Philips UDA1321PS-N101, UDA1321H-N102, UDA1321H-N101, UDA1321H-N1, UDA1321T-N101 Datasheet

...
0 (0)

INTEGRATED CIRCUITS

DATA SHEET

UDA1321

Universal Serial Bus (USB)

Digital-to-Analog Converter (DAC)

Preliminary specification

1998 Oct 06

Supersedes data of 1998 May 12

File under Integrated Circuits, IC01

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

FEATURES

General

Universal Serial Bus (USB) stereo Digital-to-Analog Converter (DAC) system with adaptive (5 to 55 kHz) 20-bits digital-to-analog conversion and filtering

USB-compliant audio and Human Interface Device (HID)

Supports 12 Mbits/s full-speed serial data transmission

Supports multiple audio data formats (8, 16 and 24 bits)

Supports headphone and line output

Fully automatic ‘Plug-and-Play’ operation

High linearity

Wide dynamic range

Superior signal-to-noise ratio (typical 95 dB)

Low total harmonic distortion (typical 90 dB)

3.3 V power supply

Efficient power management

Low power consumption

On-chip master clock oscillator, only an external crystal is required

Partly programmable USB descriptors and configuration via I2C-bus.

Sound processing

Separate digital volume control for left and right channel

Soft mute

Digital bass and treble tone control

External Digital Sound Processor (DSP) option possible via standard I2S-bus or Japanese digital I/O format

Selectable clipping prevention

Selectable Dynamic Bass Boost (DBB)

On-chip digital de-emphasis.

Document references

“USB Specification”

“USB Common Class Specification”

“USB Device Class Definition for Audio Devices”

“Device Class Definition for Human Interface Devices (HID)”

“USB HID Usage Table”.

APPLICATIONS

USB monitors

USB speakers

USB headsets

USB telephone/answering machines

USB links in consumer audio devices.

GENERAL DESCRIPTION

The UDA1321 is a stereo CMOS digital-to-analog bitstream converter designed for USB-compliant audio playback devices and multimedia audio applications.The UDA1321 is an adaptive asynchronous sink USB audio device with a continuous sampling frequency (fs) range from 5 to 55 kHz. It contains a USB interface, an embedded microcontroller and an Asynchronous Digital-to-Analog Converter (ADAC).

The USB interface is the interface between the USB, the ADAC and the microcontroller. The USB interface consists of an analog front-end and a USB processor. The analog front-end transforms the differential USB data to a digital data stream. The USB processor buffers the input and output data from the analog front-end and handles all low-level USB protocols. The USB processor selects the relevant data from the universal serial bus, performs an extensive error detection and separates control information (input and output) and audio information (input only).

1998 Oct 06

2

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

The control information becomes accessible at the microcontroller. The audio information becomes available at the digital I/O output or is fed directly to the ADAC.

The microcontroller handles the high-level USB protocols, translates the incoming control requests and manages the user interface via General Purpose (GP) pins and an I2C-bus.

The ADAC enables the wide and continuous range of input sampling frequencies. By means of a Sample Frequency Generator (SFG), the ADAC is able to reconstruct the average sample frequency from the incoming audio samples. The ADAC also performs the sound processing.

QUICK REFERENCE DATA

The ADAC consists of FIFO registers, a unique audio feature processing DSP, the SFG, digital up-sampling filters, a variable hold register, a Noise Shaper (NS) and a Filter Stream DAC (FSDAC) with integrated filter and line output drivers. The audio information is applied to the ADAC via the USB processor or via the digital I/O input.

An external DSP can be used for adding extra sound processing features via the digital I/O-bus.

The UDA1321 supports the standard I2S-bus data input format and the LSB-justified serial data input format with word lengths of 16, 18 and 20 bits.

The wide dynamic range of the bitstream conversion technique used in the UDA1321 guarantees a high audio sound quality.

