BECKHOFF TwinSAFE User Manual

4.7 (3)

Application guide

TwinSAFE

Version: 1.3.1

Date: 2012-02-01

Table of contents

Table of contents

1

Foreword

4

 

1.1

Notes on the manual

4

 

 

1.1.1

Disclaimer

4

 

 

1.1.2

Trademarks

4

 

 

1.1.3

Patent Pending

4

 

 

1.1.4

Copyright

4

 

1.2

Safety instructions

5

 

 

1.2.1

Delivery state

5

 

 

1.2.2 Operator's obligation to exercise diligence

5

 

 

1.2.3 Description of safety symbols

6

 

 

1.2.4

Explanation of terms

6

2

Circuit examples

7

 

2.1

ESTOP function variant 1 (Category 3, PL d)

7

 

 

2.1.1 Parameters of the safe input and output terminals

7

 

 

2.1.2 Block formation and safety loops

8

 

 

2.1.3

Calculation

8

 

2.2

ESTOP function variant 2 (Category 3, PL d)

13

 

 

2.2.1 Parameters of the safe input and output terminals

13

 

 

2.2.2 Block formation and safety loops

14

 

 

2.2.3

Calculation

14

 

2.3

ESTOP function variant 3 (Category 4, PL e)

19

 

 

2.3.1 Parameters of the safe input and output terminals

19

 

 

2.3.2 Block formation and safety loops

20

 

 

2.3.3

Calculation

20

 

2.4

ESTOP function variant 4 (Category 4, PL e)

25

 

 

2.4.1 Parameters of the safe input and output terminals

25

 

 

2.4.2 Block formation and safety loops

26

 

 

2.4.3

Calculation

26

 

2.5

ESTOP function variant 5 (Category 4, PL e)

31

 

 

2.5.1 Parameters of the safe input and output terminals

31

 

 

2.5.2 Block formation and safety loops

32

 

 

2.5.3

Calculation

32

 

2.6

ESTOP function variant 6 (Category 3, PL d)

37

 

 

2.6.1 Parameters of the safe input and output terminals

37

 

 

2.6.2 Block formation and safety loops

38

 

 

2.6.3

Calculation

38

 

2.7

ESTOP function variant 7 (Category 4, PL e)

43

Application Guide TwinSAFE

1

Table of contents

 

2.7.1

Parameters of the safe input and output terminals

43

 

2.7.2

Block formation and safety loops

44

 

2.7.3

Calculation

44

2.8

Protective door function variant 1 (Category 3, PL d)

49

 

2.8.1

Parameters of the safe input and output terminals

49

 

2.8.2

Block formation and safety loops

50

 

2.8.3

Calculation

50

2.9

Protective door function variant 2 (Category 4, PL e)

55

 

2.9.1

Parameters of the safe input and output terminals

55

 

2.9.2

Block formation and safety loops

56

 

2.9.3

Calculation

56

2.10

Protective door function with area monitoring (Category 4, PL e)

61

 

2.10.1

Parameters of the safe input and output terminals

62

 

2.10.2

Block formation and safety loops

62

 

2.10.3

Calculation

63

2.11

Protective door function with tumbler (Category 4, PL e)

68

 

2.11.1

Parameters of the safe input and output terminals

68

 

2.11.2

Block formation and safety loops

69

 

2.11.3

Calculation

69

2.12

Two-hand control (Category 4, PL e)

75

 

2.12.1

Parameters of the safe input and output terminals

75

 

2.12.2

Block formation and safety loops

76

 

2.12.3

Calculation

76

2.13

Laser scanner (Category 3, PL e)

80

 

2.13.1

Parameters of the safe input and output terminals

80

 

2.13.2

Block formation and safety loops

81

 

2.13.3

Calculation

81

2.14

Light curtain (Category 4, PL e)

85

 

2.14.1

Parameters of the safe input and output terminals

85

 

2.14.2

Block formation and safety loops

86

 

2.14.3

Calculation

86

2.15

Safety switching mat / safety bumper (Category 4, PL e)

90

 

2.15.1

Parameters of the safe input and output terminals

90

 

2.15.2

Block formation and safety loops

91

 

2.15.3

Calculation

91

2.16

Muting (Category 4, PL e)

95

 

2.16.1

Parameters of the safe input and output terminals

95

 

2.16.2

Block formation and safety loops

96

 

2.16.3

Calculation

96

2

 

Application Guide TwinSAFE

Table of contents

2.17

Feeding in a potential group (Category 4, PL e)

101

 

2.17.1

Parameters of the safe input and output terminals

102

 

2.17.2

Block formation and safety loops

102

 

2.17.3

Calculation

102

2.18

Feeding in a potential group (Category 4, PL e)

107

 

2.18.1

Parameters of the safe input and output terminals

108

 

2.18.2

Block formation and safety loops

109

 

2.18.3

Calculation

109

2.19

Networked plant (Category 4, PL e)

114

 

2.19.1

Parameters of the safe input and output terminals

115

 

2.19.2

Block formation and safety loops

115

 

2.19.3

Calculation

115

2.20

Drive option AX5801 with stop function SS1 (Category 4, PL e)

120

 

2.20.1

Parameters of the safe input and output terminals

121

 

