MOTOROLA LM2576T-015, LM2576T-012, LM2576T-3.3, LM2576TV-ADJ, LM2576TV-3.3 Datasheet

...
0 (0)

Order this document by LM2576/D

 

 

 

 

 

 

LM2576

Easy

Switcher

3.0

A

 

 

 

Step-Down

Voltage

Regulator

EASY SWITCHER

The LM2576 series of regulators are monolithic integrated circuits ideally

3.0 A STEP±DOWN

suited for easy and convenient design of a step±down switching regulator

VOLTAGE REGULATOR

(buck converter). All circuits of this series are capable of driving a 3.0 A load

with excellent line and load regulation. These devices are available in fixed

 

SEMICONDUCTOR

output voltages of 3.3 V, 5.0 V, 12 V, 15 V, and an adjustable output version.

 

These regulators were designed to minimize the number of external

 

TECHNICAL DATA

components to simplify the power supply design. Standard series of

 

 

 

inductors optimized for use with the LM2576 are offered by several different

 

 

 

inductor manufacturers.

 

 

 

 

 

 

Since the LM2576 converter is a switch±mode power supply, its efficiency

T SUFFIX

 

is significantly

higher in comparison

with popular

three±terminal linear

 

PLASTIC PACKAGE

 

regulators, especially with higher input voltages. In many cases, the power

 

CASE 314D

 

dissipated is so low that no heatsink is required or its size could be reduced

 

 

1

 

dramatically.

 

 

 

 

 

 

 

 

 

 

Pin 1.

Vin

 

A standard series of inductors optimized for use with the LM2576 are

 

2.

Output

5

available from several different manufacturers. This feature greatly simplifies

3.

Ground

 

the design of switch±mode power supplies.

 

4.

Feedback

 

The LM2576 features include a guaranteed ±4% tolerance on output

5. ON/OFF

 

 

 

 

voltage within specified input voltages and output load conditions, and ±10%

 

 

 

on the oscillator frequency (±2% over 0°C to 125°C). External shutdown is

 

 

 

included, featuring 80 μA (typical) standby current. The output switch

 

 

 

includes cycle±by±cycle current limiting, as well as thermal shutdown for full

TV SUFFIX

1

protection under fault conditions.

 

 

PLASTIC PACKAGE

 

Features

 

 

 

 

CASE 314B

 

 

 

 

 

 

 

5

3.3 V, 5.0 V, 12 V, 15 V, and Adjustable Output Versions

Heatsink surface

 

Adjustable Version Output Voltage Range, 1.23 to 37 V ±4% Maximum

connected to Pin 3.

 

Over Line and Load Conditions

 

 

 

 

 

Guaranteed 3.0 A Output Current

 

 

 

 

 

Wide Input Voltage Range

 

 

 

D2T SUFFIX

 

Requires Only 4 External Components

 

 

 

PLASTIC PACKAGE

 

52 kHz Fixed Frequency Internal Oscillator

 

CASE 936A

1

 

(D2PAK)

TTL Shutdown Capability, Low Power Standby Mode

5

 

 

 

 

 

High Efficiency

 

 

 

Heatsink surface (shown as terminal 6 in case outline

Uses Readily Available Standard Inductors

 

 

 

drawing) is connected to Pin 3.

Thermal Shutdown and Current Limit Protection

 

 

 

 

Applications

Simple High±Efficiency Step±Down (Buck) Regulator

Efficient Pre±Regulator for Linear Regulators

On±Card Switching Regulators

Positive to Negative Converter (Buck±Boost)

Negative Step±Up Converters

Power Supply for Battery Chargers

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

LM2576±3.3

3.3 V

LM2576±5

5.0 V

LM2576±12

12 V

LM2576±15

15 V

LM2576±ADJ

1.23 V to 37 V

 

 

ORDERING INFORMATION

 

Operating

 

Device

Temperature Range

Package

 

 

 

LM2576T±XX

 

Straight Lead

 

 

 

LM2576TV±XX

TJ = ±40° to +125°C

Vertical Mount

LM2576D2T±XX

 

Surface Mount

 

 

 

XX = Voltage Option, i.e. 3.3, 5, 12, 15 V; and ADJ for

Adjustable Output.