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

 

 

 

 

 

 

 

Supplies

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

supply voltage

note 1

3.0

3.3

3.6

V

IDD(tot)

total supply current

 

50

mA

IDD(ps)

supply current in power-save

note 3

18

mA

 

mode

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic performance DAC

 

 

 

 

 

 

 

 

 

 

 

 

THD + N

total harmonic

fs = 44.1 kHz; RL = 5 kΩ

 

 

 

 

----------------------

distortion-plus-noise to signal

at input signal of 1 kHz (0 dB)

90(2)

80

dB

S

 

ratio

 

0.0032

0.01

%

 

 

at input signal of 1 kHz (60 dB)

30(2)

20

dB

 

 

 

3.2

10

%

 

 

 

 

 

 

 

S/Nbz

signal-to-noise ratio at bipolar

A-weighted at code 0000H

90

95

dBA

 

zero

 

 

 

 

 

 

 

 

 

 

 

 

Vo(FS)(rms)

full-scale output voltage

VDD = 3.3 V

0.66

V

 

(RMS value)

 

 

 

 

 

 

 

 

 

 

 

 

General characteristics

 

 

 

 

 

 

 

 

 

 

 

 

fi(sample)

audio sample input frequency

 

5

55

kHz

Tamb

operating ambient temperature

 

0

25

70

°C

Notes

1.VDD is the supply voltage on pins VDDA, VDDE, VDDI and VDDX. VSS is the ground on pins VSSA, VSSE, VSSI and VSSX. All VDD and VSS pins must be connected to the same supply or ground respectively.

2.The audio information from the USB interface is fed directly to the ADAC.

3.The power-save mode (power management) is not supported in the UDA1321/N101; see Chapter “USB-DAC UDA1321/N101 (Firmware sw 2.1.1.7)”.

1998 Oct 06

3

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

ORDERING INFORMATION

TYPE NUMBER

 

PACKAGE

 

 

 

 

NAME

DESCRIPTION

VERSION

 

 

 

 

 

UDA1321H/N101

QFP64

plastic quad flat package; 64 leads (lead length 1.95 mm);

SOT319-2

 

 

body 14 × 20 × 2.8 mm

 

 

 

 

 

UDA1321T/N101

SO28

plastic small outline package; 28 leads; body width 7.5 mm

SOT136-1

 

 

 

 

UDA1321PS/N101

SDIP32

plastic shrink dual in-line package; 32 leads (400 mil)

SOT232-1

 

 

 

 

1998 Oct 06

4

Philips UDA1321PS-N101, UDA1321H-N102, UDA1321H-N101, UDA1321H-N1, UDA1321T-N101 Datasheet

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

BLOCK DIAGRAM

 

 

 

D+

D

 

TC

 

 

 

 

 

RTCB

TEST

ANALOG FRONT-END

SCL

CONTROL

 

 

 

SHTCB

 

 

SDA

BLOCK

 

 

 

 

 

 

 

 

 

 

EA

 

 

 

USB-PROCESSOR

PSEN

 

 

 

 

 

 

 

 

 

ALE

 

 

 

 

 

P2.0

GP4/BCKO

 

 

 

 

P2.1

 

 

 

 

 

GP3/WSO

 

 

 

 

P2.2

 

 

 

 

 

GP2/DO

 

 

 

 

P2.3

 

 

 

DIGITAL I/O

GP1/DI

 

 

P2.4

GP0/BCKI

 

 

 

 

 

 

 

MICRO-

P2.5

GP5/WSI

 

 

 

 

 

 

CONTROLLER

P2.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2.7

 

 

 

 

 

P0.0

 

 

 

FIFO REGISTERS

P0.1

 

 

 

fs

 

P0.2

 

 

 

 

P0.3

 

SAMPLE

 

 

 

AUDIO FEATURE

P0.4

 

FREQUENCY

 

GENERATOR

PROCESSING DSP

P0.5

 

 

 

 

 

 

 

 

fs

 

P0.6

 

 

 

 

 

 

 

 

 

 

P0.7

 

 

 

UP-SAMPLE FILTERS

 

 

 

 

64fs

 

VDDE

VSSX

 

 

VARIABLE HOLD REGISTER

VSSE

XTAL1

 

 

 

UDA1321H

VSSI

XTAL2

OSC

TIMING

128fs

UDA1321T

VDDI

VDDX

 

 

 

UDA1321PS

VDDO

 

 

3rd-ORDER

VSSO

 

 

 

 

 

 

NOISE SHAPER

VDDA

 

 

 

 

 

 

 

 

 

 

VSSA

 

 

 

LEFT

RIGHT

 

VOUTL

 

 

DAC

DAC

VOUTR

 

 

 

 

 

 

 

REFERENCE

 

 

 

 

VOLTAGE

 

 

 

 

 

Vref

MGM839

 

 

 

Fig.1

Block diagram.