2.20.2

Block formation and safety loops

121

 

2.20.3

Calculation

121

2.21

Drive option AX5805 with stop function SS2 (Category 4, PL e)

126

 

2.21.1

Parameters of the safe input and output terminals

126

 

2.21.2

Block formation and safety loops

127

 

2.21.3

Calculation

127

2.22

Direct wiring of the TwinSAFE outputs to TwinSAFE inputs (single-channel)

 

 

(Category 1, PL c)

131

 

2.22.1

Parameters of the safe input and output terminals

131

 

2.22.2

Block formation and safety loops

131

 

2.22.3

Calculation

131

2.23

Direct wiring of the TwinSAFE outputs to TwinSAFE inputs (2-channel)

 

 

(Category 3, PL d)

134

 

2.23.1

Parameters of the safe input and output terminals

134

 

2.23.2

Block formation and safety loops

134

 

2.23.3

Calculation

135

3 Technical report – TÜV Süd

137

4 Appendix

 

138

4.1

Beckhoff Support and Service

138

 

4.1.1

Beckhoff branches and partner companies Beckhoff Support

138

 

4.1.2

Beckhoff company headquarters

138

Application Guide TwinSAFE

3

Foreword

1 Foreword

1.1 Notes on the manual

This description is only intended for the use of trained specialists in control and automation technology who are familiar with the applicable national standards. It is essential that the following notes and explanations are followed when installing and commissioning these components.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

1.1.1Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics.

In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

1.1.2Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE® and XFC® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

1.1.3Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, DE102004044764, DE102007017835 with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and patents: EP0851348, US6167425 with corresponding applications or registrations in various other countries.

1.1.4Copyright

© Beckhoff Automation GmbH.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

4

Application Guide TwinSAFE

Foreword

1.2 Safety instructions

1.2.1Delivery state

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH.

1.2.2Operator's obligation to exercise diligence

The operator must ensure that

the TwinSAFE products are only used as intended

the TwinSAFE products are only operated in sound condition and in working order.

the TwinSAFE products are operated only by suitably qualified and authorized personnel.

the personnel is instructed regularly about relevant occupational safety and environmental protection aspects, and is familiar with the operating instructions and in particular the safety instructions contained herein.

the operating instructions are in good condition and complete, and always available for reference at the location where the TwinSAFE products are used.

none of the safety and warning notes attached to the TwinSAFE products are removed, and all notes remain legible.

Application Guide TwinSAFE

5

Foreword

1.2.3Description of safety symbols

The following safety symbols are used in these operating instructions. They are intended to alert the reader to the associated safety instructions.

 

Serious risk of injury!

DANGER

Failure to follow the safety instructions associated with this symbol directly endangers

the life and health of persons.

 

 

 

Caution – Risk of injury!

WARNING

Failure to follow the safety instructions associated with this symbol endangers the life

and health of persons.

 

 

 

 

 

Personal injuries!

CAUTION

Failure to follow the safety instructions associated with this symbol can lead to injuries

to persons.

 

 

 

Damage to the environment or devices

Attention

Failure to follow the instructions associated with this symbol can lead to damage to the

environment or equipment.

 

 

 

 

 

 

Tip or pointer

Notice

This symbol indicates information that contributes to better understanding.

 

 

 

1.2.4Explanation of terms

Designation

Explanation

B10d

Mean number of cycles after 10% of the components have dangerously

 

failed

 

 

CCF

Common Cause Failure

 

 

dop

Mean operating time in days per year

DCavg

Average diagnostic coverage

hop

Mean operating time in hours per day

MTTFd

Mean Time To dangerous Failure

 

 

nop

Mean number of annual actuations

PFH

Probability of a dangerous failure per hour

 

 

PL

Performance Level

 

 

PLr

Required Performance Level

 

 

Tcycle

Mean time between two successive cycles of the system (given in

 

minutes in the following examples, but can also be given in seconds)

 

 

6

Application Guide TwinSAFE

Circuit examples

2 Circuit examples

2.1 ESTOP function variant 1 (Category 3, PL d)

The emergency stop button is connected via two break contacts to an EL1904 safe input terminal. The testing and monitoring of the discrepancy of the two signals are activated. The restart and the feedback signal are wired to standard terminals and are transferred to TwinSAFE via standard PLC. The contactors K1 and K2 are connected in parallel to the safe output. Current measurement and testing of the output are active for this circuit.

2.1.1Parameters of the safe input and output terminals

EL1904

Parameter

Value

Sensor test channel 1 active

Yes

 

 

Sensor test channel 2 active

Yes

 

 

Sensor test channel 3 active

Yes

 

 

Sensor test channel 4 active

Yes

 

 

Logic channel 1 and 2

Single Logic

 

 

Logic channel 3 and 4

Single Logic

 

 

EL2904

 

Parameter

Value

Current measurement active

Yes

 

 

Output test pulses active

Yes

 

 

Application Guide TwinSAFE

7

Circuit examples

2.1.2Block formation and safety loops

2.1.2.1Block 1

K1

 

S1

 

EL1904

 

EL6900

 

EL2904

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K2

2.1.3

Calculation

 

2.1.3.1 PFH / MTTFd /B10d – values

 