Motorola, Inc. 1999

Rev 1, 07/1999

LM2576

Figure 1. Block Diagram and Typical Application

Typical Application (Fixed Output Voltage Versions)

7.0 V ± 40 V

 

 

 

 

 

 

+Vin

Unregulated

 

 

 

 

 

 

 

 

 

DC Input

 

1

 

 

Cin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LM2576

3Gnd 5

Feedback

 

 

4

L1

 

 

Output

100 μH

 

 

 

 

 

2

D1

Cout

 

ON/OFF

1N5822

μF

 

 

1000

5.0 V Regulated

Output 3.0 A Load

 

Representative Block Diagram and Typical Application

 

 

 

Unregulated

+Vin

 

3.1 V Internal

ON/OFF

ON/OFF

Output

 

R2

DC Input

1

 

Regulator

 

Voltage Versions

(Ω)

 

 

 

5

 

 

 

 

 

 

 

1.7 k

 

Cin

 

 

 

 

 

3.3 V

 

 

4

 

 

 

 

 

5.0 V

 

3.1 k

 

 

 

 

 

 

12 V

 

8.84 k

 

 

 

 

 

 

 

 

 

Feedback

 

 

Current

 

 

15 V

 

11.3 k

 

 

 

 

 

 

For adjustable version

 

 

R2

Fixed Gain

 

Limit

 

 

 

 

 

Error Amplifier Comparator

 

 

 

R1 = open, R2 = 0 Ω

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

Driver

 

 

 

Regulated

 

Freq

 

Latch

 

 

 

 

Output

 

1.0 k

 

 

 

L1

 

 

Shift

 

 

 

Output

 

Vout

 

 

 

 

 

 

 

 

 

18 kHz

 

 

1.0 Amp

2

 

 

 

 

1.235 V

 

 

 

 

 

 

52 kHz

 

Switch

Gnd

D1

Cout

 

 

Band±Gap

Reset

Thermal

3

 

 

Load

 

Reference

Oscillator

Shutdown

 

 

 

 

 

 

 

ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.)

 

 

Rating

Symbol

Value

Unit

 

 

 

 

 

 

 

Maximum Supply Voltage

Vin

45

V

 

 

 

±

±0.3 V V +Vin

V

 

ON/OFF Pin Input Voltage

 

Output Voltage to Ground (Steady±State)

±

±1.0

V

 

 

 

 

 

 

Power Dissipation

 

 

 

 

Case 314B and 314D (TO±220, 5±Lead)

PD

Internally Limited

W

 

Thermal Resistance, Junction±to±Ambient

RθJA

65

°C/W

 

Thermal Resistance, Junction±to±Case

RθJC

5.0

°C/W

 

Case 936A (D2PAK)

P

Internally Limited

W

 

 

 

D

 

°C/W

 

Thermal Resistance, Junction±to±Ambient

RθJA

70

 

Thermal Resistance, Junction±to±Case

RθJC

5.0

°C/W

 

Storage Temperature Range

Tstg

±65 to +150

°C

 

Minimum ESD Rating (Human Body Model:

±

2.0

kV

 

C = 100 pF, R = 1.5 kΩ)

 

 

 

 

 

 

 

 

 

Lead Temperature (Soldering, 10 seconds)

±

260

°C

 

 

 

 

 

 

Maximum Junction Temperature

TJ

150

°C

NOTE: ESD data available upon request.

2

MOTOROLA ANALOG IC DEVICE DATA

LM2576

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.)

