Integrated Device Technology Inc IDT49C465PQFB, IDT49C465AG, IDT49C465AGB, IDT49C465APQF, IDT49C465APQFB Datasheet

...
0 (0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32-BIT FLOW-THRU

IDT49C465

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERROR DETECTION

IDT49C465A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AND CORRECTION UNIT

 

Integrated Device Technology, Inc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEATURES

32-bit wide Flow-thruEDC unit, cascadable to 64 bits

Single-chip 64-bit Generate Mode

Separate system and memory buses

On-chip pipeline latch with external control

Supports bidirectional and common I/O memories

Corrects all single-bit errors

Detects all double-bit errors, some multiple-bit errors

Error Detection Time — 12ns

Error Correction Time — 14ns

On chip diagnostic registers.

Parity generation and checking on system data bus

Low power CMOS — 100mA typical at 20MH Z

144-pin PGA and PQFP packages

Military product compliant to MIL-STD 883, Class B

DESCRIPTION

The IDT49C465/A is a 32-bit, two-data bus, Flow-thruEDC unit. The chip provides single-error correction and two and three bit error detection of both hard and soft memory errors. It can be expanded to 64-bit widths by cascading 2 units, without the need for additional external logic. The FlowthruEDC has been optimized for speed and simplicity of control.

The EDC unit has been designed to be used in either of two configurations in an error correcting memory system. The bidirectional configuration is most appropriate for systems using bidirectional memory buses. A second system configuration utilizes external octal buffers, and is well suited for systems using memory with separate I/O buses.

The IDT49C465/A supports partial word writes, pipelining and error diagnostics. It also provides parity protection for data on the system side.

SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM

MD0–31

 

 

 

MD

 

 

Latch

Memory

 

 

 

 

Checkbit

 

 

Generator

MLE

 

 

CBI0–7

Checkbit

Mux

Latch

 

PCBI0–7

 

CONTROL

 

Pipeline Latch

SD0–31

 

 

 

 

SD

Byte

 

Mux

 

Latch

 

 

SLE

 

 

PLE

 

CONTROL

 

 

The IDT logo is a registered trademark and Flow-thruEDC is a trademarkof Integrated Device Technology Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

©1995 Integrated Device Technology, Inc.

11.7

Correct

Logic

Syndrome Generator

 

 

 

 

 

 

 

ERR

 

 

 

 

 

 

 

 

 

Expansion Logic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detect

 

 

 

 

 

 

 

 

Logic

 

MERR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System

 

 

 

Mux

 

CBO0–7

Checkbit

 

 

 

 

 

 

 

 

 

Generator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2552 drw 01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

AUGUST 1995

DSC-9028/7

1

IDT49C465/A

 

 

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

 

 

 

 

PIN CONFIGURATION

 

 

 

VCC SD4 BE0 SD3 SD2 SD1 SD0

PCBI7 PCBI6 PCBI5 PCBI4 PCBI3 PCBI2 PCBI1

PCBI0 CODE ID 1 CODE ID 0 GND GND MODE 1 MODE 0

MERR ERR SYO7 SYO6 SY05 SY04 GND SY03 SYO2 SYO1 SYO0 MD0 MD1 MD2 VCC

72 VCC 73

SD5

SD6

SD7

SD8

SD9

SD10

SD11

GND

BE1

SD12

SD13

SD14

SD15

SLE

PLE

SOE

GND

SD16

SD17

SD18

SD19

BE2

SD20

SD21

SD22

GND

SD23

SD24

SD25

SD26

SD27

BE3

SD28

VCC

VCC 108

109

49C465Y

PQ144-2

37

36 VCC

VCC

MD3

MD4

MD5

MD6

MD7

MD8

MD9

GND

MD10

MD11

MD12

MD13

MD14

MD15

MLE

MOE

GND

MD16

MD17

MD18

MD19

MD20

MD21

MD22

MD23

GND

MD24

MD25

MD26

MD27

MD28

MD29

MD30

1 VCC

144

VCC

SD29 SD30 SD31

CBO0

CBO1 CBO2

CBO3

CBOE CBO4 CBO5

CBO6

CBO7 PSEL

PERR P3

P2

GND GND P1

P0

MODE 2

SYNCLK SCLKEN CLEAR CBI0

CBI1

CBI2

CBI3

GND CBI4

CBI5 CBI6

CBI7 MD31 VCC

2552 drw 02

PQFP

TOP VIEW

11.7

2

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATION

15

VCC

SD 2

PCBI 6 PCBI 5 PCBI 3

CODE CODE MODE

MERR ERR

SYO 5 SYO 3 SYO 1

MD 1

VCC

ID 1

ID0

1

14

SD 6

SD 4

 