 

 

Component

Value

EL1904 – PFH

1.11E-09

 

 

EL2904 – PFH

1.25E-09

 

 

EL6900 – PFH

1.03E-09

 

 

S1 – B10d

100,000

 

 

S2 – B10d

10,000,000

 

 

K1 – B10d

1,300,000

K2 – B10d

1,300,000

 

 

Days of operation (dop)

230

 

 

Hours of operation / day (hop)

16

Cycle time (minutes) (Tcycle)

10080 (1x per week) (7 days, 24 hours)

 

 

Lifetime (T1)

20 years = 175200 hours

 

 

 

2.1.3.2

Diagnostic Coverage DC

 

 

 

Component

Value

S1 with testing/plausibility

DCavg=99%

K1/K2 with testing and EDM (actuation 1x per week)

DCavg=60%

 

 

K1/K2 with testing and EDM (actuation 1x per shift)

DCavg=90%

 

 

 

2.1.3.3Calculation for block 1

Calculation of the PFH and MTTFd values from the B10d values:

From:

60

 

 

 

and:

100.1

8

Application Guide TwinSAFE

Circuit examples

Inserting the values, this produces:

S1:

 

 

230 16 60

 

21.90

 

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100000

 

 

 

45662.1y 399999120h

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

K1/K2:

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1300000

 

 

593607.3y 5199997320h

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

and the assumption that S1, K1 and K2 are in each case single-channel:

1

results in a

! " 0.1 #1 $ %&' 1 $ DC10 MTTF-

S1:

1 $ 0.99

! " 45662.1 8760 2.50E $ 11

K1/K2: Actuation 1x per week

1 $ 0.60

! " 593607.3 8760 7.69E $ 11

K1/K2: Actuation 1x per shift

1 $ 0.90

! " 593607.3 8760 1.92E $ 11

The following assumptions have to be made now:

Safety switch S1: According to BIA report 2/2008, error exclusion up to 100,000 cycles is possible, provided the manufacturer has confirmed this. If no confirmation exists, S1 is included in the calculation as follows.

Relays K1 and K2 are both connected to the safety function. The non-functioning of a relay does not lead to a dangerous situation, but it is discovered by the feedback signal. Furthermore, the B10d values for K1 and K2 are identical.

There is a coupling coefficient between the components that are connected via two channels. Examples are temperature, EMC, voltage peaks or signals between these components. This is assumed to be the worst-case estimation, where ß =10%. EN 62061 contains a table with which this ß-factor can be precisely determined. Further, it is assumed that all usual measures have been taken to prevent both channels failing unsafely at the same time due to an error (e.g. overcurrent through relay contacts, over temperature in the control cabinet).

Application Guide TwinSAFE

9

Circuit examples

This produces for the calculation of the PFH value for block 1:

PFHtot= PFH(S1) + PFH(EL1904) + PFH(EL6900) + PFH(EL2904) + β* (PFH(K1)+

PFH(K2))/2 + PFH(S2) + PFH(EL1904)

Since the portion (PFH(K1)* PFH(K2))*T1 is smaller than the rest by the power of ten, it is neglected in this and all further calculations for the purpose of simplification.

to:

PFHtot= 2.50E-11 + 1.11E-09 + 1.03E-09 + 1.25E-09 + 10% * (7.96E-11+7.96E-11)/2 =

3.42E-09

in the case of actuation 1x per week

or

PFHtot= 2.50E-11+1.11E-09 + 1.03E-09 + 1.25E-09 + 10% * (1.92E-11+1.92E-11)/2=

3.42E-09

in the case of actuation 1x per shift

The MTTFd value for block 1 (based on the same assumption) is calculated with:

1

=

1

 

 

 

 

 

 

 

 

 

 

= <

 

 

 

 

 

 

 

 

 

 

; ;

 

 

=

 

 

 

 

 

 

 

 

>?@

 

 

 

 

 

 

 

 

 

 

 

 

as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

=

 

1

 

 

 

+

1

+

1

+

1

; ;

 

(A1)

 

(BC1904)

(BC6900)

(2904)

 

+

 

 

1

 

 

 

 

 

 

 

 

 

( (D1))

 

 

 

 

 

with:

(S1) = 10 (A1) 0.1

(K1) = 10 (D1) 0.1

If only PFH values are available for EL1904 and EL6900, the following estimation applies:

(ELxxxx) = (1 $ %&(BCFFF)) ! "(BCFFF)

Hence:

(EL1904) =

G1 $ %&(BC1904)H

=

(1 $ 0.99)

=

0.01

 

 

= 1028.8y

! "(BC1904)

1.11E $ 09

@

8760IJ

 

9.72E $ 06

@

 

J

I

10

 

 

 

 

 

 

Application Guide TwinSAFE

Circuit examples

#EL6900'

G1

$ %BC6900'H

 

 

#1 $ 0.99'

 

 

0.01

 

 

 

1108.6y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC6900'

 

1.03E $ 09

@

8760IJ

 

 

9.02E $ 06

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

#EL2904'

G1 $ %BC2904'H

 

 

#1 $ 0.99'

 

 

0.01

 

 

913.2y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC2904'

 

 

 