Rating

Symbol

Value

Unit

 

 

 

 

Operating Junction Temperature Range

TJ

±40 to +125

°C

Supply Voltage

Vin

40

V

SYSTEM PARAMETERS ([Note 1] Test Circuit Figure 15)

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vin = 12 V for the 3.3 V, 5.0 V, and Adjustable version, Vin = 25 V for

the 12 V version, and Vin = 30 V for the 15 V version. ILoad = 500 mA. For typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

LM2576±3.3 ([Note 1] Test Circuit Figure 15)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 12 V, ILoad = 0.5 A, TJ = 25°C)

Vout

3.234

3.3

3.366

V

Output Voltage (6.0 V Vin 40 V, 0.5 A ILoad 3.0 A)

Vout

 

 

 

V

TJ = 25°C

 

3.168

3.3

3.432

 

TJ = ±40 to +125°C

 

3.135

±

3.465

 

Efficiency (Vin = 12 V, ILoad = 3.0 A)

η

±

75

±

%

LM2576±5 ([Note 1] Test Circuit Figure 15)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 12 V, ILoad = 0.5 A, TJ = 25°C)

Vout

4.9

5.0

5.1

V

Output Voltage (8.0 V Vin 40 V, 0.5 A ILoad 3.0 A)

Vout

 

 

 

V

TJ = 25°C

 

4.8

5.0

5.2

 

TJ = ±40 to +125°C

 

4.75

±

5.25

 

Efficiency (Vin = 12 V, ILoad = 3.0 A)

η

±

77

±

%

LM2576±12 ([Note 1] Test Circuit Figure 15)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 25 V, ILoad = 0.5 A, TJ = 25°C)

Vout

11.76

12

12.24

V

Output Voltage (15 V Vin 40 V, 0.5 A ILoad 3.0 A)

Vout

 

 

 

V

TJ = 25°C

 

11.52

12

12.48

 

TJ = ±40 to +125°C

 

11.4

±

12.6

 

Efficiency (Vin = 15 V, ILoad = 3.0 A)

η

±

88

±

%

LM2576±15 ([Note 1] Test Circuit Figure 15)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 30 V, ILoad = 0.5 A, TJ = 25°C)

Vout

14.7

15

15.3

V

Output Voltage (18 V Vin 40 V, 0.5 A ILoad 3.0 A)

Vout

 

 

 

V

TJ = 25°C

 

14.4

15

15.6

 

TJ = ±40 to +125°C

 

14.25

±

15.75

 

Efficiency (Vin = 18 V, ILoad = 3.0 A)

η

±

88

±

%

LM2576 ADJUSTABLE VERSION ([Note 1] Test Circuit Figure 15)

 

 

 

 

 

 

 

 

 

 

 

Feedback Voltage (Vin = 12 V, ILoad = 0.5 A, Vout = 5.0 V, TJ = 25°C)

Vout

1.217

1.23

1.243

V

Feedback Voltage (8.0 V Vin 40 V, 0.5 A ILoad 3.0 A, Vout = 5.0 V)

Vout

 

 

 

V

TJ = 25°C

 

1.193

1.23

1.267

 

TJ = ±40 to +125°C

 

1.18

±

1.28

 

Efficiency (Vin = 12 V, ILoad = 3.0 A, Vout = 5.0 V)

η

±

77

±

%

NOTES: 1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576 is used as shown in the Figure 15 test circuit, system performance will be as shown in system parameters section.

2. Tested junction temperature range for the LM2576:

Tlow = ±40°C

Thigh = +125°C

MOTOROLA ANALOG IC DEVICE DATA

3

 

LM2576

DEVICE PARAMETERS

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vin = 12 V for the 3.3 V, 5.0 V, and Adjustable version, Vin = 25 V for

the 12 V version, and Vin = 30 V for the 15 V version. ILoad = 500 mA. For typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

 

 

 

 

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

ALL OUTPUT VOLTAGE VERSIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback Bias Current (Vout = 5.0 V [Adjustable Version Only])

Ib

 

 

 

nA

 

 

TJ = 25°C

 

±

25

100

 

 

 

TJ = ±40 to +125°C

 

±

±

200

 

 

Oscillator Frequency [Note 3]

fosc

 

 

 

kHz

 

 

TJ = 25°C

 

±

52

±

 

 

 

TJ = 0 to +125°C

 