SD 1

PCBI 7 PCBI 4 PCBI 1 PCBI 0 MODE SYO 6 SYO 4 SYO 2

 

MD 0

MD 2

VCC

MD 5

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

13

SD 9

SD 5

 

BE 0

 

SD 3

 

SD 0

 

PCBI 2

GND

GND

 

SYO 7

 

GND

 

SYO 0

 

VCC

 

MD 3

MD 6

MD 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

SD 11

SD 7

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MD 4

MD 8

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

SD 12

SD 10

 

SD 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MD 7

MD 10

MD 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

SD 15

BE 1

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MD 12

MD 13

MD 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

SLE

SD 13

 

SD 14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOE

MD 14

MLE

 

 

 

 

 

 

 

 

 

 

 

 

G144-2

 

 

 

 

 

 

 

8

SOE

PLE

 

GND

 

 

 

 

 

 

 

 

 

GND

MD 17

MD 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

SD 17

SD 19

 

SD 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MD 20

MD 21

MD 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

SD 18

BE 2

 

SD 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

MD 23

MD 19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

SD 21

SD 22

 

SD 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MD 27

MD 25

MD 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

GND

SD 24

BE 3

NC*

 

 

 

 

 

 

 

 

VCC

MD 28

MD 24

 

 

 

 

 

 

 

 

 

 

3

SD 23

SD 26

SD 28

VCC

CB0 0

CBOE CB0 7

GND

GND

SCLK

GND

CB1 6

CB1 7

MD 30

MD 26

 

 

 

 

 

 

 

 

 

 

EN

 

 

 

 

 

2

SD 27

VCC

SD 29

SD 31

CB0 2

CB0 4

CB0 6

P3

MODE SYN-

CB1 0

CB1 3

CB1 4

MD 31

MD 29

 

 

 

 

 

 

 

 

 

2

CLK

 

 

 

 

 

1

VCC

SD 30

CB0 1

CB0 3

CB0 5

PSEL PERR

P2

P1

P0

CLEAR CB1 1

CB1 2

CB1 5

VCC

 

A

B

C

D

E

F

G

H

J

K

L M

N

P

R

*Tied to Vcc internally

PGA (CAVITY UP)

TOP VIEW

2552 drw 03

11.7

3

Integrated Device Technology Inc IDT49C465PQFB, IDT49C465AG, IDT49C465AGB, IDT49C465APQF, IDT49C465APQFB Datasheet

7.11

4

ERR

MERR

SYO0–7

PLE

SOE

BE0–3

SD0–31

SLE

PSEL

4

P0–3

4

PERR

/ERR

SYNCLK

SCLKEN

CLEAR

ERROR

 

INTERNAL 8

DETECT

 

MUX

FINAL

8

 

SYNDRO

 

ME

 

8

8

MUX

 

8

4

1 OF 4

PIPE

BYTES

 

LATCH

SD

LATCH

PCBI 0–7

SYNDROME GENERATOR

MUX

Dashed Line = Diagnostic path

 

 

8

 

8

MUX

CHECK

 

 

 

BIT

8 MUX

 

 

LATCH

 

8

MD

CHECKBIT GENERATOR

8

MD

ERROR LATCH CORRECT

ERROR DATA LATCH

 

CLEAR

DIAGNOSTIC

INTERNAL SYNCLK

LATCHES

BYTE MUX

BE 0–3 4

4 PARITY GEN

PARITY CHECK

MUX

SD 8

CHECKBIT

GENERATOR

 

SD

 

CHECKBIT

8

GENERATOR

MUX

8

8

8

INTERNAL SYNCLK

CODE ID 0,1

2

CONTROL

 

MODE0–2

3

LOGIC

 

 

04 drw 2552

 

 

8

CBI0–7

MLE

MD0–31

MOE

CBO0–7

CBOE

PCBI0–7

DIAGRAM BLOCK FUNCTIONAL DETAILED

IDT49C465/A UNIT CORRECTION AND DETECTION ERROR THRU-FLOW BIT-32

RANGES TEMPERATURE COMMERCIAL AND MILITARY

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

SYSTEM CONFIGURATIONS

The IDT49C465 EDC unit can be used in various configurations in an EDC system. The basic configurations are shown below.

Figure 1 illustrates a bidirectional configuration, which is most appropriate for systems using bidirectional memory buses. It is the simplest configuration to understand and use. During a correction cycle, the corrected data word can be simultaneously output on both the system bus and memory bus. Logically, no other parts are required for the correction function. During partial-word-write operations, the new bytes are internally combined with the corrected old bytes for checkbit generation and writing to memory.