1.25E $ 09

@

8760IJ

 

1.1E $ 05

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

MTTFd tot=

 

L

R

 

 

L

R

L

 

R

L

 

R

 

 

L

 

 

333.98X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.LQ

 

 

LSPT.TQ

LLST.OQ

ULV.PQ

NUVOSW.VQ

 

 

 

 

 

 

 

DCavg=

 

UU%

R UU% R UU% R UU% R

 

OS%

R

OS%

 

98.96%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

L R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

R L

 

R

 

 

L

 

 

L

R

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L LSPT.T LLST.O ULV.P NUVOSW.V NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L

 

LSPT.T

LLST.O

 

 

ULV.P

NUVOSW.V

 

 

NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCavg=

 

UU%

R UU% R UU% R UU% R

 

US%

R

US%

 

98.99%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

L R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

R L

 

R

 

 

L

 

 

L

R

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L LSPT.T LLST.O ULV.P NUVOSW.V NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L

 

LSPT.T

LLST.O

 

 

ULV.P

NUVOSW.V

 

 

NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measures for attaining category 3!

This structure is possible up to category 3 at the most, since an error in the feedback CAUTION path of the relays may be undiscovered. In order to attain category 3, all rising and

falling edges must be evaluated together with the time dependence in the controller for the feedback expectation!

Implement a restart lock in the machine!

The restart lock is NOT part of the safety chain and must be implemented in the CAUTION machine!

 

MTTFd

Designation for each channel

 

Range for each channel

low

 

3 years ≤ MTTFd < 10 years

medium

 

10 years ≤ MTTFd < 30 years

high

 

30 years ≤ MTTFd ≤ 100 years

 

 

 

 

DCavg

Designation

 

Range

none

 

DC < 60 %

low

 

60 % ≤ DC < 90 %

medium

 

90 % ≤ DC < 99 %

high

 

99 % ≤ DC

Application Guide TwinSAFE

11

Circuit examples

Category

B

1

2

2

3

3

4

 

 

 

 

 

 

 

 

DC

none

none

low

medium

low

medium

high

MTTFd

 

 

 

 

 

 

 

low

a

-

a

b

b

c

-

 

 

 

 

 

 

 

 

medium

b

-

b

c

c

d

-

 

 

 

 

 

 

 

 

high

-

c

c

d

d

d

e

 

 

 

 

 

 

 

 

12

Application Guide TwinSAFE

Circuit examples

2.2 ESTOP function variant 2 (Category 3, PL d)

The emergency stop button is connected via two break contacts to an EL1904 safe input terminal. The testing of the two signals is activated. The signals are not tested for discrepancy. The restart and the feedback signal are wired to standard terminals and are transferred to TwinSAFE via the standard PLC. The contactors K1 and K2 are connected in parallel to the safe output. Current measurement and testing of the output are active for this circuit.

2.2.1Parameters of the safe input and output terminals

EL1904

Parameter

Value

Sensor test channel 1 active

Yes

 

 

Sensor test channel 2 active

Yes

 

 

Sensor test channel 3 active

Yes

 

 

Sensor test channel 4 active

Yes

 

 

Logic channel 1 and 2

Single Logic

 

 

Logic channel 3 and 4

Single Logic

 

 

EL2904

 

Parameter

Value

Current measurement active

Yes

 

 

Output test pulses active

Yes

 

 

Application Guide TwinSAFE

13

Circuit examples

2.2.2Block formation and safety loops

2.2.2.1Block 1

K1

 

S1

 

EL1904

 

EL6900

 

EL6900

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K2

2.2.3

Calculation

 

2.2.3.1 PFH / MTTFd /B10d – values

 

 

 

Component

Value

EL1904 – PFH

1.11E-09

 

 

EL2904 – PFH

1.25E-09

 

 

EL6900 – PFH

1.03E-09

 

 

S1 – B10d

100,000

 

 

S2 – B10d

10,000,000

 

 

K1 – B10d

1,300,000

K2 – B10d

1,300,000

 

 

Days of operation (dop)

230

 

 

Hours of operation / day (hop)

16

Cycle time (minutes) (Tcycle)

10080 (1x per week)

 

 

Lifetime (T1)

20 years = 175200 hours

 

 

 

2.2.3.2

Diagnostic Coverage DC

 

 

 

Component

Value

S1 with testing / without plausibility

DCavg=90%

K1/K2 with testing and EDM (actuation 1x per

DCavg=60%

week and indirect feedback)

 

 

 

K1/K2 with testing and EDM (actuation 1x per shift

DCavg=90%

and direct feedback)

 

 

 

 

2.2.3.3Calculation for block 1

Calculation of the PFH and MTTFd values from the B10d values:

From:

60

 

 

 

 

 

 

and:

 

 

14

 

Application Guide TwinSAFE

Circuit examples

 

 

 

10

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Insertion of the values results in:

S1:

 

 

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100000

 

 

 

45662.1y 399999120h

 

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

K1/K2:

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1300000

 

 

593607.3y 5199997320h

 

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

and the assumption that S1, K1 and K2 are in each case single-channel:

1

results in a

! " 0.1 #1 $ %&' 1 $ DC10 MTTF-

S1:

1 $ 0.90

! " 45662.1 8760 2.50E $ 10

K1/K2: actuation 1x per week

1 $ 0.60

! " 593607.3 8760 7.69E $ 11

K1/K2: actuation 1x per shift

1 $ 0.90

! " 593607.3 8760 1.92E $ 11

The following assumptions have to be made now:

Safety switch S1: According to BIA report 2/2008, error exclusion to up to 100,000 cycles is possible, provided the manufacturer has confirmed this. If no confirmation exists, S1 is included in the calculation as follows.