47

±

58

 

 

 

TJ = ±40 to +125°C

 

42

±

63

 

 

Saturation Voltage (Iout = 3.0 A [Note 4])

Vsat

 

 

 

V

 

 

TJ = 25°C

 

±

1.5

1.8

 

 

 

TJ = ±40 to +125°C

 

±

±

2.0

 

 

Max Duty Cycle (ªonº) [Note 5]

DC

94

98

±

%

 

 

 

 

 

 

 

 

 

 

 

 

 

Current Limit (Peak Current [Notes 3 and 4])

ICL

 

 

 

A

 

 

TJ = 25°C

 

4.2

5.8

6.9

 

 

 

TJ = ±40 to +125°C

 

3.5

±

7.5

 

 

Output Leakage Current [Notes 6 and 7], TJ = 25°C

IL

 

 

 

mA

 

 

Output = 0 V

 

±

0.8

2.0

 

 

 

Output = ±1.0 V

 

±

6.0

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quiescent Current [Note 6]

IQ

 

 

 

mA

 

 

TJ = 25°C

 

±

5.0

9.0

 

 

 

TJ = ±40 to +125°C

 

±

±

11

 

 

Standby Quiescent Current

 

 

Istby

 

 

 

μA

(ON/OFF Pin = 5.0 V (ªoffº))

 

 

 

 

 

TJ = 25°C

 

±

80

200

 

 

 

TJ = ±40 to +125°C

 

±

±

400

 

 

 

 

 

 

 

 

 

 

 

 

V

 

ON/OFF Pin Logic Input Level (Test Circuit Figure 15)

 

 

 

 

 

 

Vout = 0 V

VIH

 

 

 

 

 

 

TJ = 25°C

 

2.2

1.4

±

 

 

 

TJ = ±40 to +125°C

 

2.4

±

±

 

 

 

Vout = Nominal Output Voltage

VIL

 

 

 

 

 

 

TJ = 25°C

 

±

1.2

1.0

 

 

 

TJ = ±40 to +125°C

 

±

±

0.8

 

 

 

 

 

 

 

 

 

 

 

 

μA

 

ON/OFF Pin Input Current (Test Circuit Figure 15)

 

 

 

 

 

 

 

 

I

±

15

30

 

 

 

ON/OFF Pin = 5.0 V (ªoffº), T = 25°C

 

 

 

 

 

 

J

IH

 

 

 

 

 

 

ON/OFF Pin = 0 V (ªonº), T = 25°C

I

±

0

5.0

 

 

 

 

 

J

IL

 

 

 

 

NOTES: 3. The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

4.Output (Pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.

5.Feedback (Pin 4) removed from output and connected to 0 V.

6.Feedback (Pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V, and 5.0 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor ªoffº.

7.Vin = 40 V.

4

MOTOROLA ANALOG IC DEVICE DATA

MOTOROLA LM2576T-015, LM2576T-012, LM2576T-3.3, LM2576TV-ADJ, LM2576TV-3.3 Datasheet

LM2576

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 15)

Figure 2. Normalized Output Voltage

Figure 3. Line Regulation

 

1.0

 

 

 

 

 

 

 

(%)

0.8

Vin = 20 V

 

 

 

 

 

 

CHANGE

0.6

ILoad = 500 mA

 

 

 

 

 

Normalized at TJ = 25°C

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

0.2

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

±0.2

 

 

 

 

 

 

 

, OUTPUT

 

 

 

 

 

 

 

±0.4

 

 

 

 

 

 

 

±0.6

 

 

 

 

 

 

 

out

±0.8

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

±1.0

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

 

1.4

 

 

 

 

 

 

 

 

(%)

1.2

ILoad = 500 mA

 

 

 

 

 

 

CHANGE

 

 

 

 

 

 

 

1.0

TJ = 25°C

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

3.3 V, 5.0 V and ADJ

 

 

 

 

VOLTAGE

0.6

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

12 V and 15 V

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±0.2

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

out

±0.4

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±0.6

5.0

10

15

20

25

30

35

40

 

