MOTOROLA LM2575TV-ADJ, LM2575TV-3.3, LM2575TV-015, LM2575TV-012, LM2575T-ADJ Datasheet

...
0 (0)

 

 

 

 

 

 

Order this document by LM2575/D

 

 

 

 

 

 

LM2575

Easy

Switcher

1.0

A

 

 

 

Step-Down

Voltage

Regulator

EASY SWITCHER

The LM2575 series of regulators are monolithic integrated circuits ideally

1.0 A STEP±DOWN

VOLTAGE REGULATOR

suited for easy and convenient design of a step±down switching regulator

(buck converter). All circuits of this series are capable of driving a 1.0 A load

 

SEMICONDUCTOR

with excellent line and load regulation. These devices are available in fixed

 

output voltages of 3.3 V, 5.0 V, 12 V, 15 V, and an adjustable output version.

 

TECHNICAL DATA

These regulators were designed to minimize the number of external

 

 

 

components to simplify the power supply design. Standard series of

 

 

 

inductors optimised for use with the LM2575 are offered by several different

 

 

 

inductor manufacturers.

 

 

 

 

 

 

Since the LM2575 converter is a switch±mode power supply, its efficiency

T SUFFIX

 

is significantly

higher in comparison

with popular

three±terminal linear

 

PLASTIC PACKAGE

 

regulators, especially with higher input voltages. In many cases, the power

 

CASE 314D

1

dissipated by the LM2575 regulator is so low, that no heatsink is required or

 

 

 

 

 

its size could be reduced dramatically.

 

 

 

 

5

 

 

 

 

 

The LM2575 features include a guaranteed ±4% tolerance on output

Pin 1.

Vin

 

voltage within specified input voltages and output load conditions, and ±10%

2.

Output

 

on the oscillator frequency (±2% over 0°C to 125°C). External shutdown is

3.

Ground

 

4.

Feedback

 

included, featuring 80 μA typical standby current. The output switch includes

 

5. ON/OFF

 

cycle±by±cycle current limiting, as well as thermal shutdown for full

 

 

 

 

protection under fault conditions.

 

 

 

 

 

Features

 

 

 

 

TV SUFFIX

 

3.3 V, 5.0 V, 12 V, 15 V, and Adjustable Output Versions

1

PLASTIC PACKAGE

 

Adjustable Version Output Voltage Range of 1.23 V to 37 V ±4%

CASE 314B

5

 

 

Maximum Over Line and Load Conditions

 

Heatsink surface

 

Guaranteed 1.0 A Output Current

 

 

 

 

 

connected to Pin 3.

 

Wide Input Voltage Range: 4.75 V to 40 V

Requires Only 4 External Components

52 kHz Fixed Frequency Internal Oscillator

D2T SUFFIX

 

PLASTIC PACKAGE

 

TTL Shutdown Capability, Low Power Standby Mode

1

CASE 936A

High Efficiency

(D2PAK)

5

 

 

 

Uses Readily Available Standard Inductors

 

 

 

Thermal Shutdown and Current Limit Protection

Heatsink surface (shown as terminal 6 in case outline

Applications

drawing) is connected to Pin 3.

 

 

 

Simple and High±Efficiency Step±Down (Buck) Regulators

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

Efficient Pre±Regulator for Linear Regulators

LM2575±3.3

 

3.3 V

On±Card Switching Regulators

 

LM2575±5

 

5.0 V

Positive to Negative Converters (Buck±Boost)

LM2575±12

 

12 V

Negative Step±Up Converters

LM2575±15

 

15 V

LM2575±Adj

 

1.23 V to 37 V

Power Supply for Battery Chargers

 

 

 

 

 

ORDERING INFORMATION

 

 

Operating

 

 

Device

Temperature Range Package

 

LM2575T±**

 

Straight Lead

 

LM2575TV±**

TJ = ±40° to +125°C Vertical Mount

 

LM2575D2T±**

 

Surface Mount

 

** = Voltage Option, ie. 3.3, 5.0, 12, 15 V and

 

Adjustable Output.