Relays K1 and K2 are both connected to the safety function. The non-functioning of a relay does not lead to a dangerous situation, but it is discovered by the feedback signal. Furthermore, the B10d values for K1

Application Guide TwinSAFE

15

Circuit examples

and K2 are identical.

There is a coupling coefficient between the components that are connected via two channels. Examples are temperature, EMC, voltage peaks or signals between these components. This is assumed to be the worst-case estimation, where ß =10%. EN 62061 contains a table with which this ß-factor can be precisely determined. Further, it is assumed that all usual measures have been taken to prevent both channels failing unsafely at the same time due to an error (e.g. overcurrent through relay contacts, over temperature in the control cabinet).

This produces for the calculation of the PFH value for block 1:

PFHtot= PFH(S1) + PFH(EL1904) + PFH(EL6900) + PFH(EL2904) + β* (PFH(K1)+

PFH(K2))/2

to:

PFHtot= 2.50E-10 + 1.11E-09 + 1.03E-09 + 1.25E-09 + 10%* (7.96E-11+7.96E-11)/2 =

3.65E-09

in the case of actuation 1x per week and indirect feedback

or

PFHtot= 2.50E-10+1.11E-09 + 1.03E-09 + 1.25E-09 + 10%* (1.92E-11+1.92E-11)/2 =

3.65E-09

in the case of actuation 1x per shift and direct feedback

The MTTFd value for block 1 (based on the same assumption) is calculated with:

1

=

1

 

 

 

 

 

 

 

 

 

 

= <

 

 

 

 

 

 

 

 

 

 

; ;

 

 

=

 

 

 

 

 

 

 

 

>?@

 

 

 

 

 

 

 

 

 

 

 

 

as:

 

 

1

 

 

 

 

1

 

1

 

1

1

=

 

 

 

 

+

+

+

; ;

 

(A1)

 

(BC1904)

(BC6900)

(2904)

 

+

 

 

1

 

 

 

 

 

 

 

 

 

( (D1))

 

 

 

 

 

with:

(S1) = 10 (A1) 0.1

(K1) = 10 (D1) 0.1

If only PFH values are available for EL1904 and EL6900, the following estimation applies:

16

Application Guide TwinSAFE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit examples

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#ELxxxx'

#1 $ %BCFFF''

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BCFFF'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#EL1904'

G1 $ %BC1904'H

 

#1 $ 0.99'

 

 

0.01

 

 

 

 

 

 

1028.8y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC1904'

1.11E $ 09

@

 

8760IJ

 

9.72E $ 06

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

I

 

#EL6900'

#1 $ %BC6900''

 

#1 $ 0.99'

 

 

0.01

 

 

 

 

 

 

1108.6y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC6900'

 

 

 

1.03E $ 09

@

8760IJ

 

9.02E $ 06

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

#EL2904'

#1 $ %BC2904''

 

#1 $ 0.99'

 

 

0.01

 

 

 

913.2y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC2904'

 

 

 

1.25E $ 09

@

8760IJ

 

1.1E $ 05

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

MTTFd tot=

 

L

R

 

L

R

L

 

R

L

 

R L

 

333.98X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.LQ

 

 

LSPT.TQ

LLST.OQ

ULV.PQ

NUVOSW.VQ

 

 

 

 

 

 

 

 

 

DCavg=

US%

R UU% R UU% R UU% R

 

OS%

R

OS%

98.89%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

L R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

R L

 

R

 

L

 

 

L

R

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L LSPT.T LLST.O ULV.P NUVOSW.V NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L

 

LSPT.T

LLST.O

 

 

ULV.P

NUVOSW.V

 

 

NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCavg=

US%

R UU% R UU% R UU% R

 

US%

R

US%

98.92%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

L R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

R L

 

R

 

L

 

 

L

R

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L LSPT.T LLST.O ULV.P NUVOSW.V NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L

 

LSPT.T

LLST.O

 

 

ULV.P

NUVOSW.V

 

 

NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measures for attaining category 3!

This structure is possible only up to category 3 at the most on account of a possible CAUTION sleeping error. In order to attain category 3, all rising and falling edges must be

evaluated together with the time dependence in the controller for the feedback expectation!

Implement a restart lock in the machine!

The restart lock is NOT part of the safety chain and must be implemented in the CAUTION machine!

