Philips PCF8579H-F1, PCF8579U, PCF8579U-10, PCF8579U-12, PCF8579U-2-F1 Datasheet

...
0 (0)

INTEGRATED CIRCUITS

DATA SHEET

PCF8579

LCD column driver for dot matrix graphic displays

Product specification

1997 Apr 01

Supersedes data of 1996 Oct 25

File under Integrated Circuits, IC12

Philips Semiconductors Product specification

 

LCD column driver for dot matrix graphic

PCF8579

 

displays

 

 

 

 

 

 

 

 

 

 

CONTENTS

10

LIMITING VALUES

1

FEATURES

11

HANDLING

12

DC CHARACTERISTICS

2

APPLICATIONS

13

AC CHARACTERISTICS

3

GENERAL DESCRIPTION

14

APPLICATION INFORMATION

4

ORDERING INFORMATION

15

CHIP DIMENSIONS AND BONDING PAD

5

BLOCK DIAGRAM

 

LOCATIONS

6

PINNING

 

16

CHIP-ON GLASS INFORMATION

7

FUNCTIONAL DESCRIPTION

17

PACKAGE OUTLINES

 

 

7.1Multiplexed LCD bias generation

7.2Power-on reset

7.3Timing generator

7.4Column drivers

7.5Display RAM

7.6Data pointer

7.7Subaddress counter

7.8I2C-bus controller

7.9Input filters

7.10RAM access

7.11Display control

7.12TEST pin

8

I2C-BUS PROTOCOL

8.1Command decoder

18 SOLDERING

18.1Introduction

18.2Reflow soldering

18.3Wave soldering

18.3.1LQFP

18.3.2VSO

18.3.3Method (LQFP and VSO)

18.4Repairing soldered joints

19DEFINITIONS

20LIFE SUPPORT APPLICATIONS

21PURCHASE OF PHILIPS I2C COMPONENTS

9

CHARACTERISTICS OF THE I2C-BUS

9.1Bit transfer

9.2Start and stop conditions

9.3System configuration

9.4Acknowledge

1997 Apr 01

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

1 FEATURES

LCD column driver

Used in conjunction with the PCF8578, this device forms part of a chip set capable of driving up to 40960 dots

40 column outputs

Selectable multiplex rates; 1 : 8, 1 : 16, 1 : 24 or 1 : 32

Externally selectable bias configuration, 5 or 6 levels

Easily cascadable for large applications (up to 32 devices)

1280-bit RAM for display data storage

Display memory bank switching

Auto-incremented data loading across hardware subaddress boundaries (with PCF8578)

Power-on reset blanks display

Logic voltage supply range 2.5 to 6 V

Maximum LCD supply voltage 9 V

Low power consumption

I2C-bus interface

TTL/CMOS compatible

Compatible with most microcontrollers

Optimized pinning for single plane wiring in multiple device applications (with PCF8578)

Space saving 56-lead plastic mini-pack and 64-pin plastic low profile quad flat package

Compatible with chip-on-glass technology

I2C-bus address: 011110 SA0.

2 APPLICATIONS

Automotive information systems

Telecommunication systems

Point-of-sale terminals

Computer terminals

Instrumentation.

3 GENERAL DESCRIPTION

The PCF8579 is a low power CMOS LCD column driver, designed to drive dot matrix graphic displays at multiplex rates of 1 : 8, 1 : 16, 1 : 24 or 1 : 32. The device has

40 outputs and can drive 32 × 40 dots in a 32 row multiplexed LCD. Up to 16 PCF8579s can be cascaded and up to 32 devices may be used on the same I2C-bus (using the two slave addresses). The device is optimized for use with the PCF8578 LCD row/column driver. Together these two devices form a general purpose LCD dot matrix driver chip set, capable of driving displays of up to 40960 dots. The PCF8579 is compatible with most microcontrollers and communicates via a two-line bidirectional bus (I2C-bus). To allow partial VDD shutdown the ESD protection system of the SCL and SDA pins does not use a diode connected to VDD. Communication overheads are minimized by a display RAM with auto-incremented addressing and display bank switching.

