a dummy access (read or write) to the TAIC2LR and TAOC2LR registers to clear the interrupt flags.

16/164

1

ST72324Jx ST72324Kx

4 FLASH PROGRAM MEMORY

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external VPP supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

Three Flash programming modes:

Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.

ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.

IAP (In-Application Programming) In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.

ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM

Read-out protection

Register Access Security System (RASS) to prevent accidental programming or erasing

4.3 Structure

The Flash memory is organised in sectors and can be used for both code and data storage.

Figure 6. Memory Map and Sector Address

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see Figure 6). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000hFFFFh).

Table 3. Sectors available in Flash devices

Flash Size (bytes)

Available Sectors

 

 

4K

Sector 0

 

 

8K

Sectors 0,1

 

 

> 8K

Sectors 0,1, 2

 

 

4.3.1 Read-out Protection

Read-out protection, when selected, provides a protection against Program Memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

In flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased.

Read-out protection selection depends on the device type:

In Flash devices it is enabled and removed through the FMP_R bit in the option byte.

In ROM devices it is enabled by mask option specified in the Option List.

 

 

4K

 

 

8K

 

 

 

10K

 

 

16K

 

 

24K

 

 

32K

 

 

 

48K

 

 

60K

 

 

 

FLASH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY SIZE

1000h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTOR 2

BFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D7FFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52 Kbytes

 

 

 

DFFFh

 

 

 

 

 

2 Kbytes

8 Kbytes

16 Kbytes

24 Kbytes

40 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTOR 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTOR 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17/164

1

ST72324Jx ST72324Kx

FLASH PROGRAM MEMORY (Cont’d)

4.4 ICC Interface

ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see Figure 7). These pins are:

RESET: device reset

VSS: device power supply ground

ICCCLK: ICC output serial clock pin

ICCDATA: ICC input/output serial data pin

ICCSEL/VPP: programming voltage

OSC1(or OSCIN): main clock input for external source (optional)

VDD: application board power supply (optional, see Figure 7, Note 3)

Figure 7. Typical ICC Interface

PROGRAMMING TOOL

ICC CONNECTOR

ICC Cable

APPLICATION BOARD

(See Note 3)

APPLICATION CL2

POWER SUPPLY

 

 

 

 

 

OSC2

V

 

DD

 

 

 

 

OPTIONAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IN SOME CASES

9

7

 

5

 

3

 

1

 

 

 

 

(See Note 4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

8

 

6

 

4

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CL1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC1

 

 

 

 

 

 

 

SS

ICCSEL/VPP

 

RESET

 

ICCCLK

 

ICCDATA

 

 

 

 

 

 

 

 

 

 

 

 

 

ST7

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

ICC CONNECTOR

HE10 CONNECTOR TYPE

APPLICATION

RESET SOURCE

See Note 2

See Note 1

APPLICATION

I/O

Notes:

1.If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.

2.During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1K or a reset management IC with open drain output and pull-up re-

sistor>1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.

3.The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.

4.Pin 9 has to be connected to the OSC1 or OSCIN pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.

18/164

1

ST72324Jx ST72324Kx

FLASH PROGRAM MEMORY (Cont’d)

4.5 ICP (In-Circuit Programming)

To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.

Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading).

When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 7). For more details on the pin locations, refer to the device pinout description.

4.6 IAP (In-Application Programming)

This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (us- er-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is

possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

4.7 Related Documentation

For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual.

4.7.1 Register Description

FLASH CONTROL/STATUS REGISTER (FCSR)

Read/Write

Reset Value: 0000 0000 (00h)

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations.

Table 4. Flash Control/Status Register Address and Reset Value

Address

Register

7

6

5

4

3

2

1

0

(Hex.)

Label

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0029h

FCSR

 

 

 

 

 

 

 

 

Reset Value

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

19/164

1

ST72324Jx ST72324Kx

5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

5.2 MAIN FEATURES

Enable executing 63 basic instructions

Fast 8-bit by 8-bit multiply

17 main addressing modes (with indirect addressing mode)

Two 8-bit index registers

16-bit stack pointer

Low power HALT and WAIT modes

Priority maskable hardware interrupts

Non-maskable software/hardware interrupts

5.3 CPU REGISTERS

The 6 CPU registers shown in Figure 8 are not present in the memory mapping and are accessed by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)

These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures.