CPU

SD

MD

MEMORY

I/O

I/O

 

 

EDC

CBI

CHECKBITS

CBO

2552 drw 05

Figure 1. Common I/O Configuration

Figure 3 illustrates a third configuration which utilizes external buffers and is also well suited for systems using memory with separate I/O buses. Since data from memory does not need to pass through the part on every cycle, the EDC system may operate in “bus-watch” mode. As in the separate I/O configuration, corrected data is output on the SD outputs.

MEMORY

CHECKBIT

MEMORY

INPUT BUS

OUTPUT BUS

 

I/O

 

 

 

 

CBO

CBI

 

 

SD

MD

 

 

 

EDC

 

EXT. BUFFER

 

 

EXT. BUFFER

EXT.BUFFER

 

 

 

 

CPU BUS

 

 

 

 

2552 drw 07

Figure 3. Bypassed Separate I/O Configuration

Figure 2 illustrates a separate I/O configuration. This is appropriate for systems using separate I/O memory buses. This configuration allows separate input and output memory buses to be used. Corrected data is output on the SD outputs for the system and for re-write to memory. Partial word-write bytes are combined externally for writing and checkbit generation.

Figure 4 illustrates the single-chip generate-only mode for very fast 64-bit checkbit generation in systems that use separate checkbit-generate and detect-correct units. If this is not desired, 64-bit checkbit generation and correction can be done with just 2 EDC units. 64-bit correction is also straightforward, fast and requires no extra hardware for the expansion.

CPU

 

 

 

 

 

 

.EXT

 

 

MEMORY

 

 

 

 

 

 

 

 

 

 

 

 

 

BUFFER

 

 

 

 

 

 

INPUTS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SD

MEMORY

MD OUTPUTS

EDC

CBI

CHECKBITS

CBO

2552 drw 06

Figure 2. Separate I/O Configuration

 

 

CHECK

 

CHECK

 

 

 

 

 

BITS OUT

 

BITS IN

MEMORY

 

 

 

 

 

 

 

 

OUTPUT BUS

 

MEMORY

 

MEMORY

 

 

 

INPUT BUS

 

INPUT BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CBO

 

 

 

 

CBI

 

 

 

 

 

 

 

 

 

 

 

 

 

64-BIT

 

 

 

 

LOWER

UPPER

 

 

 

GEN.

 

 

 

 

 

 

 

ONLY

 

 

 

 

DATA

DATA

 

 

 

EDC

 

 

 

 

EDC

EDC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUFFER

 

 

 

BUFFER

 

 

BUFFER

BUFFER

 

 

 

 

 

 

 

 

 

 

 

CPU BUS

2552 drw 08

 

Figure 4. Separate Generate/Correction Units

with 64-Bit Checkbit Generation

11.7

5

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

FUNCTIONAL DESCRIPTION

The error detection/correction codes consist of a modified

Hamming code; it is identical to that used in the IDT49C460.

32-BIT MODE (CODE ID 1,0=00)

VCC

8

CHECKBITS–OUT

 

PCBI

CBO

CBI7

7

 

CHECKBITS–IN

SYO

CBI0–6

7

7 SYNDROME–OUT

EDC

2552 drw 09

Figure 5. 32-Bit Mode

64-BIT MODE (CODE ID 1,0=10 & 11)

The expansion bus topology is shown in Figure 6. This topology allows the syndrome bits used by the correction logic to be generated simultaneously in both parts used in the expansion. During a 64-bit detection or correction operation,

“Partial-Checkbit” data and “Partial-Syndrome” data is simultaneously exchanged between the two EDC units in opposite directions on dedicated expansion buses. This results in very short 64-bit detection and correction times.

8PARTIAL–CHECKBITS–OUT (11) (CORRECTION ONLY)

 

PCBI

CBO

8

PARTIAL–CHECKBITS–OUT (10)

PCBI

CBO

 

8

FINAL

 

 

 

 

 

 

 

 

 

 

 

(GENERATE ONLY)

 

 

 

 

 

 

CHECKBITS–OUT

CHECKBITS–IN 8

CBI

SYO

8

PARTIAL–SYNDROME

 

CBI

SYO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(DETECT/CORRECT ONLY)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERR

 

(DETECT AND CORRECT)

 

LOWER EDC

 

 

 

 

 

UPPER EDC

 

 

 

 

 

 

 

 

 

 

(CODE ID 1,0 = 10)

 

 

 

(CODE ID 1,0 = 11)

 

2552 drw 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 64-Bit Mode — 2 Cascaded IDT49C465 Devices

 

 

 

 

64-BIT GENERATE-ONLY MODE (CODE ID 1,0=01)

 

 

 

 

 

 

 

 

If the Identity pins CODE ID 1,0 = 01, a single EDC is placed

device on the SD0-31 inputs. This provides the device with the

in the 64-bit “Generate-only” mode. In this mode, the lower 32

full 64-bit word from

memory. The

resultant generated

bits of the 64-bit data word enter the device on the MD0-31

checkbits are output on the CBO0-7 outputs. The generate

inputs and the upper 32-bits of the 64 bit data word enter the

time is less than that resulting from using a 2-chip cascade.