4 ORDERING INFORMATION

TYPE

 

PACKAGE

 

 

 

 

NUMBER

NAME

DESCRIPTION

VERSION

 

 

 

 

 

PCF8579T

VSO56

plastic very small outline package; 56 leads

SOT190

 

 

 

 

PCF8579U7

chip with bumps on tape

 

 

 

 

PCF8579H

LQFP64

plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm

SOT314-2

 

 

 

 

1997 Apr 01

3

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

5 BLOCK DIAGRAM

 

 

 

 

 

C39 - C0

 

 

 

 

 

 

 

17 - 56

 

 

 

 

 

 

 

(30 to 33, 35 to 64, 1 to 6)

 

VDD

12 (20)

 

 

 

 

 

 

14 (22)

 

 

 

 

 

 

V3

 

 

 

COLUMN (1)

 

 

15 (23)

 

 

 

PCF8579

 

V4

 

 

 

DRIVERS

 

16 (24)

 

 

 

 

 

VLCD

 

 

 

 

 

 

 

 

 

 

 

 

 

TEST

6 (12)

 

 

 

OUTPUT

 

 

 

 

 

 

CONTROLLER

 

 

 

 

 

 

 

 

 

VSS

5 (11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y DECODER

32 x 40 BIT

DISPLAY

 

 

 

 

AND SENSING

 

 

 

 

DISPLAY RAM

DECODER

 

 

 

 

AMPLIFIERS

 

 

 

 

 

 

 

 

POWER-ON

 

 

X DECODER

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

A3

8 (14)

 

 

 

 

 

(9) 3

9 (16)

 

 

 

 

 

A2

 

SUBADDRESS

 

 

TIMING

SYNC

10 (17)

 

RAM DATA POINTER

(10) 4

A1

 

COUNTER

GENERATOR

11 (18)

 

Y

X

CLK

A0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCL

2 (8)

 

I2C-BUS

 

 

 

 

1 (7)

INPUT

 

COMMAND

 

 

SDA

FILTERS

CONTROLLER

 

DECODER

 

 

 

 

 

 

 

 

 

 

 

(15, 19, 21, 25 to 29, 34)

 

 

 

 

 

 

13

7 (13)

 

 

 

 

 

 

n.c.

 

 

 

 

MSA919

 

 

SA0

 

 

 

 

(1) Operates at LCD voltage levels, all other blocks operate at logic levels. The pin numbers given in parenthesis refer to the LQFP64 package.

Fig.1 Block diagram.

1997 Apr 01

4

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

6 PINNING

 

SYMBOL

 

PINS

DESCRIPTION

 

 

 

 

 

VSO56

 

LQFP64

 

 

 

 

 

 

 

 

 

 

 

 

SDA

1

 

7

I2C-bus serial data input/output

 

SCL

2

 

8

I2C-bus serial clock input

 

 

 

3

 

9

cascade synchronization input

 

SYNC

 

 

 

 

 

 

 

 

 

CLK

4

 

10

external clock input

 

 

 

 

 

 

 

VSS

5

 

11

ground (logic)

 

TEST

6

 

12

test pin (connect to VSS)

 

SA0

7

 

13

I2C-bus slave address input (bit 0)

 

A3 to A0

8 to 11

 

14, 16 to 18

I2C-bus subaddress inputs

 

VDD

12

 

20

supply voltage

 

n.c.

13(1)

 

15, 19, 21,25 to 29, 34

not connected

 

V3, V4

14 and 15

 

22 and 23

LCD bias voltage inputs

 

VLCD

16

 

24

LCD supply voltage

 

C39 to C0

17 to 56

 

30 to 33, 35 to 64 and 1 to 6

LCD column driver outputs

 

 

 

 

 

 

 

Note

1. Do not connect, this pin is reserved.

1997 Apr 01

5

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

SDA

 

 

 

C0

1

 

56

 

 

2

 

 

 

SCL

 

55

C1

 

 

 

 

 

 

SYNC

3

 

54

C2

CLK

 

 

 

C3

4

 

53

VSS

 

 

 

C4

5

 

52

TEST

 

 

 

C5

6

 

51

SA0

 

 

 

 

7

 

50

C6

A3

 

 

 

 

8

 

49

C7

A2

 

 

 

C8

9

 

48

A1

 

 

 

 

10

 

47

C9

 

 

 

 

 

 

A0

11

 

46

C10

V DD

12

 

 

 

 

45

C11

n.c.