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

Figure 8. CPU Registers

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCUMULATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = XXh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X INDEX REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = XXh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y INDEX REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = XXh

 

 

 

 

 

 

 

 

 

PCH

8

 

 

7

 

 

PCL

 

0

 

 

PROGRAM COUNTER

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = RESET VECTOR @ FFFEh-FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

I1

H

I0

N

 

Z

C

 

CONDITION CODE REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = 1

1

1 X

1 X

X

X

 

 

 

15

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

0

 

 

STACK POINTER

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = STACK HIGHER ADDRESS

 

 

 

 

 

X = Undefined Value

20/164

1

ST72324Jx ST72324Kx

CENTRAL PROCESSING UNIT (Cont’d)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

1

1

I1

H

I0

N

Z

C

 

 

 

 

 

 

 

 

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Arithmetic Management Bits

Bit 4 = H Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0:No half carry has occurred.

1:A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the result 7th bit.

0:The result of the last operation is positive or null.

1:The result of the last operation is negative

(i.e. the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = Z Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0:The result of the last operation is different from zero.

1:The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0:No overflow or underflow has occurred.

1:An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.

Interrupt Management Bits

Bit 5,3 = I1, I0 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.

Interrupt Software Priority

I1

I0

 

 

 

 

Level 0

(main)

1

0

 

 

 

 

Level 1

 

0

1

 

 

 

 

Level 2

 

0

0

 

 

 

 

Level 3

(= interrupt disable)

1

1

 

 

 

 

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

21/164

1

ST72324Jx ST72324Kx

CENTRAL PROCESSING UNIT (Cont’d)

Stack Pointer (SP)

Read/Write

Reset Value: 01 FFh

15

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

1

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

 

 

 

 

 

 

 

 

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 9).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

Figure 9. Stack Manipulation Example

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 9.

When an interrupt is received, the SP is decremented and the context is pushed on the stack.

On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

CALL

Interrupt

PUSH Y

POP Y

IRET

RET

Subroutine

Event

 

 

 

or RSP

@ 0100h

 

 

 

 

 

SP

 

SP

 

SP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

CC

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

A

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

X

 

 

 

 

X

 

 

 

 

 

 

 

 

SP

 

 

 

 

 

PCH

 

 

 

 

PCH

 

 

 

 

PCH

SP

 

 

 

 

 

 

 

 

 

PCL

 

 

 

 

PCL

 

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCH

 

 

 

 

PCH

 

 

 

 

PCH

 

 

 

 

PCH

 

 

 

 

PCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@ 01FFh PCL

 

 

 

 

PCL

 

 

 

 

PCL

 

 

 

 

PCL

 

 

 

 

PCL

 

 

Stack Higher Address = 01FFh

Stack Lower Address = 0100h

22/164

1

ST72324Jx ST72324Kx

6 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 11.

For more details, refer to dedicated parametric section.

Main features

Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator in order to respect the max. operating frequency)

Reset Sequence Manager (RSM)

Multi-Oscillator Clock Management (MO)

5 Crystal/Ceramic resonator oscillators

1 Internal RC oscillator

System Integrity Management (SI)

Main supply Low voltage detection (LVD)

Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply

6.1 PHASE LOCKED LOOP

If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply

the frequency by two to obtain an fOSC2 of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL

is disabled, then fOSC2 = fOSC/2.

Caution: The PLL is not recommended for applications where timing accuracy is required.

Caution: The PLL must not be used with the internal RC oscillator.

Figure 10. PLL Block Diagram

fOSC

 

 

PLL x 2

 

0

 

fOSC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/ 2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLL OPTION BIT

Figure 11. Clock, Reset and Supply Block Diagram

OSC2

MULTI-

f

 

 

 

 

 

 

f

MAIN CLOCK

fCPU

 

 

OSC

 

 

 

 

 

 

OSC2

CONTROLLER

 

 

OSCILLATOR

 

PLL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WITH REALTIME

 

OSC1

 

 

(option)

 

 

 

 

 

 

 

(MO)

 

 

 

 

 

 

 

CLOCK (MCC/RTC)

 

 

 

 

SYSTEM INTEGRITY MANAGEMENT

 

 

 

RESET SEQUENCE

 

 

AVD Interrupt Request

 

 

WATCHDOG

 

RESET

MANAGER

SICSR

 

 

 

 

 

TIMER (WDG)

 

 

(RSM)

 

0

AVD AVD LVD 0

0

0

WDG

 

 

 

 

 

 

IE

F

RF

 

 

RF

 

 

 

 

 

 

 

 

LOW VOLTAGE

 

 

 

 

VSS

 

 

 

 

 

DETECTOR

 

 

 

 

VDD

 

 

 

 

 

(LVD)

 

 

 

 

 

 

 

 

 

 

AUXILIARY VOLTAGE

 

 

 

 

 

 

 

 

 

DETECTOR

 

 

 

 

 

 

 

 

 

 

(AVD)

 

 

 

 

 

23/164

1

ST72324Jx ST72324Kx

6.2 MULTI-OSCILLATOR (MO)

The main clock of the ST7 can be generated by three different source types coming from the multioscillator block:

an external source

4 crystal or ceramic resonator oscillators

an internal high frequency RC oscillator

Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in Table 5. Refer to the electrical characteristics section for more details.