 

1998 Oct 06

 

 

 

5

 

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

PINNING

 

SYMBOL

PIN

PIN

PIN

I/O

DESCRIPTION

 

QFP64

SDIP32

SO28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GP5/WSI

2

29

25

I/O

general purpose pin 5 or word select input

 

 

 

 

 

 

 

 

SCL

3

30

26

I/O

serial clock input (I2C-bus)

 

SDA

4

31

27

I/O

serial data input/output (I2C-bus)

 

P0.7

5

n.a.

n.a.

I/O

Port 0.7 of the microcontroller

 

 

 

 

 

 

 

 

 

 

 

 

6

n.a.

n.a.

I/O

external access (active LOW)

 

EA

 

 

 

 

 

 

 

 

 

 

GP1/DI

7

32

28

I/O

general purpose pin 1 or data input

 

 

 

 

 

 

 

 

 

 

 

8

n.a.

n.a.

I/O

program store enable (active LOW)

 

PSEN

 

 

 

 

 

 

 

 

 

ALE

9

n.a.

n.a.

I/O

address latch enable (active HIGH)

 

 

 

 

 

 

 

 

GP2/DO

10

1

1

I/O

general purpose pin 2 or data output for extra DSP

 

 

 

 

 

 

 

 

chip

 

 

 

 

 

 

 

 

P2.0

11

n.a.

n.a.

I/O

Port 2.0 of the microcontroller

 

 

 

 

 

 

 

 

P2.1

12

n.a.

n.a.

I/O

Port 2.1 of the microcontroller

 

 

 

 

 

 

 

 

GP3/WSO

13

2

2

I/O

general purpose pin 3 or master word select output for

 

 

 

 

 

 

 

 

extra DSP chip

 

 

 

 

 

 

 

 

GP4/BCKO

14

3

3

I/O

general purpose pin 4 or master bit clock output for

 

 

 

 

 

 

 

 

extra DSP chip

 

 

 

 

 

 

 

 

SHTCB

15

4

4

I

shift clock TCB input (active HIGH)

 

 

 

 

 

 

 

 

D

17

6

5

I/O

negative data line of the differential data bus conform

 

 

 

 

 

 

 

 

to the USB-standard

 

 

 

 

 

 

 

 

P2.2

18

n.a.

n.a.

I/O

Port 2.2 of the microcontroller

 

 

 

 

 

 

 

 

P2.3

19

n.a.

n.a.

I/O

Port 2.3 of the microcontroller

 

 

 

 

 

 

 

 

D+

20

7

6

I/O

positive data line of the differential data bus conform to

 

 

 

 

 

 

 

 

the USB-standard

 

 

 

 

 

 

 

 

P2.4

21

n.a.

n.a.

I/O

Port 2.4 of the microcontroller

 

 

 

 

 

 

 

 

P2.5

22

n.a.

n.a.

I/O

Port 2.5 of the microcontroller

 

 

 

 

 

 

 

 

P2.6

23

n.a.

n.a.

I/O

Port 2.6 of the microcontroller

 

 

 

 

 

 

 

 

P2.7

24

n.a.

n.a.

I/O

Port 2.7 of the microcontroller

 

 

 

 

 

 

 

 

VDDI

25

8

7

digital supply voltage core

 

VSSI

29

9

8

digital ground core

 

VSSE

30

10

9

digital ground I/O pins

 

VDDE

32

11

10

digital supply voltage I/O pins

 

VSSX

36

13

11

crystal oscillator ground

 

XTAL1

37

14

12

I

crystal oscillator input 1

 

 

 

 

 

 

 

 

XTAL2

38

15

13

O

crystal oscillator output 2

 

 

 

 

 

 

 

 

VDDX

39

16

14

crystal oscillator supply voltage

 

Vref

42

18

15

O

reference output voltage

 

VSSA

44

19

16

analog ground

 

VDDA

45

20

17

analog supply voltage

 

VOUTR

46

21

18

O

right channel output voltage

 

 

 

 

 

 

 

 

VSSO

49

22

19

operational amplifier ground

1998 Oct 06

6

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

SYMBOL

PIN

PIN

PIN

I/O

DESCRIPTION

QFP64

SDIP32

SO28

 

 

 

 

 

 

 

 

 

VDDO

51

23

20

operational amplifier supply voltage

VOUTL

53

24

21

O

left channel output voltage

 

 

 

 

 

 

TC

55

25

22

I

test control input (active HIGH)

 

 

 

 

 

 

P0.0

56

n.a.

n.a.