13

 

44

C12

V 3

14

PCF8579

43

C13

V 4

 

 

 

15

 

42

C14

V LCD

 

 

 

 

16

 

41

C15

 

 

 

 

40

 

C39

17

 

C16

C38

 

 

39

 

18

 

C17

 

 

 

 

 

 

C37

19

 

38

C18

 

 

 

 

 

 

C36

20

 

37

C19

 

 

 

 

 

 

C35

21

 

36

C20

 

 

 

 

 

 

C34

22

 

35

C21

C33

 

 

 

 

23

 

34

C22

 

 

 

 

 

 

C32

24

 

33

C23

C31

 

 

 

 

25

 

32

C24

 

 

 

 

 

 

C30

26

 

31

C25

C29

 

 

 

 

27

 

30

C26

C28

28

 

 

 

 

29

C27

 

 

 

 

 

 

 

 

 

MSA918

 

Fig.2 Pin configuration (VSO56).

1997 Apr 01

6

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

handbook, full pagewidth

C6

 

C7

 

C8

 

C9

 

C10

 

C11

 

C12

 

C13

 

C14

 

C15

 

C16

 

C17

 

C18

 

C19

 

C20

 

C21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

 

63

 

62

 

61

 

60

 

59

 

58

 

57

 

56

 

55

 

54

 

53

 

52

 

51

 

50

 

49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C5 1

C4 2

C3 3

C2 4

C1 5

C0 6

SDA 7

SCL 8

PCF8579

SYNC 9

CLK 10

VSS 11

TEST 12

SA0 13

A3 14

n.c. 15 A2 16

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

25

 

26

 

27

 

28

 

29

 

30

 

31

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1

 

A0

 

n.c.

 

DD

 

n.c.

3

4

 

LCD

 

n.c.

 

n.c.

 

n.c.

 

n.c.

 

n.c.

 

C39

 

C38

 

C37

 

 

 

V

 

 

V

 

V

 

V

 

 

 

 

 

 

 

 

48 C22

47 C23

46 C24

45 C25

44 C26

43 C27

42 C28

41 C29

40 C30

39 C31

38 C32

37 C33

36 C34

35 C35

34 n.c.

33 C36

MBH590

Fig.3 Pin configuration (LQFP64).

1997 Apr 01

7

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

7 FUNCTIONAL DESCRIPTION

The PCF8579 column driver is designed for use with the PCF8578. Together they form a general purpose LCD dot matrix chip set.

Typically up to 16 PCF8579s may be used with one PCF8578. Each of the PCF8579s is identified by a unique 4-bit hardware subaddress, set by pins A0 to A3.

The PCF8578 can operate with up to 32 PCF8579s when using two I2C-bus slave addresses. The two slave addresses are set by the logic level on input SA0.

7.1Multiplexed LCD bias generation

The bias levels required to produce maximum contrast depend on the multiplex rate and the LCD threshold voltage (Vth). Vth is typically defined as the RMS voltage at which the LCD exhibits 10% contrast. Table 1 shows the optimum voltage bias levels for the PCF8578/PCF8579

chip set as functions of Vop (Vop = VDD VLCD), together with the discrimination ratios (D) for the different multiplex

rates. A practical value for Vop is obtained by equating

Voff(rms) with Vth. Figure 4 shows the first 4 rows of Table 1 as graphs.