 

MTTFd

Designation for each channel

 

Range for each channel

low

 

3 years ≤ MTTFd < 10 years

medium

 

10 years ≤ MTTFd < 30 years

high

 

30 years ≤ MTTFd ≤ 100 years

Application Guide TwinSAFE

17

Circuit examples

 

Designation

 

DCavg

 

Range

 

 

 

 

 

 

 

 

 

none

 

 

 

DC < 60 %

 

 

 

low

 

 

 

60 % ≤ DC < 90 %

 

 

medium

 

 

 

90 % ≤ DC < 99 %

 

 

 

high

 

 

 

99 % ≤ DC

 

 

 

 

 

 

 

 

 

 

 

 

Category

B

 

1

2

 

2

3

 

3

4

 

 

 

 

 

 

 

 

 

 

 

DC

none

 

none

low

 

medium

low

 

medium

high

MTTFd

 

 

 

 

 

 

 

 

 

 

low

a

 

-

a

 

b

b

 

c

-

 

 

 

 

 

 

 

 

 

 

 

medium

b

 

-

b

 

c

c

 

d

-

 

 

 

 

 

 

 

 

 

 

 

high

-

 

c

c

 

d

d

 

d

e

 

 

 

 

 

 

 

 

 

 

 

18

Application Guide TwinSAFE

BECKHOFF TwinSAFE User Manual

Circuit examples

2.3 ESTOP function variant 3 (Category 4, PL e)

The emergency stop button is connected via two break contacts to an EL1904 safe input terminal. The testing of the two signals is activated. These signals are checked for discrepancy. The restart and the feedback signal are wired to standard terminals and are transferred to TwinSAFE via the standard PLC. Furthermore, the output of the ESTOP function block and the feedback signal are wired to an EDM block. This checks that the feedback signal assumes the opposing state of the ESTOP output within the set time.

The contactors K1 and K2 are connected in parallel to the safe output. Current measurement and testing of the output are active for this circuit.

2.3.1Parameters of the safe input and output terminals

EL1904

Parameter

Value

Sensor test channel 1 active

Yes

Sensor test channel 2 active

Yes

Sensor test channel 3 active

Yes

Sensor test channel 4 active

Yes

Logic channel 1 and 2

Single Logic

Logic channel 3 and 4

Single Logic

Application Guide TwinSAFE

19

Circuit examples

EL2904

Parameter

Value

Current measurement active

Yes

 

 

Output test pulses active

Yes

 

 

2.3.2Block formation and safety loops

2.3.2.1Block 1

 

 

 

 

 

 

 

 

 

 

K1

 

 

 

 

 

 

 

 

 

 

 

 

 

S1

 

EL1904

 

EL6900

 

EL2904

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.3

Calculation

 

2.3.3.1 PFH / MTTFd /B10d – values

 

 

 

Component

Value

EL1904 – PFH

1.11E-09

 

 

EL2904 – PFH

1.25E-09

 

 

EL6900 – PFH

1.03E-09

 

 

S1 – B10d

100,000

 

 

S2 – B10d

10,000,000

 

 

K1 – B10d

1,300,000

K2 – B10d

1,300,000

 

 

Days of operation (dop)

230

 

 

Hours of operation / day (hop)

16

Cycle time (minutes) (Tcycle)

10080 (1x per week)

 

 

Lifetime (T1)

20 years = 175200 hours

 

 

 

2.3.3.2

Diagnostic Coverage DC

 

 

 

Component

Value

S1 with testing/plausibility

DCavg=99%

K1/K2 with testing and EDM (actuation 1x per

DCavg=90%

week and indirect feedback)

 

 

 

K1/K2 with testing and EDM (actuation 1x per shift

DCavg=99%

and direct feedback)

 

 

 

 

2.3.3.3Calculation for block 1

Calculation of the PFH and MTTFd values from the B10d values:

20

Application Guide TwinSAFE

Circuit examples

From:

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and:

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inserting the values, this produces:

S1:

 

 

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100000

 

 

 

45662.1y 399999120h

 

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

K1/K2:

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1300000

 

 

593607.3y 5199997320h

 

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

and the assumption that S1, K1 and K2 are in each case single-channel:

1

results in a

! " 0.1 #1 $ %&' 1 $ DC10 MTTF-

S1:

1 $ 0.99

! " 45662.1 8760 2.50E $ 11

K1/K2: actuation 1x per week

1 $ 0.90

! " 593607.3 8760 1.92E $ 11

K1/K2: actuation 1x per shift

1 $ 0.99

! " 593607.3 8760 1.92E $ 12

Application Guide TwinSAFE

21

Circuit examples

The following assumptions have to be made now:

Safety switch S1: According to BIA report 2/2008, error exclusion to up to 100,000 cycles is possible, provided the manufacturer has confirmed this. If no confirmation exists, S1 is included in the calculation as follows.

Relays K1 and K2 are both connected to the safety function. The non-functioning of a relay does not lead to a dangerous situation, but it is discovered by the feedback signal. Furthermore, the B10d values for K1 and K2 are identical.

There is a coupling coefficient between the components that are connected via two channels. Examples are temperature, EMC, voltage peaks or signals between these components. This is assumed to be the worst-case estimation, where ß =10%. EN 62061 contains a table with which this ß-factor can be precisely determined. Further, it is assumed that all usual measures have been taken to prevent both channels failing unsafely at the same time due to an error (e.g. overcurrent through relay contacts, over temperature in the control cabinet).