I/O

Port 0.0 of the microcontroller

 

 

 

 

 

 

P0.1

57

n.a.

n.a.

I/O

Port 0.1 of the microcontroller

 

 

 

 

 

 

P0.2

58

n.a.

n.a.

I/O

Port 0.2 of the microcontroller

 

 

 

 

 

 

P0.3

59

n.a.

n.a.

I/O

Port 0.3 of the microcontroller

 

 

 

 

 

 

P0.4

60

n.a.

n.a.

I/O

Port 0.4 of the microcontroller

 

 

 

 

 

 

RTCB

61

26

23

I

asynchronous reset input for test control box (active

 

 

 

 

 

HIGH)

 

 

 

 

 

 

P0.5

62

n.a.

n.a.

I/O

Port 0.5 of the microcontroller

 

 

 

 

 

 

P0.6

63

n.a.

n.a.

I/O

Port 0.6 of the microcontroller

 

 

 

 

 

 

GP0/BCKI

64

27

24

I/O

general purpose pin 0 or master bit clock input

 

 

 

 

 

 

n.c.

1, 16, 26,

5, 12, 17,

n.a.

not connected

 

27, 28, 31,

28

 

 

 

 

33, 34, 35,

 

 

 

 

 

40, 41, 43,

 

 

 

 

 

47, 48, 50,

 

 

 

 

 

52, 54

 

 

 

 

 

 

 

 

 

 

1998 Oct 06

7

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

handbook, full pagewidth

n.c. 1

GP5/WSI 2

SCL 3

SDA 4

P0.7 5

EA 6

GP1/DI 7

PSEN 8

ALE 9 GP2/DO 10 P2.0 11

P2.1 12 GP3/WSO 13 GP4/BCKO 14 SHTCB 15 n.c. 16

D17

P2.2 18

P2.3 19

GP0/BCKI

 

P0.6

 

P0.5

 

RTCB

 

P0.4

 

P0.3

 

P0.2

 

P0.1

 

P0.0

 

TC

 

n.c.

 

VOUTL

 

n.c.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

 

63

 

62

 

61

 

60

 

59

 

58

 

57

 

56

 

55

 

54

 

53

 

52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UDA1321H

20

 

21

 

22

 

23

 

24

 

25

 

26

 

27

 

28

 

29

 

30

 

31

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D+

 

P2.4

 

P2.5

 

P2.6

 

P2.7

 

V

 

n.c.

 

n.c.

 

n.c.

 

V

 

V

 

n.c.

 

V

 

 

 

 

 

 

 

 

 

 

DDI

 

 

 

 

 

 

 

SSI

 

SSE

 

 

 

DDE

51

VDDO

 

n.c.

50

 

VSSO

49

 

n.c.

48

 

n.c.

47

 

VOUTR

46

 

VDDA

45

 

VSSA

44

 

n.c.

43

 

VREF

42

 

n.c.

41

 

n.c.

40

 

VDDX

39

 

XTAL2

38

 

XTAL1

37

 

VSSX

36

 

n.c.

35

 

n.c.

34

 

n.c.

33

 

MGM850

Fig.2 Pin configuration QFP64.

1998 Oct 06

8

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

handbook, halfpage

 

 

 

 

handbook, halfpage

 

 

 

 

GP2/DO

1

 

28

GP1/DI

GP2/DO

1

 

32

GP1/DI

GP3/WSO

 

 

 

SDA

 

 

 

 

 

2

 

27

GP3/WSO

2

 

31

SDA

GP4/BCKO

3

 

 

SCL

GP4/BCKO

 

 

 

SCL

 

26

3

 

30

SHTCB

4

 

 

GP5/WSI

 

 

 

 

 

 

25

SHTCB

4

 

29

GP5/WSI

D

 

 

 

GP0/BCKI

n.c.

 

 

 

n.c.