 

 

 

 

 

 

 

 

 

 

 

LOWER 32 BITS (0–31)

 

 

 

MD0–31

CBO

 

 

 

 

 

 

 

 

32

 

 

 

 

 

8

 

CHECKBITS–OUT

 

 

 

 

 

 

 

 

 

 

 

 

UPPER 32 BITS (32–63)

 

 

 

SD0–31

 

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

EDC

2552 drw 11

Figure 7. 64-Bit "Generate-Only" Mode (Single Chip)

11.7

6

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN DESCRIPTIONS

Symbol

I/O

 

 

 

Name and Function

 

I/O Buses and Controls

 

 

 

 

 

 

 

 

 

 

 

 

 

SD0-7

I/O

 

System Data Bus: Data from

MD0-31 appears

at these pins

corrected if MODE 2-0 = x11, or uncor-

SD8-15

 

 

rected in the other modes. The BEn inputs must be high and the SOE pin must be low to enable the SD

SD16-23

 

 

output buffers during a read cycle. (Also, see diagnostic section.)

SD24-31

 

 

Separate I/O memory systems: In a write or partial-write cycle, the byte not-to-be-modified is output on

 

 

 

SDn to n+7 for re-writing to memory, if BEn is high and SOE is low. The new bytes to be written to memory

 

 

 

are input on the SDn pins, for writing checkbits to memory, if BEn is low.

 

 

 

Bi-directional memory systems: In a write or partial-write cycle, the byte not-to-be-modified is re-directed

 

 

 

to the MD I/O pins, if BEn is high, for checkbit generation and rewriting to memory via the MD I/O pins. SOE

 

 

 

must be high to avoid enabling the output drivers to the system bus in this mode. The new bytes to be written

 

 

 

are input on the SDn pins for checkbit generation and writing to memory. BEn must be low to direct input

 

 

 

data from the System Data bus to the MD I/O pins for checkbit generation and writing to the checkbit memory.

SLE

I

 

System Latch Enable: SLE is an input used to latch data at the SD inputs. The latch is transparent when

 

 

 

SLE is high; the data is latched when SLE is low.

 

 

 

PLE

I

 

Pipeline Latch Enable: PLE is an input which controls a pipeline latch, which controls data to be output on

 

 

 

the SD bus and the MD bus during byte merges. Use of this latch is optional. The latch is transparent when

 

 

 

PLE is low; the data is latched when PLE is high.

 

 

 

SOE

I

 

System Output Enable: When low, enables System output drivers and Parity output drivers if correspond-

 

 

 

ing Byte Enable inputs are high.

 

 

 

BE0-3

I

 

Byte Enables: In systems using separate I/O memory buses,

BEn is used to enable the SD and Parity

 

 

 

outputs for byte n. The BEn pins also control the “Byte mux”. When BEn is high, the corrected or uncorrected

 

 

 

data from the Memory Data latch is directed to the MD I/O pins and used for checkbit generation for byte

 

 

 

n. This is used in partial-word-write operations or during correction cycles. When BEn is low, the data from

 

 

 

the System Data latch is directed to the MD I/O pins and used for checkbit generation for byte n.

 

 

 

 

BE0 controls SD0-7

BE2 controls SD16-23

 

 

 

 

BE1 controls SD8-15

BE3 controls SD24-31

 

 

 

 

MD0-31

I/O

 

Memory Data Bus: These I/O pins accept a 32-bit data word from main memory for error detection and/

 

 

 

or correction. They also output corrected old data or new data to be written to main memory when the EDC

 

 

 

unit is used in a bi-directional configuration.

 

 

 

MLE

I

 

Memory Latch Enable: MLE is used to latch data from the MD inputs and checkbits from the CBI inputs.

 

 

 

The latch is transparent when MLE is high; data is latched when MLE is low. When identified as the upper

 

 

 

slice in a 64-bit cascade, the checkbit latch is bypassed.

 

 

MOE

I

 

Memory Output Enable: MOE enables Memory Data Bus output drivers when low.