This produces for the calculation of the PFH value for block 1:

PFHtot= PFH(S1) + PFH(EL1904) + PFH(EL6900) + PFH(EL2904) + β* (PFH(K1)+

PFH(K2))/2

to:

PFHtot= 2.50E-11+1.11E-09 + 1.03E-09 + 1.25E-09 + 10%* (1.92E-11+1.92E-11)/2 =

3.42E-09

in the case of actuation 1x per week and indirect feedback

or

PFHtot= 2.50E-11+1.11E-09 + 1.03E-09 + 1.25E-09 + 10%* (1.92E-11+1.92E-11)/2 =

3.42E-09

in the case of actuation 1x per shift and direct feedback

The MTTFd value for block 1 (based on the same assumption) is calculated with:

1

=

1

 

 

 

 

 

 

 

 

 

 

= <

 

 

 

 

 

 

 

 

 

 

; ;

 

 

=

 

 

 

 

 

 

 

 

>?@

 

 

 

 

 

 

 

 

 

 

 

 

as:

 

 

1

 

 

 

 

1

 

1

 

1

1

=

 

 

 

 

+

+

+

; ;

 

(A1)

 

(BC1904)

(BC6900)

(2904)

 

+

 

 

1

 

 

 

 

 

 

 

 

 

( (D1))

 

 

 

 

 

with:

(S1) = 10 (A1) 0.1

22

Application Guide TwinSAFE

Circuit examples

10 #D1'#K1' 0.1

If only PFH values are available for EL1904 and EL6900, the following estimation applies:

#1 $ %BCFFF''#ELxxxx' ! "#BCFFF'

Hence:

#EL1904'

G1 $ %BC1904'H

 

#1 $ 0.99'

 

 

0.01

 

 

 

 

 

1028.8y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC1904'

1.11E $ 09

@

 

8760IJ

 

9.72E $ 06

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

I

 

#EL6900'

#1 $ %BC6900''

 

#1 $ 0.99'

 

 

0.01

 

 

 

 

 

1108.6y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC6900'

 

 

 

1.03E $ 09

@

8760IJ

 

9.02E $ 06

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

#EL2904'

#1 $ %BC2904''

 

#1 $ 0.99'

 

 

0.01

 

 

913.2y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! "#BC2904'

 

 

 

1.25E $ 09

@

8760IJ

 

1.1E $ 05

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

MTTFd tot=

 

L

R

 

L

R

L

 

R

L

 

R L

 

333.98X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.LQ

 

 

LSPT.TQ

LLST.OQ

ULV.PQ

NUVOSW.VQ

 

 

 

 

 

 

 

 

DCavg=

UU%

R UU% R UU% R UU% R

 

US%

R

US%

98.99%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

L R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

R L

 

R

 

L

 

 

L

R

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L LSPT.T LLST.O ULV.P NUVOSW.V NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L

 

LSPT.T

LLST.O

 

 

ULV.P

NUVOSW.V

 

 

NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCavg=

UU%

R UU% R UU% R UU% R

 

UU%

R

UU%

99.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

L R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

R L

 

R

 

L

 

 

L

R

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L LSPT.T LLST.O ULV.P NUVOSW.V NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNOOP.L

 

LSPT.T

LLST.O

 

 

ULV.P

NUVOSW.V

 

 

NUVOSW.V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measures for attaining category 4!

This structure is possible up to category 4 at the most. In order to attain category 4, all CAUTION rising and falling edges must be evaluated together with the time dependence in the

controller for the feedback expectation!

Implement a restart lock in the machine!

The restart lock is NOT part of the safety chain and must be implemented in the CAUTION machine!

Application Guide TwinSAFE

23

Circuit examples

 

 

MTTFd

 

Designation for each channel

 

 

Range for each channel

 

low

 

 

3 years ≤ MTTFd < 10 years

 

medium

 

 

10 years ≤ MTTFd < 30 years

 

high

 

 

30 years ≤ MTTFd ≤ 100 years

 

 

 

 

 

 

DCavg

 

Designation

 

 

Range

 

none

 

 

DC < 60 %

 

low

 

 

60 % ≤ DC < 90 %

 

medium

 

 

90 % ≤ DC < 99 %

 

high

 

 

99 % ≤ DC

For practical usability, the number of the ranges was limited to four. An accuracy of 5% is assumed for the limit values shown in this table.

Category

B

1

2

2

3

3

4

 

 

 

 

 

 

 

 

DC

none

none

low

medium

low

medium

high

MTTFd

 

 

 

 

 

 

 

low

a

-

a

b

b

c

-

 

 

 

 

 

 

 

 

medium

b

-

b

c

c

d

-

 

 

 

 

 

 

 

 

high

-

c

c

d

d

d

e

 

 

 

 

 

 

 

 

24

Application Guide TwinSAFE

Circuit examples

2.4 ESTOP function variant 4 (Category 4, PL e)

The emergency stop button with two break contacts, the restart and the feedback loop are connected to safe channels of an EL1904 input terminal. The testing of the signals is activated. The two emergency stop signals are tested for discrepancy. The contactors K1 and K2 are connected in parallel to the safe output. Current measurement and testing of the output are active for this circuit.