Table 1 Optimum LCD bias voltages

PARAMETER

 

MULTIPLEX RATE

 

 

 

 

 

1 : 8

1 : 16

1 : 24

1 : 32

 

 

 

 

 

 

V2

0.739

0.800

0.830

0.850

---------

Vop

 

 

 

 

V3

0.522

0.600

0.661

0.700

---------

Vop

 

 

 

 

V4

0.478

0.400

0.339

0.300

---------

Vop

 

 

 

 

V5

0.261

0.200

0.170

0.150

---------

Vop

 

 

 

 

Voff ( rms)

0.297

0.245

0.214

0.193

-----------------------

Vop

 

 

 

 

Von ( rms)

0.430

0.316

0.263

0.230

----------------------

Vop

 

 

 

 

Von ( rms)

1.447

1.291

1.230

1.196

D = -----------------------

Voff ( rms)

 

 

 

 

Vop

3.370

4.080

4.680

5.190

---------

Vth

 

 

 

 

MSA838

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V bias

 

 

 

 

 

 

 

 

 

Vop

 

 

 

 

 

V2

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V3

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

V5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1:8

1:16

1:24

1:32

multiplex rate

Vbias = V2, V3, V4, V5. See Table 1.

Fig.4 Vbias/Vop as a function of the multiplex rate.

7.2Power-on reset

At power-on the PCF8579 resets to a defined starting condition as follows:

1.Display blank (in conjunction with PCF8578)

2.1 : 32 multiplex rate

3.Start bank, 0 selected

4.Data pointer is set to X, Y address 0, 0

5.Character mode

6.Subaddress counter is set to 0

7.I2C-bus is initialized.

Data transfers on the I2C-bus should be avoided for 1 ms following power-on, to allow completion of the reset action.

1997 Apr 01

8

Philips PCF8579H-F1, PCF8579U, PCF8579U-10, PCF8579U-12, PCF8579U-2-F1 Datasheet

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

T frame

0

1

2

3

4

5

6

7

VDD

V 2

V3

ROW 0 V4

V5

VLCD

VDD

V 2

V3

COLUMN V4

V5

VLCD

SYNC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

VDD

V 2

V3

ROW 0 V4

V5

VLCD

VDD

V 2

V3

COLUMN V4

V5

VLCD

SYNC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

VDD

V 2

V3

ROW 0 V4

V5

VLCD

VDD

V 2

V3

COLUMN V4

V5

VLCD

SYNC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VDD

V 2

V3 ROW 0 V4

V5

VLCD

VDD

V 2

V3

COLUMN V4

V5

VLCD

SYNC

MSA841

ON

OFF

1:8

1:16

1:24

1:32

column display

Fig.5 LCD row/column waveforms.

1997 Apr 01

9

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

ROW 1

R1 (t)

ROW 2

R2 (t)

COL 1

C1 (t)

COL 2

C2 (t)

V state 1 (t)

V state 2 (t)

T frame

VDD

V2

V3 V4 V5

VLCD

VDD

V2

V3

V4

V5

VLCD

VDD

V2

V3

V4

V5

VLCD

VDD

V2

V3

V4

V5

VLCD

Vop

0.261 Vop

0 V

0.261 Vop

Vop

Vop

0.478 Vop

0.261 Vop

0 V

0.261 Vop

0.478 Vop

Vop

Vstate 1

(t) = C1(t)

 

R1(t):

 

 

 

 

 

Von(rms)

=

1

 

 

 

8

 

 

1

 

= 0.430

 

 

 

 

 

Vop

 

8

 

 

 

8 (

8

 

 

 

1)

Vstate 2

(t) = C2(t)

 

R2(t):

 

 

 

 

 

 

Voff(rms)

=

2 ( 8

1)

= 0.297

 

8 (

 

 

 

1) 2

 

Vop

8

 

 

 

state 1 (OFF)

state 2 (ON)

dot matrix

1:8 multiplex rate

MSA840

general relationship (n = multiplex rate)

Von(rms) =

1

n (

n

1

Vop

 

n

n

1)

Voff(rms)

=

2 (

n

1)

Vop

n (

n

1) 2

 

Fig.6 LCD drive mode waveforms for 1 : 8 multiplex rate.