 

 

 

 

P0-3

I/O

 

Parity I/O: The parity I/O pins for Bytes 0 to 3. These pins output the parity of their respective bytes when

 

 

 

that byte is being output on the SD bus. These pins also serve as parity inputs and are used in generating

 

 

 

the Parity ERRor (PERR) signal under certain conditions (see Byte Enable definition). The parity is odd or

 

 

 

even depending on the state of the Parity SELect pin (PSEL).

 

PSEL

I

 

Parity SELect: If the Parity SELect pin is low, the parity is even.

 

 

 

 

If the Parity SELect pin is high, the parity is odd.

 

 

 

 

 

 

 

 

 

Inputs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CBI0-7

I

 

CheckBits-In (00)

CheckBits-In-1 (10)

 

Partial-Syndrome-In (11):

 

 

 

In a single EDC system or in the lower slice of a cascaded EDC system, these inputs accept the checkbits

 

 

 

from the checkbit memory. In the upper slice in a cascaded EDC system, these inputs accept the “Partial-

 

 

 

Syndrome” from the lower slice (Detect/Correct path).

 

 

PCBI 0-7

I

 

Partial-CheckBits-In (10)

Partial-CheckBits-In (11):

 

 

 

 

In a single EDC system, these inputs are unused but should not be allowed to float. In a cascaded EDC

 

 

 

system, the “Partial-Checkbits” used by the lower slice are accepted by these inputs (Correction path only).

 

 

 

In the upper slice of a cascaded EDC system, “Partial-Checkbits” generated by the lower slice are accepted

 

 

 

by these inputs (Generate path).

 

 

 

CODE ID1,0

I

 

CODE IDentity: Inputs which identify the slice position/ functional mode of the IDT49C465.

 

 

 

(00)

Single 32-bit EDC unit

 

(10)

Lower slice of a 64-bit cascade

 

 

 

(01)

64-bit “Checkbit-generate-only” unit

(11)

Upper slice of a 64-bit cascade

 

 

 

 

 

 

 

 

 

2552 tbl 01

11.7

7

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN DESCRIPTIONS (Con’t.)

Symbol

I/O

 

Name and Function

 

 

 

 

Inputs (Con’t.)

 

MODE 2-0

I

MODE select: Selects one of four operating modes.

 

 

(x11)

Normal” Mode: Normal EDC operation (Flow-thru correction and generation).

 

 

(x10) “Generate-Detect” Mode: In this mode, error correction is disabled. Error generation and detection are

 

 

 

normal.

(000)Error-Data-Output” Mode: Allows the uncorrected data captured from an error event by the Error-Data Register to be read by the system for diagnostic purposes. The Error-Data Register is cleared by toggling CLEAR low. The Syndrome Register and Error-Data Register record the syndrome and uncorrected data from the first error that occurs after they are reset by the CLEAR pin. The Syndrome Register and Error-Data

Register are updated when there is a positive edge on SYNCLK, an error condition is indicated (ERR = low), and the Error Counter indicates zero.

All-Zero-Data Source: In Error-Data-Output Mode, clearing the Error-Data Register provides a source of all-zero-data for hardware initialization of memory, if this desired.

(x01) Diagnostic-Output Mode: In this mode, the contents of the Syndrome Register , Error Counter and ErrorType Register are output on the SD bus. This allows the syndrome bytes for an indicated error to be read by the system for error-logging purposes. The Syndrome Register and the Error-Data Register are updated when there is a positive edge on SYNCLK, an error condition is indicated and the Error Counter indicates zero errors. Thus, the Syndrome Register saves the syndrome that was present when the first error occurred after the Error Counter was cleared. The Syndrome Register and the Error Counter are cleared by toggling CLEAR low. The Error Counter lets the system tell if more than one error has occurred since the last time the Syndrome Register or Error-Data Register was read.

(100)Checkbit-Injection Mode: In the “Checkbit-Injection” Mode, diagnostic checkbits may be input on System Data Bus bits 0-7 (see Diagnostic Features - Detailed Description).

CLEAR

I

CLEAR: When the CLEAR pin is taken low, the Error-Data Register, the Syndrome Register, the Error

 

 

 

Counter and the Error-Type Register are cleared.

 

SYNCLK

I

SYNdrome CLocK: If ERR is low, and the Error Counter indicates zero errors, syndrome bits are clocked

 

 

 

into the Syndrome Register and data from the outputs of the Memory Data input latch are clocked into the

 

 

 

Error-Data Register on the low-to-high edge of SYNCLK. If ERR is low, the Error Counter will increment on

 

 

 

the low-to-high edge of SYNCLK, unless the Error Counter indicates fifteen errors.

SCLKEN

I

SynCLK ENable: The SCLKEN enables the SYNCLK signal. SYNCLK is ignored if SCLKEN is high.