5

 

24

5

 

28

D+

 

 

 

 

D

 

 

 

 

6

 

23

RTCB

6

 

27

GP0/BCKI

VDDI

 

 

 

TC

D+

 

 

 

 

7

UDA1321T

22

7

 

26

RTCB

 

8

 

 

VDDI

 

 

 

 

VSSI

 

21

VOUTL

8

UDA1321PS

25

TC

VSSE

9

 

 

VDDO

VSSI

 

 

 

 

20

9

 

24

VOUTL

VDDE 10

 

 

VSSO

 

 

 

 

VDDO

 

19

VSSE

10

 

23

VSSX 11

 

 

VOUTR

 

 

 

 

VSSO

 

18

VDDE

11

 

22

XTAL1

12

 

 

VDDA

 

 

 

 

 

 

17

n.c.

12

 

21

VOUTR

XTAL2 13

 

 

VSSA

VSSX

 

 

 

VDDA

 

16

13

 

20

VDDX

 

 

 

Vref

 

 

 

 

VSSA

14

 

15

XTAL1

14

 

19

 

 

 

 

 

 

 

 

 

Vref

 

 

MGM840

 

XTAL2

15

 

18

 

 

 

 

 

VDDX

 

 

 

 

 

 

 

 

 

16

 

17

n.c.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MGM841

 

Fig.3 Pin configuration SO28.

Fig.4 Pin configuration SDIP32.

1998 Oct 06

9

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

FUNCTIONAL DESCRIPTION

All bold-faced parameters given in this data sheet such as ‘bAlternateSetting’ are part of the USB specification as described in “USB Device Class Definition for Audio Devices” .

The Universal Serial Bus (USB)

Data and power are transferred via the USB by a 4-wire cable. The signalling occurs via two wires and point-to-point segments. The signals on each segment are differentially driven into a cable of 90 Ω intrinsic impedance. The differential receiver features input sensitivity of at least 200 mV and sufficient common mode rejection.

The analog front-end

The analog front-end is an on-chip generic USB transceiver. It is designed to allow voltage levels up to VDD from standard or programmable logic to interface with the physical layer of the USB. It is capable of receiving and transmitting serial data at full speed (12 Mbits/s).

The USB processor

The USB processor forms the interface between the analog front-end, the ADAC and the microcontroller. The USB processor consists of:

The Philips Serial Interface Engine (PSIE)

The Memory Management Unit (MMU)

The Audio Sample Redistribution (ASR) module.

THE PHILIPS SERIAL INTERFACE ENGINE AND MEMORY MANAGEMENT UNIT (PSIE AND MMU)

The PSIE and MMU translate the electrical USB signals into bytes and signals. Depending upon the USB device address and the USB endpoint address, the USB data is directed to the correct endpoint buffer on the PSIE and MMU interface. The data transfer could be of the bulk, isochronous, control or interrupt type. The USB device address is configured during the enumeration process. The UDA1321 has three endpoints. These are:

Control endpoint 0

Status interrupt endpoint

Isochronous data sink endpoint.

The amount of bytes per packet on the control endpoint is limited by the PSIE and MMU hardware to 8 bytes per packet.

The PSIE is the digital front-end of the USB processor.This module recovers the 12 MHz USB clock, detects the USB sync word and handles all low-level USB protocols and error checking.

The MMU is the digital back-end of the USB processor. It handles the temporary data storage of all USB packets that are received or sent over the bus. Three types of packets are defined on the USB. These are:

Token packets

Data packets

Handshake packets.

The token packet contains information about the destination of the data packet. The audio data is transferred via an isochronous data sink endpoint and consequently no handshaking mechanism is used.

The MMU also generates a 1 kHz clock that is locked to the USB Start-Of-Frame (SOF) token.

THE AUDIO SAMPLE REDISTRIBUTION (ASR) MODULE

The ASR module reads the audio samples from the MMU and distributes these samples equidistant over a 1 ms frame period. The distributed audio samples are translated by the digital I/O module to standard I2S-bus format or Japanese digital I/O format. The ASR module generates the bit clock and the word select signal of the digital I/O. The digital I/O formats the received audio samples to one of the four specified serial digital audio formats (standard I2S-bus, 16, 18 or 20 bits LSB-justified).

The microcontroller

The microcontroller receives the control information selected from the USB by the USB processor. It handles the high-level USB protocols and the user interfaces.