1997 Apr 01

10

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

ROW 1

R1 (t)

ROW 2

R2 (t)

COL 1

C1 (t)

COL 2

C2 (t)

V state 1 (t)

V state 2 (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T frame

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

state 1 (OFF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

state 2 (ON)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLCD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLCD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dot matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLCD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1:16 multiplex rate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLCD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vop

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2 Vop

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2 Vop

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vop

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vop

0.6 Vop

0.2 Vop

0 V

0.2 Vop

0.6 Vop

Vop

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSA836

Vstate 1 (t) = C1(t)

 

R1(t):

 

 

 

 

 

 

 

 

general relationship (n = multiplex rate)

 

 

 

 

 

 

 

 

Von(rms)

=

1

 

 

 

16

 

 

1

 

 

 

= 0.316

Von(rms)

=

 

1

 

 

 

 

n

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

 

)

 

V

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

)

 

 

op

 

16

 

16

 

 

16

 

 

1

 

 

 

 

op

 

 

n

 

n

 

 

n

 

 

1

 

Vstate 2 (t) = C2(t)

 

R2(t):

 

 

 

 

 

 

 

Voff(rms)

=

 

2 (

 

n

 

1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

off(rms)

=

2 (

16

 

1)

 

 

 

 

= 0.254

 

Vop

 

 

n (

 

n

 

 

 

1) 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vop

16

( 16

 

 

 

1) 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 LCD drive mode waveforms for 1 : 16 multiplex rate.sa.

1997 Apr 01

11

Philips Semiconductors

Product specification

 

 

LCD column driver for dot matrix graphic

PCF8579

displays

7.3Timing generator

The timing generator of the PCF8579 organizes the internal data flow from the RAM to the display drivers. An external synchronization pulse SYNC is received from the PCF8578. This signal maintains the correct timing relationship between cascaded devices.

7.4Column drivers

Outputs C0 to C39 are column drivers which must be connected to the LCD. Unused outputs should be left open-circuit.

7.5Display RAM

The PCF8579 contains a 32 × 40-bit static RAM which stores the display data. The RAM is divided into 4 banks of 40 bytes (4 × 8 × 40 bits). During RAM access, data is transferred to/from the RAM via the I2C-bus.

7.6Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows an individual data byte or a series of data bytes to be written into, or read from, the display RAM, controlled by commands sent on the I2C-bus.

7.7Subaddress counter

The storage and retrieval of display data is dependent on the content of the subaddress counter. Storage and retrieval take place only when the contents of the subaddress counter agree with the hardware subaddress at pins A0, A1, A2 and A3.

7.8I2C-bus controller

The I2C-bus controller detects the I2C-bus protocol, slave address, commands and display data bytes. It performs the conversion of the data input (serial-to-parallel) and the data output (parallel-to-serial). The PCF8579 acts as an I2C-bus slave transmitter/receiver. Device selection depends on the I2C-bus slave address, the hardware subaddress and the commands transmitted.

7.9Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

7.10RAM access

There are three RAM ACCESS modes:

Character

Half-graphic

Full-graphic.

These modes are specified by bits G1 and G0 of the RAM ACCESS command. The RAM ACCESS command controls the order in which data is written to or read from the RAM (see Fig.8).

To store RAM data, the user specifies the location into which the first byte will be loaded (see Fig.9):

Device subaddress (specified by the DEVICE SELECT command)

RAM X-address (specified by the LOAD X-ADDRESS command)

RAM bank (specified by bits Y1 and Y0 of the RAM ACCESS command).

Subsequent data bytes will be written or read according to the chosen RAM access mode. Device subaddresses are automatically incremented between devices until the last device is reached. If the last device has subaddress 15, further display data transfers will lead to a wrap-around of the subaddress to 0.

7.11Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs. The number of rows scanned depends on the multiplex rate set by bits M1 and M0 of the SET MODE command.

The display status (all dots on/off and normal/inverse video) is set by bits E1 and E0 of the SET MODE command. For bank switching, the RAM bank corresponding to the top of the display is set by bits B1 and B0 of the SET START BANK command. This is shown in Fig.10 This feature is useful when scrolling in alphanumeric applications.

7.12TEST pin

The TEST pin must be connected to VSS.

1997 Apr 01

12

Loading...
+ 28 hidden pages