 

 

 

 

 

 

Outputs and Enables

 

 

 

 

 

 

 

 

 

CBO0-7

O

 

CheckBits-Out (00, 01)

Partial-CheckBits-Out (10)

Checkbits-Out (11):

 

 

 

In a single EDC system, the checkbits are output to the checkbit memory on these outputs. In the lower slice

 

 

 

in a cascaded EDC system, the “Partial-checkbits” used by the upper slice are output by these outputs

 

 

 

(Generate path only). In the upper slice in a cascade, the “Final-Checkbits” appear at these outputs

 

 

 

(Generate path only).

 

 

CBOE

I

 

CheckBits Out Enable: Enables CheckBit Output drivers when low.

 

SYO0-7

O

 

SYndrome-Out (00)

Partial-SYndrome-Out (10)

Partial-Checkbits-Out (11):

 

 

 

In a 32-bit EDC system, the syndrome bits are output on these pins. In the lower slice in a 64-bit cascaded

 

 

 

system, the “Partial-Syndrome” bits appear at these outputs (Detect/ Correct path). In the upper slice in a

 

 

 

cascaded EDC system, the “Partial-Checkbits” appear at these outputs (Correct path only). In a 64-bit

 

 

 

cascaded system, the “Final-Syndrome” may be accessed in the “Diagnostic-Output” Mode from either the

 

 

 

lower or the upper slice since the final syndrome is contained in both.

 

ERR

O

 

ERROR: When in “Normal” and “Detect only” modes, a low on this pin indicates that one or more errors have

 

 

 

been detected. ERR is not gated or latched internally.

 

MERR

O

 

Multiple ERRor: When in “Normal” and “Detect only” modes, a low on this pin indicates that two or more

 

 

 

errors have been detected. MERR is not gated or latched internally.

 

PERR

O

 

Parity ERRor: A low on this pin indicates a parity error which has resulted from the active bytes defined by

 

 

 

the 4 Byte Enable pins. Parity ERRor (PERR) is not gated or latched internally (see Byte Enable definition).

Power Supply Pins

 

 

 

 

 

 

 

 

 

Vcc 1- 10

P

 

+5 Volts

 

 

GND1-12

P

 

Ground

 

 

 

 

 

 

 

 

2552 tbl 02

11.7

8

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

DIAGNOSTIC DATA FORMAT (SYSTEM BUS)

 

 

 

 

Latched Data

 

 

Data Out (Unlatched)

 

 

 

 

 

 

 

 

 

 

Error

Re-

 

Error

 

 

 

 

 

 

Type

served

Counter

Syndrome bits

 

 

Partial Checkbits

 

Checkbits

 

 

 

 

 

 

 

 

 

 

 

 

 

Byte 3

 

Byte 2

 

 

Byte 1

Byte 0

S M - - 23 2 2 21 20

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

31

30

 

27

24 23

16 15

8 7

0

2552 drw 12

DIAGNOSTIC FEATURES — DETAILED DESCRIPTION

Mode 2-0

x11 “NORMAL” Mode

In this mode, operation is “Normal” or non-diagnostic.

x10 “GENERATE-DETECT” Mode

When the EDC unit is in the “Generate-Detect” Mode, data is not corrected or altered by the error correction network. (Also referred to as the “Detect-only” Mode.)

000“ERROR-DATA-OUTPUT” Mode

In this mode, the 32-bit data from the Error-Data Register is output on the SD bus.

Error Data Register: The uncorrected data from the Memory Data bus input latch is stored in the Error-Data Register if the error counter contents indicates “0” and there is a positive transition on the SYNCLK input when the ERR signal is low. Thus, the Error-Data Register contains memory data corresponding to the first error to occur since the register was cleared. This register is cleared by pulling the CLEAR input low. The register is read via the System Data bus by entering the “Error-Data-Output” Mode and enabling the System Data bus output drivers.

All-Zero-Data: The Error-Data Register can be used as an “all-zero-data” data source for memory initialization in systems where the initialization process is to be done entirely by hardware.

x01 “DIAGNOSTIC-OUTPUT” Mode

In this mode, data from the diagnostic registers, the PCBI bus and the CBI bus is output on the SD bus.

Direct Checkbit Readback: Internal data paths allow both the “Partial-CheckBit-Input” bus and the data in the “CheckBitInput” latch to be read directly by the system bus for diagnostic purposes. Both the Checkbit Input Bus and the Partial Checkbit Input Bus are read via the System Data bus by entering the “Diagnostic-Output” Mode and enabling the System Data bus output drivers. The checkbits are output on System Data bus bits 0-7; the Partial Checkbits are output on bits 8-15.