Caution: The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an fOSC clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. The product behaviour must therefore be considered undefined when the OSC pins are left unconnected.

External Clock Source

In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.

Crystal/Ceramic Oscillators

This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to Section 14.1 on page 150 for more details on the frequency ranges). In this mode of the multioscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.

These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.

Internal RC Oscillator

This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resistor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency accuracy and should not be used in applications that require accurate timing.

In this mode, the two oscillator pins have to be tied to ground.

In order not to exceed the max. operating frequency, the internal RC oscillator must not be used with the PLL.

Table 5. ST7 Clock Sources

 

Hardware Configuration

External Clock

ST7

 

OSC1

OSC2

EXTERNAL

 

 

SOURCE

 

Resonators

ST7

 

OSC1

OSC2

 

 

Crystal/Ceramic

CL1

CL2

LOAD

 

CAPACITORS

 

 

Internal RC Oscillator

ST7

 

OSC1

OSC2

 

 

24/164

1

ST72324Jx ST72324Kx

6.3 RESET SEQUENCE MANAGER (RSM)

6.3.1 Introduction

The reset sequence manager includes three RESET sources as shown in Figure 13:

External RESET source pulse

Internal LVD RESET (Low Voltage Detection)

Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of 3 phases as shown in Figure 12:

Active Phase depending on the RESET source

256 or 4096 CPU clock cycle delay (selected by option byte)

RESET vector fetch

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.

Figure 13. Reset Block Diagram

The RESET vector fetch phase duration is 2 clock cycles.

Figure 12. RESET Sequence Phases

RESET

Active Phase

INTERNAL RESET

FETCH

256 or 4096 CLOCK CYCLES

VECTOR

 

 

 

 

6.3.2 Asynchronous External RESET pin

The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details.

A RESET signal originating from an external

source must have a duration of at least th(RSTL)in in order to be recognized (see Figure 14). This de-

tection is asynchronous and therefore the MCU can enter reset state even in HALT mode.

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter

 

 

 

 

 

 

 

 

 

 

INTERNAL

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PULSE

 

 

 

 

 

 

WATCHDOG RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERATOR

 

 

 

LVD RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25/164

1

ST72324Jx ST72324Kx

RESET SEQUENCE MANAGER (Cont’d)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

6.3.3 External Power-On RESET

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until VDD is over the minimum level specified for the selected fOSC frequency.

A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the RESET pin.

6.3.4 Internal Low Voltage Detector (LVD)

RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

Power-On RESET

Voltage Drop RESET

The device RESET pin acts as an output that is pulled low when VDD<VIT+ (rising edge) or VDD<VIT- (falling edge) as shown in Figure 14.

The LVD filters spikes on VDD larger than tg(VDD) to avoid parasitic resets.

6.3.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 14.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out.

Figure 14. RESET Sequences

VDD

VIT+(LVD)

VIT-(LVD)

LVD

RESET

RUN

RUN

 

ACTIVE PHASE

EXTERNAL

WATCHDOG

RESET

RESET

RUN

RUN

ACTIVE

ACTIVE

PHASE

PHASE

th(RSTL)in

 

 

tw(RSTL)out

 

 

 

 

 

 

 

 

 

EXTERNAL

RESET

SOURCE

RESET PIN

WATCHDOG

RESET

WATCHDOG UNDERFLOW

INTERNAL RESET (256 or 4096 TCPU)

VECTOR FETCH

26/164

1

ST72324Jx ST72324Kx

6.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains the Low Voltage Detector (LVD) and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

6.4.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the VDD supply voltage is below a VIT- reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The VIT- reference value for a voltage drop is lower than the VIT+ reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when VDD is below:

VIT+ when VDD is rising

VIT- when VDD is falling

The LVD function is illustrated in Figure 15.

The voltage threshold can be configured by option byte to be low, medium or high.

Provided the minimum VDD value (guaranteed for the oscillator frequency) is above VIT-, the MCU can only be in two modes:

Figure 15. Low Voltage Detector vs Reset

under full software control

in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:

The LVD allows the device to be used without any external RESET circuitry.