The major task of the software process, that is mapped upon the microcontroller, is to control the different modules of the UDA1321 in such a way that it behaves as a USB device. Therefore the microcontroller:

Interprets the USB requests and maps them upon the UDA1321 application

Controls the internal operation of the UDA1321 and the digital I/O pins

Communicates with the external world (EEPROM) using the I2C-bus facility and the general purpose I/O pins.

1998 Oct 06

10

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

The Asynchronous Digital-to-Analog Converter (ADAC)

The ADAC receives USB audio information from the USB processor or from the digital I/O-bus. The ADAC is able to reconstruct the sample clock from the rate at which the audio samples arrive and handles the audio sound processing. After processing, the audio signal is up-sampled, noise-shaped and converted to analog output voltages capable of driving a line output. The ADAC consists of:

A Sample Frequency Generator (SFG)

First-In First-Out (FIFO) registers

An audio feature processing DSP

Two digital up-sample filters

A variable hold register

A digital Noise Shaper (NS)

A Filter Stream DAC (FSDAC) with integrated filter and line output drivers.

THE SAMPLE FREQUENCY GENERATOR (SFG)

The SFG controls the timing signals for the asynchronous digital-to-analog conversion. By means of a digital PLL, the SFG automatically recovers the applied sampling frequency and generates the accurate timing signals for the audio feature processing DSP and the up-sample filters.

FIRST-IN FIRST-OUT (FIFO) REGISTERS

The FIFO registers are used to store the audio samples temporarily coming from the USB processor or from the digital I/O input. The use of a FIFO register (in conjunction with the SFG) is necessary to remove all jitter present on the incoming audio signal.

THE AUDIO FEATURE PROCESSING DSP

A DSP processes the sound features. The control and mapping of the sound features is explained in Section “Controlling the USB Digital-to-Analog Converter (DAC)”. Depending on the sampling rate (fs) the DSP has four frequency domains in which the treble and bass are regulated (see Table 1). The domain is chosen automatically.

THE UP-SAMPLE FILTERS AND VARIABLE HOLD REGISTER

After the audio feature processing DSP two up-sample filters and a variable hold register increase the oversampling rate to 128fs.

Table 1 Frequency domains for audio processing

DOMAIN

SAMPLE FREQUENCY (kHz)

 

 

1

5 to 12

 

 

2

12 to 25

 

 

3

25 to 40

 

 

4

40 to 55

 

 

THE NOISE SHAPER

A 3rd-order noise shaper converts the oversampled data to a noise-shaped bitstream for the FSDAC. The in-band quantization noise is shifted to frequencies well above the audio band.

THE FILTER STREAM DAC (FSDAC)

The FSDAC is a semi-digital reconstruction filter that converts the 1-bit data stream of the noise shaper to an analog output voltage. The filter coefficients are implemented as current sources and are summed at virtual ground of the output operational amplifier. In this way very high signal-to-noise performance and low clock jitter sensitivity is achieved. A post filter is not needed because of the inherent filter function of the DAC. On-board amplifiers convert the FSDAC output current to an output voltage signal capable of driving a line output.

USB Digital-to-Analog Converter (DAC) descriptors

In a typical USB environment the USB host has to know which kind of devices are connected. For this purpose each device contains a number of USB descriptors. These descriptors describe, from different points of view (USB configuration, USB interface and USB endpoint), the capabilities of a device. Each of them can be requested by the host. The collection of descriptors is denoted as a descriptor map. This descriptor map will be reported to the USB host during enumeration and on request.

The full descriptor map is implemented in the firmware exploiting the full functionality of the UDA1321. The USB descriptors and their most important fields, in relationship to the characteristics of the UDA1321 are briefly explained below.

GENERAL DESCRIPTORS

The UDA1321 supports one configuration containing a control interface, an audio interface and a HID interface. The descriptor map that describes this configuration is partly fixed and partly programmable.

1998 Oct 06

11

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

handbook, full pagewidth

INPUT TERMINAL

FEATURE UNIT

OUTPUT TERMINAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FU

 

 

 

IT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MBK530

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Audio function topology.

The programmable part can be retrieved from one of four configuration maps located in the firmware or from an I2C-bus EEPROM. At start-up one of four configuration maps can be selected depending on the logical combination of GP3 and GP0. It is possible to overwrite this configuration map with a configuration map loaded from an I2C-bus EEPROM.