Syndrome Register: After an error has been detected, the syndrome bits generated are clocked into the internal Syndrome Register if the error counter contents indicates “0” and there is a positive transition on the SYNCLK input when the ERR signal is low. This register is cleared by pulling the CLEAR input low. The register is read via the System Data bus by entering the “Diagnostic-Output” Mode and enabling the System Data bus outputs. This data is output on SD bits 16-23.

Error Counter: The 4-bit on-board error counter is incremented if the error counter contents do not indicate FF HEX, which corresponds to a count of 15, and there is a positive transition on the SYNCLK input when the ERR signal is low. This counter is cleared by pulling the CLEAR input low. The counter is read via the System Data bus by entering the “Diagnostic-Output” Mode and enabling the System Data bus output drivers. This data is output on System Data bus bits 24-27.

Test Register: These 2 bits are reserved for factory diagnostics only and must not be used by system software. This data is output on System Data bus bits 28-29.

Error-Type Register: The Error-Type Register, clocked by the SYNCLK input, saves 2 bits which indicate whether a recorded error was a single or a multiple-bit error. This register holds only the first error type to occur after the last Clear operation. This data is output on System Data bus bits 30-31.

100Direct Read-Path Checkbit Injection: In the “Checkbit-Injection” Mode, bits 0-7 of the System Data input latch are presented to the inputs of the Checkbit Input latch. If MLE is strobed, the checkbit latch will be loaded with this value in place of the checkbits from memory. By inserting various checkbit values, operation of the correction function of the EDC can be verified “on-board”. Except for the “Checkbit-Injection” function, operation in this mode is identical to “Normal” Mode operation.

2552 tbl 03

11.7

9

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

OPERATING MODE CHARTS

SLICE IDENTIFICATION

CODE ID 1

CODE ID 0

Slice Definition

 

 

 

0

0

32-bit Flow-Thru EDC

0

1

64-bit GENERATE Only EDC

1

0

64-bit EDCLower 32 bits (0-31)

1

1

64-bit EDCUpper 32 bits (32-63)

 

 

 

2552 tbl 04

SLICE POSITION CONTROL

 

 

 

 

 

 

 

 

 

Checkbit Buses

 

 

 

 

 

 

Slice Position/

 

 

 

 

 

 

 

 

 

 

 

 

CODE

Functional Operation

 

 

 

 

 

PCBI

CBI

CBO

SYO

P

 

 

 

 

 

 

 

 

 

 

PCBI

CBI

CBO

SYO

P

 

 

ID

 

SOE

SD Bus

MOE

MD Bus

 

Bus

Bus

Bus

Bus

Bus

PERR

1

0

Width =

 

32

 

32

8

8

8

8

4

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

Single 32-bit EDC unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate(1)

1

Sys. 0–31

0

Sys. Byte Mux

 

CBs out

P in

active

 

 

Detect/Correct(2)

0

Pipe. latch

1

MD 0–31

 

CBs in

Syn. out

P out

0

1

“64-bit Generate-only”

1

Sys. 32–63

1

Sys. 0–31

 

CBs out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

Lower word, 64-bit bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate(1)

1

Sys. 0–31

0

MD 0–31

 

PCBs out

P in

active

 

 

Detect/Correct(2)

0

Pipe. latch

1

MD 0–31

U-SYOout

CBs in

Par.Synd

P out

1

1

Upper word, 64-bit bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate(1)

1

Sys. 32–63

0

MD 32–63

L-CBOout

F.CBs out

P in

active

 

 

Detect/Correct(2)

0

Pipe. latch

1

MD 32–63

 

L-SYOout

Par.Cbits

P out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

 

 

 

 

 

 

2552 tbl 05

1.Checkbits generated from the data in the SD Latch.

2.Corrected data residing in the Pipe Latch.

FUNCTIONAL MODE CONTROL

 

 

 

 

 

 

 

 

 

Checkbit Buses

 

 

 

 

 

 

Functional Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

of SD Bus

 

 

 

 

PCBI

CBI

CBO

SYO

P

 

MODE

 

SOE

SD Bus

MOE

MD Bus

Bus

Bus

Bus

Bus

Bus

PERR

2

1

0

Width =

 

32

 

32

8

8

8

8

4

1

x

1

1

“Normal”

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate

1

CPU Data

0

Pipe. latch

CB out

P in

active

 

 

 

Correct

0

Pipe. latch

1

RAM Data

CB in

P out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

1

0

“Generate-Detect”

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate

1

CPU Data

0

Pipe. latch

CB out

P in

active

 

 

 

Detect

0

Pipe. latch

1

RAM Data

CB in

P out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

“Error-Data-Output”