0

 

 

 

 

Vin, INPUT VOLTAGE (V)

 

 

Figure 4. Dropout Voltage

Figure 5. Current Limit

 

2.0

 

 

 

 

 

 

 

(V)

 

ILoad = 3.0 A

 

 

 

 

DIFFERENTIAL

 

 

 

 

 

1.5

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

± OUTPUT

 

 

 

 

 

 

 

 

 

 

ILoad = 500 mA

 

 

 

 

0.5

 

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

L1 = 150 μH

 

 

 

 

 

 

Rind = 0.1

Ω

 

 

 

 

 

 

 

 

0

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

6.5

 

 

 

 

 

 

 

(A)

6.0

 

 

 

 

 

Vin = 25 V

 

 

 

 

 

 

 

 

CURRENT

5.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, OUTPUT

5.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

4.5

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

±50

±25

0

25

50

75

100

125

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 6. Quiescent Current

Figure 7. Standby Quiescent Current

 

20

 

 

 

 

 

 

 

A)

 

 

 

 

 

 

 

Vout = 5.0 V

(μ

QUIESCENTCURRENT (mA)

18

 

 

 

 

 

QUIESCENT CURRENT

 

 

 

 

 

 

Measured at

16

 

 

 

 

 

Ground Pin

14

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

12

 

 

 

ILoad = 3.0 A

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

8.0

 

ILoad = 200 mA

 

 

 

 

,

 

 

 

 

 

 

 

 

STANDBY,

Q

 

 

 

 

 

 

 

 

I

6.0

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

stby

 

5.0

10

15

20

25

30

35

I

 

0

40

 

 

 

 

Vin, INPUT VOLTAGE (V)

 

 

 

200

 

 

 

 

 

 

 

180

VON/OFF = 5.0 V

 

 

 

 

 

160

 

 

 

 

 

 

 

140

 

 

 

 

 

 

 

120

 

Vin = 40 V

 

 

 

 

 

100

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

60

 

Vin = 12 V

 

 

 

 

 

40

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

±50

±25

0

25

50

75

100

125

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

MOTOROLA ANALOG IC DEVICE DATA

5

 

LM2576

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 15)

Figure 8. Standby Quiescent Current

A)

200

 

 

 

 

 

 

 

 

(μ

180

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

160

 

 

 

 

 

 

 

 

140

 

 

TJ = 25°C

 

 

 

 

 

QUIESCENT

120

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

, STANDBY

60

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

stby

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

I

5

10

15

20

25

30

35

40

 

0

 

 

 

 

Vin, INPUT VOLTAGE (V)

 

 

 

Figure 10. Oscillator Frequency

 

8.0

 

 

 

 

 

 

 

(%)

6.0

 

 

 

 

 

 

 

4.0

Vin = 12 V

 

 

 

 

 

FREQUENCY

 

 

 

 

 

 

Normalized at

 

 

 

 

 

2.0

25°C

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NORMALIZED

±2.0

 

 

 

 

 

 

 

±4.0

 

 

 

 

 

 

 

±6.0

 

 

 

 

 

 

 

±8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±10

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 9. Switch Saturation Voltage

 

1.6

 

 

 

 

 

 

(V)

1.4

 

 

 

 

 

 

VOLTAGE

1.2

±40°C

 

 

 

 

 

1.0

 

 

 

 

 

 

, SATURATION

0.8

25°C

 

 

 

 

 

0.6

125°C

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

sat

 

 

 

 

 

 

 

 

 

 

 

 

 

V

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

2.5

 

 

0

0.5

1.0

1.5

2.0

3.0

SWITCH CURRENT (A)

Figure 11. Minimum Operating Voltage

 

5.0

 

 

 

 

 

 

 

 

4.5

 

 

 

Adjustable Version Only

 

(V)

4.0

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

, INPUT

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

1.5

 

 

Vout ' 1.23 V

 

 

 

 

in

 

 

 

ILoad = 500 mA

 

 

 

 