2.4.1Parameters of the safe input and output terminals

EL1904 (applies to all EL1904 used)

Parameter

Value

Sensor test channel 1 active

Yes

 

 

Sensor test channel 2 active

Yes

 

 

Sensor test channel 3 active

Yes

 

 

Sensor test channel 4 active

Yes

 

 

Logic channel 1 and 2

Single Logic

 

 

Logic channel 3 and 4

Single Logic

 

 

EL2904

 

Parameter

Value

Current measurement active

Yes

 

 

Output test pulses active

Yes

 

 

Application Guide TwinSAFE

25

Circuit examples

2.4.2Block formation and safety loops

2.4.2.1Block 1

 

 

 

 

 

 

 

 

 

 

K1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1

 

EL1904

 

EL6900

 

EL2904

 

 

 

 

 

S2

 

EL1904

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3

Calculation

 

2.4.3.1 PFH / MTTFd /B10d – values

 

 

 

Component

Value

EL1904 – PFH

1.11E-09

 

 

EL2904 – PFH

1.25E-09

 

 

EL6900 – PFH

1.03E-09

 

 

S1 – B10d

100,000

 

 

S2 – B10d

10,000,000

 

 

K1 – B10d

1,300,000

K2 – B10d

1,300,000

 

 

Days of operation (dop)

230

 

 

Hours of operation / day (hop)

16

Cycle time (minutes) (Tcycle)

10080 (1x per week)

 

 

Lifetime (T1)

20 years = 175200 hours

 

 

 

2.4.3.2

Diagnostic Coverage DC

 

 

 

Component

Value

S1 with testing/plausibility

DCavg=99%

 

 

S2 with plausibility

DCavg=90%

 

 

K1/K2 with testing and EDM (actuation 1x per

DCavg=90%

week and indirect feedback)

 

 

 

K1/K2 with testing and EDM (actuation 1x per shift

DCavg=99%

and direct feedback)

 

 

 

 

2.4.3.3Calculation for block 1

Calculation of the PFH and MTTFd values from the B10d values:

From:

60

 

 

 

 

 

 

and:

 

 

26

 

Application Guide TwinSAFE

Circuit examples

 

 

 

10

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inserting the values, this produces:

S1:

 

 

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100000

 

 

 

45662.1y 399999120h

 

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

S2:

 

 

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10000000

4566210.0y 4E10h

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

K1/K2:

 

 

 

 

 

 

 

 

 

 

230 16 60

 

21.90

 

 

 

 

 

 

10080

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1300000

 

 

593607.3y 5199997320h

 

 

 

 

 

 

 

 

 

 

0.1 21.90

 

 

 

 

 

 

and the assumption that S1, S2, K1 and K2 are in each case single-channel:

1

results in a

! " 0.1 #1 $ %&' 1 $ DC10 MTTF-

S1:

1 $ 0.99

! " 45662.1 8760 2.50E $ 11

S2:

1 $ 0.90

! " 4566210.0 8760 2.50E $ 12

K1/K2: actuation 1x per shift and direct feedback

1 $ 0.99

! " 593607.3 8760 1.92E $ 12

Application Guide TwinSAFE

27

Circuit examples

The following assumptions have to be made now:

Safety switch S1: According to BIA report 2/2008, error exclusion to up to 100,000 cycles is possible, provided the manufacturer has confirmed this. If no confirmation exists, S1 is included in the calculation as follows.

Relays K1 and K2 are both connected to the safety function. The non-functioning of a relay does not lead to a dangerous situation, but it is discovered by the feedback signal. Furthermore, the B10d values for K1 and K2 are identical.

There is a coupling coefficient between the components that are connected via two channels. Examples are temperature, EMC, voltage peaks or signals between these components. This is assumed to be the worst-case estimation, where ß =10%. EN 62061 contains a table with which this ß-factor can be precisely determined. Further, it is assumed that all usual measures have been taken to prevent both channels failing unsafely at the same time due to an error (e.g. overcurrent through relay contacts, over temperature in the control cabinet).

This produces for the calculation of the PFH value for block 1:

PFHtot= PFH(S1) + PFH(EL1904) + PFH(EL6900) + PFH(EL2904) + β* (PFH(K1)+

PFH(K2))/2 + PFH(S2) + PFH(EL1904)

to:

PFHtot= 2.50E-11+1.11E-09 + 1.03E-09 + 1.25E-09 + 10%* (1.92E-11+1.92E-11)/2 + 2.50E-12 + 1.11E-09 = 4.53E-09

The MTTFd value for block 1 (based on the same assumption) is calculated with:

1

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= <

 

 

 

 

 

 

 

 

 

 

 

 

 

 

; ;

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

>?@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as:

 

 

1

 

 

 

 

 

 

1

 

 

1

 

 

1

1

=

 

 

 

 

+

 

 

 

+

 

+

; ;

 

(A1)

 

(BC1904)

 

(BC6900)

 

(2904)

 

+

 

 

1

 

 

 

+

1

 

+

1

 

 

 

 

( (D1))

(A2)

 

(BC1904)

 

 

with:

(S1) = 10 (A1) 0.1

(S2) = 10 (A2) 0.1

(K1) = 10 (D1) 0.1

28

Application Guide TwinSAFE

Loading...
+ 110 hidden pages