0

Err. D. latch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

0

1

“Diagnostic-Output”

0

CBin latch

PCBI in

CB in

 

 

 

 

 

PCBIin bus

 

 

 

 

 

 

 

 

 

 

 

 

 

Syn. register

 

 

 

 

 

 

 

 

 

 

 

 

 

Err. counter

 

 

 

 

 

 

 

 

 

 

 

 

 

Er. type reg.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

0

“Checkbit-Injection”

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate

1

SDin latch

0

Pipe. latch

CB out

P in

active

 

 

 

Inject Checkbits

1

SD0–7 in

0

Pipe. latch

 

 

 

Correct

0

Pipe. latch

1

RAM Data

CB in

P out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2552 tbl 06

11.7

10

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PRIMARY DATA PATH vs. MEMORY CONFIGURATION

SEPARATE I/O MEMORIES: COMMON I/O MEMORIES:

1. Checkbit Generation

 

1. Checkbit Generation

 

Write New Word to Memory

 

Write New Word to Memory

 

CPU

BUFFER

 

DIN

 

 

 

 

 

 

MAIN

CPU

SD

MD

I/O

 

 

 

 

 

 

 

 

MEMORY

 

 

 

MAIN

 

 

 

 

P

 

MEMORY

 

 

SD MD

DOUT

 

 

 

 

 

 

CBO

 

 

 

P

 

 

 

CHECKBIT

 

 

 

 

 

 

 

 

CBO

CHECKBIT

IDT49C465

 

CBI

MEMORY

 

 

 

 

 

 

IDT49C465

CBI

MEMORY

 

 

 

 

 

 

 

 

 

 

2.Data Correction Read Memory Word

CPU

BUFFER

CORRECTED

DIN

 

MAIN

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY

 

 

 

SD MD

 

DOUT

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

CBO

 

CHECKBIT

 

IDT49C465

CBI

 

MEMORY

 

 

 

 

 

 

 

 

 

3.Memory Generation

Re-write Corrected Word to Memory

CPU

BUFFER

CORRECTED

DIN

 

MAIN

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY

 

 

 

SD MD

 

DOUT

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

CBO

 

CHECKBIT

 

IDT49C465

CBI

 

MEMORY

 

 

 

 

 

 

 

 

 

2.Data Correction Read Memory Word

CORRECTED

SD MD

 

I/O

CPU

 

 

 

 

MAIN

 

P

 

MEMORY

 

CBO

 

CHECKBIT

 

 

 

IDT49C465

CBI

 

MEMORY

 

 

 

 

 

 

 

3.Memory Generation

Re-write Corrected Word to Memory

CORRECTED

SD MD

CORRECTED

I/O

CPU

 

 

 

 

MAIN

 

P

 

MEMORY

 

CBO

 

CHECKBIT

 

 

 

IDT49C465

CBI

 

MEMORY

 

 

 

 

 

 

 

2552 drw 13

11.7

11

IDT49C465/A

 

32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PARTIAL-WORD-WRITE OPERATIONS

FOR COMMON I/O MEMORIES:

 

 

 

CORRECTION

MD

 

 

 

LATCH

 

 

 

BLOCK

 

 

 

 

 

 

 

B3

MD BUS

 

 

PIPE

 

SD BUS

 

B2

BYTE 3

 

BYTE 3

LATCH

B1

BYTE 2

 

 

 

 

 

 

BYTE 2

 

B0

BYTE 1

 

 

 

 

BYTE 1

 

BYTE

 

 

 

MUX

BYTE 0

 

BYTE 0

 

 

 

 

 

 

A3

 

 

 

 

8

 

 

 

SD

A2

 

 

 

LATCH

8

 

 

 

8

CHECKBIT

 

 

 

A1

 

 

 

 

A0

GENERATOR

 

 

 

 

 

 

 

8

CBO

 

 

 

 

B3 = 1

 

B2 = 1

CBI

B1 = 1

 

B0 = 0

IDT49C465

 

MAIN

MEMORY

CHECKBIT MEMORY

2552 drw 14

In order to perform a partial-word-write operation, the complete word in question must be read from memory. This must be done in order to correct any error which may have occurred in the old word. Once the complete, corrected word is available, with all the bytes verified, the new word may be assembled in the byte mux and the new checkbits generated.

The example shown above illustrates the case of combining 3 bytes from an old word with a new lower order byte to form a new word. The new word, along with the new checkbits, may now be written to memory.

In the separate I/O memory configuration, the situation is similar except that the new word is output on the SD Bus instead of the MD Bus (refer to previous page).

11.7

12

Loading...
+ 26 hidden pages