V

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

0

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 12. Feedback Pin Current

 

100

 

 

 

 

 

 

 

(nA)

80

 

 

 

Adjustable Version Only

 

60

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

PIN

0

 

 

 

 

 

 

 

,FEEDBACK

±20

 

 

 

 

 

 

 

±40

 

 

 

 

 

 

 

±60

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

I

±80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±100

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

6

MOTOROLA ANALOG IC DEVICE DATA

LM2576

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 15)

Figure 13. Switching Waveforms

A

50 V

 

 

0

 

4.0 A

B

2.0 A

 

0

 

4.0 A

C

2.0 A

 

D

0

 

 

5 μs/DIV

Vout = 15 V

A:Output Pin Voltage, 10 V/DIV

B:Inductor Current, 2.0 A/DIV

C:Inductor Current, 2.0 A/DIV, AC±Coupled

D:Output Ripple Voltage, 50mV/dDIV, AC±Coupled

Horizontal Time Base: 5 μs/DIV

Figure 14. Load Transient Response

100 mV

Output

0

Voltage

Change

 

± 100 mV

 

3.0 A

Load

2.0 A

Current

 

 

1.0 A

 

0

 

100 μs/DIV

MOTOROLA ANALOG IC DEVICE DATA

7

 

LM2576

Figure 15. Typical Test Circuit

Fixed Output Voltage Versions

 

 

 

 

 

Feedback

 

 

 

 

 

 

 

Vin

LM2576

4

 

 

 

 

 

 

 

 

L1

 

 

 

 

 

 

1

Fixed Output

Output

100 μH

 

 

 

Vout

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

3

Gnd

5

ON/OFF

 

 

 

 

 

7.0 V ± 40 V

Cin

μF

 

 

 

D1

C

μ

 

 

Unregulated

100

 

 

 

out

F

 

DC Input

 

 

 

 

 

MBR360

1000

 

Load

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cin

±

100 μF, 75 V, Aluminium Electrolytic

Cout ±

1000 μF, 25 V, Aluminium Electrolytic

D1

±

Schottky, MBR360

L1

±

100 μH, Pulse Eng. PE±92108

R1

±

2.0 k, 0.1%

R2

±

6.12 k, 0.1%

Adjustable Output Voltage Versions

 

 

 

 

 

Feedback

 

 

 

 

 

 

 

 

Vin

LM2576

4

 

 

 

 

 

 

 

 

 

 

 

 

L1

 

 

Vout

 

 

1

Adjustable

 

100 μH

 

 

 

 

 

 

 

Output

 

 

 

 

 

5,000 V

 

 

 

 

 

2

 

 

 

 

 

 

 

7.0 V ± 40 V

 

3

Gnd

5

ON/OFF

 

 

 

 

 

 

 

Cin

 

 

 

 

 

 

 

Cout

 

 

R2

Unregulated

μF

 

 

 

 

D1

μ

 

100

 

 

 

 

F

 

DC Input

 

 

 

 

 

 

 

 

1000

 

Load

 

 

 

 

 

 

MBR360

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

Vout + Vref 1.0 )

R2

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 + R1

Vout

± 1.0

 

 

 

 

 

 

 

 

Vref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where Vref = 1.23 V, R1

 

 

 

 

 

 

 

 

 

between 1.0 k and 5.0 k

 

 

 

 

PCB LAYOUT GUIDELINES

As in any switching regulator, the layout of the printed circuit board is very important. Rapidly switching currents associated with wiring inductance, stray capacitance and parasitic inductance of the printed circuit board traces can generate voltage transients which can generate electromagnetic interferences (EMI) and affect the desired operation. As indicated in the Figure 15, to minimize inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible.

For best results, single±point grounding (as indicated) or ground plane construction should be used.

On the other hand, the PCB area connected to the Pin 2 (emitter of the internal switch) of the LM2576 should be kept to a minimum in order to minimize coupling to sensitive circuitry.

Another sensitive part of the circuit is the feedback. It is important to keep the sensitive feedback wiring short. To assure this, physically locate the programming resistors near to the regulator, when using the adjustable version of the LM2576 regulator.