AUDIO DEVICE CLASS SPECIFIC DESCRIPTORS

The audio device class is partly specified with standard descriptors and partly with specific audio device class descriptors. The standard descriptors specify the number and the type of the interface or endpoint. The UDA1321 supports 7 different audio modes:

·8-bit Pulse Code Modulation (PCM) mono or stereo audio data

·16-bit PCM mono or stereo audio data

·24-bit PCM mono or stereo audio data

·Zero bandwidth mode.

Each mode is defined as an alternate setting of the audio interface, selectable with the standard audio streaming interface descriptor bAlternateSetting field.

The seven alternate settings are described in more detail by the specific audio device class descriptors.

The UDA1321 supports the Input Terminal (IT), Output Terminal (OT) and the Feature Unit (FU) descriptors.

The input and output terminals are not controllable via the USB. The feature unit provides the basic manipulation of the incoming logical channels.

The supported sound features are:

·Volume control

·Mute control

·Treble control

·Bass control

·Bass boost control.

Table 2 Audio bandwidth at each audio mode

AUDIO MODE

 

wMaxPacketSize

 

 

8-bit PCM; mono

56 (8¤8 ´ 1 ´ 56)

8-bit PCM; stereo

112

(8¤8 ´ 2 ´ 56)

16-bit PCM; mono

112

(16¤8 ´ 1 ´ 56)

16-bit PCM; stereo

224 (16¤8 ´ 2 ´ 56)

24-bit PCM; mono

168 (24¤8 ´ 1 ´ 56)

24-bit PCM; stereo

336 (24¤8 ´ 2 ´ 56)

The maximum number of audio data samples within a USB packet arriving on the isochronous sink endpoint is restricted by the buffer capacity of this isochronous endpoint. The maximum buffer capacity is 336 bytes/ms.

For each alternate setting with audio, a maximum bandwidth is claimed as indicated in the standard isochronous audio data endpoint descriptor wMaxPacketSize field. To allow a small overshoot in the number of audio samples per packet, the top sample frequency of 55 kHz is taken in the calculation of the bandwidth for each alternate setting. For each alternate setting, with its own isochronous audio data endpoint descriptor, wMaxPacketSize field is then defined as described in Table 2.

Although in a specific UDA1321 application no endpoint control properties can be used upon the isochronous adaptive sink endpoint, the descriptors are still necessary to inform the host about the definition of this endpoint: isochronous, adaptive, sink, continuous sampling frequency (at input side of this endpoint) with lower bound of 5 kHz and upper bound of 55 kHz.

The audio class specific descriptors can be requested with the ‘Get descriptor: configuration request’, which returns all the descriptors, except the device descriptor.

HUMAN INTERFACE DEVICE SPECIFIC DESCRIPTORS

The inputs defined on the UDA1321 are transmitted via the USB to the host according to the HID class. The host

1998 Oct 06

12

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

responds with the appropriate settings via the audio device class for the audio related parts or via the HID class for the HID related inputs and outputs of the UDA1321.

A HID descriptor is necessary to inform the host about the conception of the user interface. The host communicates via the HID device driver using either the control pipe or the interrupt pipe. The UDA1321 uses USB endpoint 0 (control pipe) to respond to the HID specific ‘Get/set report request’ to receive or transmit data from or to the UDA1321. The UDA1321 uses the status interrupt endpoint as interrupt pipe for polling asynchronous data.

The UDA1321 is a high-speed device. The maximum transaction size is 64 bytes per USB frame and the polling rate is defined at a maximum of every 1 ms.

The host requests the configuration descriptor which includes the standard interface descriptor, the HID endpoint descriptor and the HID descriptor. The HID device driver of the host then requests the report descriptor.

Report descriptors are composed of pieces of information about the device. Each piece of information is called an item. All items have a 1-byte prefix that contains the item tag, type and size. In the UDA1321 only the short item basic type is used.

The hosts HID device driver will parse the report descriptor and the defined items. By examining all of these items, the HID class driver is able to determine the size and composition of data reports from the device.

The main items of the UDA1321 are input and output reports. Input reports are sent via the interrupt pipe (UDA1321 USB address 3). Input and output reports can be requested by the host via the control endpoint (USB address 0).

The UDA1321 supports a maximum of three pushbuttons, which represents a certain feature of the UDA1321. If pressed by the user the pushbutton will go to its ‘ON’ state, if not pressed the pushbutton will go back to its ‘OFF’ state. The UDA1321 supports a maximum of two outputs for e.g. user LEDs.