If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed.

The LVD is an optional function which can be selected by option byte.

It is recommended to make sure that the VDD supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

VDD

Vhys

VIT+

VIT-

RESET

27/164

1

ST72324Jx ST72324Kx

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.4.2 Auxiliary Voltage Detector (AVD)

The Voltage Detector function (AVD) is based on an analog comparison between a VIT-(AVD) and

VIT+(AVD) reference value and the VDD main supply. The VIT- reference value for falling voltage is

lower than the VIT+ reference value for rising voltage in order to avoid parasitic detection (hysteresis).

The output of the AVD comparator is directly readable by the application software through a real time status bit (AVDF) in the SICSR register. This bit is read only.

Caution: The AVD function is active only if the LVD is enabled through the option byte (see Section 14.1 on page 150).

6.4.2.1 Monitoring the VDD Main Supply

The AVD voltage threshold value is relative to the selected LVD threshold configured by option byte (see

If the AVD interrupt is enabled, an interrupt is gen-

erated when the voltage crosses the VIT+(AVD) or VIT-(AVD) threshold (AVDF bit toggles).

Figure 16. Using the AVD to Monitor VDD

In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut down safely before the LVD resets the microcontroller. See Figure 16.

The interrupt on the rising edge is used to inform the application that the VDD warning state is over.

If the voltage rise time trv is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when VIT+(AVD) is reached.

If trv is greater than 256 or 4096 cycles then:

– If the AVD interrupt is enabled before the

VIT+(AVD) threshold is reached, then 2 AVD interrupts will be received: the first when the AVDIE

bit is set, and the second when the threshold is reached.

If the AVD interrupt is enabled after the VIT+(AVD) threshold is reached then only one AVD interrupt will occur.

VDD

 

 

Early Warning Interrupt

 

 

 

 

 

 

 

 

 

 

(Power has dropped, MCU not

 

 

 

 

 

not yet in reset)

 

 

VIT+(AVD)

 

 

Vhyst

 

 

 

 

 

 

 

VIT-(AVD)

 

 

 

 

 

VIT+(LVD)

 

 

 

 

 

VIT-(LVD)

 

 

 

trv VOLTAGE RISE TIME

AVDF bit

0

1

RESET VALUE

1

0

AVD INTERRUPT

 

 

 

 

 

REQUEST

 

 

 

 

 

IF AVDIE bit = 1

 

 

 

 

 

 

 

 

INTERRUPT PROCESS

 

INTERRUPT PROCESS

LVD RESET

 

 

 

 

 

28/164

 

 

 

 

 

1

 

 

 

 

 

ST72324Jx ST72324Kx

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.4.3 Low Power Modes

Mode

Description

 

 

WAIT

No effect on SI. AVD interrupt causes the

device to exit from Wait mode.

 

 

 

HALT

The CRSR register is frozen.

 

 

6.4.3.1 Interrupts

The AVD interrupt event generates an interrupt if the AVDIE bit is set and the interrupt mask in the CC register is reset (RIM instruction).

Interrupt Event

Event

Enable

Exit

Exit

Flag

Control

from

from

 

Bit

Wait

Halt

 

 

 

 

 

 

 

AVD event

AVDF

AVDIE

Yes

No

 

 

 

 

 

29/164

1

ST72324Jx ST72324Kx

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.4.4 Register Description

SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR)

Read/Write

Reset Value: 000x 000x (00h)

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

AVD

AVD

LVD

0

0

0

WDG

IE

F

RF

RF

 

 

 

 

 

 

 

 

 

 

 

 

Bit 7 = Reserved, must be kept cleared.

Bit 6 = AVDIE Voltage Detector interrupt enable

This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine.

0:AVD interrupt disabled

1:AVD interrupt enabled

Bits 3:1 = Reserved, must be kept cleared.

Bit 0 = WDGRF Watchdog reset flag

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).

Combined with the LVDRF flag information, the flag description is given by the following table.

RESET Sources

LVDRF

WDGRF

 

 

 

 

 

External

RESET

pin

0

0

Watchdog

0

1

 

 

 

LVD

1

X

 

 

 

 

 

Application notes

Bit 5 = AVDF Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 16 and to Section 6.4.2.1 for additional details.

0:VDD over VIT+(AVD) threshold

1:VDD under VIT-(AVD) threshold

Bit 4 = LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.

The LVDRF flag is not cleared when another RESET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.

30/164

1

Loading...
+ 134 hidden pages