8

MOTOROLA ANALOG IC DEVICE DATA

 

 

 

 

LM2576

 

 

 

 

PIN FUNCTION DESCRIPTION

 

 

 

 

 

Pin

 

 

Symbol

Description (Refer to Figure 1)

 

 

 

 

 

1

Vin

This pin is the positive input supply for the LM2576 step±down switching regulator. In order to minimize

 

 

 

 

voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass

 

 

 

 

capacitor must be present (Cin in Figure 1).

2

Output

This is the emitter of the internal switch. The saturation voltage Vsat of this output switch is typically 1.5 V.

 

 

 

 

It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to

 

 

 

 

minimize coupling to sensitive circuitry.

 

 

 

 

 

3

Gnd

Circuit ground pin. See the information about the printed circuit board layout.

 

 

 

 

 

4

Feedback

This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the

 

 

 

 

internal resistor divider network R2, R1 and applied to the non±inverting input of the internal error amplifier.

 

 

 

 

In the Adjustable version of the LM2576 switching regulator this pin is the direct input of the error amplifier

 

 

 

 

and the resistor network R2, R1 is connected externally to allow programming of the output voltage.

 

 

 

 

5

 

 

 

It allows the switching regulator circuit to be shut down using logic level signals, thus dropping the total

ON/OFF

 

 

 

 

input supply current to approximately 80 μA. The threshold voltage is typically 1.4 V. Applying a voltage

 

 

 

 

above this value (up to +Vin) shuts the regulator off. If the voltage applied to this pin is lower than 1.4 V or

 

 

 

 

if this pin is left open, the regulator will be in the ªonº condition.

 

 

 

 

 

 

 

 

 

DESIGN PROCEDURE

Buck Converter Basics

The LM2576 is a ªBuckº or Step±Down Converter which is the most elementary forward±mode converter. Its basic schematic can be seen in Figure 16.

The operation of this regulator topology has two distinct time periods. The first one occurs when the series switch is on, the input voltage is connected to the input of the inductor.

The output of the inductor is the output voltage, and the rectifier (or catch diode) is reverse biased. During this period, since there is a constant voltage source connected across the inductor, the inductor current begins to linearly ramp upwards, as described by the following equation:

IL(on) +

Vin ± Vout ton

L

 

During this ªonº period, energy is stored within the core material in the form of magnetic flux. If the inductor is properly designed, there is sufficient energy stored to carry the requirements of the load during the ªoffº period.

 

Figure 16. Basic Buck Converter

 

 

Power

L

 

 

Switch

 

 

 

 

V

D

Cout

R

in

 

 

Load

The next period is the ªoffº period of the power switch. When the power switch turns off, the voltage across the inductor reverses its polarity and is clamped at one diode voltage drop below ground by the catch diode. The current now flows through the catch diode thus maintaining the load current loop. This removes the stored energy from the inductor. The inductor current during this time is:

IL(off) +

Vout ± VD toff

L

 

This period ends when the power switch is once again turned on. Regulation of the converter is accomplished by varying the duty cycle of the power switch. It is possible to describe the duty cycle as follows:

d + tonT , where T is the period of switching.

For the buck converter with ideal components, the duty cycle can also be described as:

d + Vout Vin

Figure 17 shows the buck converter, idealized waveforms of the catch diode voltage and the inductor current.

Figure 17. Buck Converter Idealized Waveforms

Von(SW)

Voltage

Power

Power

Power

Power

Switch

Switch

Switch

Switch

Diode

Off

On

Off

On

VD(FWD)

 

 

 

 

 

 

 

 

 

 

 

Time

 

 

 

Ipk

 

Current

 

 

 

ILoad(AV)

 

 

 

 

Inductor

Imin

Power

 

Power

Diode

Diode

Switch

Switch

 

 

 

 

Time

MOTOROLA ANALOG IC DEVICE DATA

9

 

Loading...
+ 19 hidden pages