For more information about the input and output functions of the UDA1321 see the application documentation of the device.

Controlling the USB Digital-to-Analog Converter (DAC)

This section describes the functionality of the feature unit of the UDA1321. The mapping of this functionality onto USB descriptors is as implemented in the firmware.

The sound features as defined in the “USB Device Class Definition for Audio Devices” are mapped on the UDA1321 specific feature registers by the microcontroller. These specific sound features are:

Volume control (separate for left and right stereo channels, no master channel)

Mute control (only master channel)

Treble control (only master channel)

Bass control (only master channel)

Dynamic bass boost control (only master channel).

These specific features can be activated via the host (audio device class requests) or via the GP pins (HID plus audio device class requests). Via the I2C-bus the user is able to download the necessary configuration data for different applications (definition of the function of the GP pins, with or without digital I/O functionality, etc.).

The mapping and control of the standard USB audio features and UDA1321 specific features is described below.

VOLUME CONTROL

Volume control is possible via the host or via predefined GP pins. The setting of 0 dB is always referenced to the maximum available volume setting. Table 3 gives the mapping of wVolume value (as defined in the “USB Device Class Definition for Audio Devices”) upon the actual volume setting of the USB DAC. When using the UDA1321, the range is 0 down to 60 dB (in steps of 1 dB) and −∞ dB. Independant control of ‘left’/’right’ volume is possible. It should be noted that wVolume bits B7 to B0 are not used. Values above 0 dB are returned as 0 dB. The volume value at start-up of the device is defined in the selected configuration map.

Balance control is possible via the separate volume control option of both channels. Therefore the characteristics of the balance control are equal to the volume control characteristics.

1998 Oct 06

13

Philips Semiconductors

Preliminary specification

 

 

Universal Serial Bus (USB)

UDA1321

Digital-to-Analog Converter (DAC)

Table 3 Volume control characteristics; note 1

 

 

 

wVOLUME

 

 

 

VOLUME USB SIDE

VOLUME USB DAC

 

 

 

 

 

 

 

 

B15

B14

B13

B12

B11

B10

B9

B8

(dB)

(dB)

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

1

1

1

1

1

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

1

1

0

2

2

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

1

0

1

3

3

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

1

0

0

4

4

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

0

1

1

5

5

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

0

1

0

6

6

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

0

0

1

7

7

 

 

 

 

 

 

 

 

 

 

1

1

1

1

1

0

0

0

8

8

 

 

 

 

 

 

 

 

 

 

1

1

1

1

0

1

1

1

9

9

 

 

 

 

 

 

 

 

 

 

1

1

1

1

0

1

1

0

10

10

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

1

1

0

0

0

1

0

1

59

59

 

 

 

 

 

 

 

 

 

 

1

1

0

0

0

1

0

0

60

60

 

 

 

 

 

 

 

 

 

 

1

1

0

0

0

0

1

1

61

−∞

 

 

 

 

 

 

 

 

 

 

1

1

0

0

0

0

1

0

62

−∞

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

1

0

0

0

0

0

0

0

−∞

−∞

 

 

 

 

 

 

 

 

 

 

Note

1.The volume control characteristics of this table are in accordance with the latest Audio Device Class Definition. The volume control characteristics of the UDA1321/N101 are slightly different; see Chapter “USB-DAC UDA1321/N101 (Firmware sw 2.1.1.7)”

MUTE CONTROL

Mute is one of the sound features as defined in the “USB Device Class Definition for Audio Devices”. The mute control request data bMute controls the position of the mute switch. The position can be either on or off. When bMute is true the feature unit is muted. When bMute is false the feature unit is not muted.

When the mute is active for the master channel, the value of the sample is decreased smoothly to zero following a raised cosine curve. There are 32 coefficients used to step down the value of the data, each one being used 32 times before stepping to the next.

This amounts to a mute transition of 23 ms at

fs = 44.1 kHz. When the mute is released, the samples are returned to the full level again following a raised cosine curve with the same coefficients being used in reversed order. The mute, on the master channel is synchronized to the sample clock, so that operation always takes place on complete samples.

A mute can be given via the host or by pressing a predefined GP pin.

1998 Oct 06

14

Loading...
+ 30 hidden pages