 

 

Motorola, Inc. 1999

Rev 2, 07/1999

LM2575

Figure 1. Block Diagram and Typical Application

Typical Application (Fixed Output Voltage Versions)

7.0 V ± 40 V

 

 

 

 

 

 

+Vin

Unregulated

 

 

 

 

 

 

 

 

 

DC Input

 

1

 

 

Cin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback

 

 

LM2575

4

L1

 

 

 

330 μH

 

 

 

 

Output

 

 

 

 

 

 

 

 

 

2

D1

Cout

3

Gnd

5

ON/OFF

1N5819

 

 

 

 

 

330 μF

5.0 V Regulated

Output 1.0 A Load

Representative Block Diagram and Typical Application

Unregulated

+Vin

 

3.1 V Internal

ON/OFF

ON/OFF

Output

 

R2

DC Input

1

 

Regulator

 

Voltage Versions

(Ω)

 

 

 

5

 

 

 

 

 

 

 

1.7 k

 

Cin

 

 

 

 

 

3.3 V

 

 

4

 

 

 

 

 

5.0 V

 

3.1 k

 

 

 

 

 

 

12 V

 

8.84 k

 

 

 

 

 

 

 

 

 

Feedback

 

 

Current

 

 

15 V

 

11.3 k

 

 

 

 

 

 

For adjustable version

 

 

R2

Fixed Gain

 

Limit

 

 

 

 

 

Error Amplifier Comparator

 

 

 

R1 = open, R2 = 0 Ω

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

Driver

 

 

 

Regulated

 

Freq

 

Latch

 

 

 

 

Output

 

1.0 k

 

 

 

L1

 

 

Shift

 

 

 

Output

 

Vout

 

 

 

 

 

 

 

 

 

18 kHz

 

 

1.0 Amp

2

 

 

 

 

1.235 V

 

 

 

 

 

 

52 kHz

 

Switch

Gnd

D1

Cout

 

 

Band±Gap

Reset

Thermal

3

 

 

Load

 

Reference

Oscillator

Shutdown

 

 

 

 

 

 

 

This device contains 162 active transistors.

ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.)

 

 

Rating

Symbol

Value

Unit

 

 

 

 

 

 

 

Maximum Supply Voltage

Vin

45

V

 

 

 

±

±0.3 V V +Vin

V

 

ON/OFF Pin Input Voltage

 

Output Voltage to Ground (Steady±State)

±

±1.0

V

 

 

 

 

 

 

Power Dissipation

 

 

 

 

Case 314B and 314D (TO±220, 5±Lead)

PD

Internally Limited

W

 

Thermal Resistance, Junction±to±Ambient

RθJA

65

°C/W

 

Thermal Resistance, Junction±to±Case

RθJC

5.0

°C/W

 

Case 936A (D2PAK)

PD

Internally Limited

W

 

Thermal Resistance, Junction±to±Ambient

RθJA

70

°C/W

 

(Figure 34)

 

 

 

 

Thermal Resistance, Junction±to±Case

RθJC

5.0

°C/W

 

Storage Temperature Range

Tstg

±65 to +150

°C

 

Minimum ESD Rating (Human Body Model: C

±

3.0

kV

 

= 100 pF, R = 1.5 kΩ)

 

 

 

 

 

 

 

 

 

Lead Temperature (Soldering, 10 s)

±

260

°C

 

 

 

 

 

 

Maximum Junction Temperature

TJ

150

°C

NOTE: ESD data available upon request.

2

MOTOROLA ANALOG IC DEVICE DATA

LM2575

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.)

Rating

Symbol

Value

Unit

 

 

 

 

Operating Junction Temperature Range

TJ

±40 to +125

°C

Supply Voltage

Vin

40

V

SYSTEM PARAMETERS ([Note 1] Test Circuit Figure 14)

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vin = 12 V for the 3.3 V, 5.0 V, and Adjustable version, Vin = 25 V for

the 12 V version, and Vin = 30 V for the 15 V version. ILoad = 200 mA. For typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

LM2575±3.3 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 12 V, ILoad = 0.2 A, TJ = 25°C)

Vout

3.234

3.3

3.366

V

Output Voltage (4.75 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

3.168

3.3

3.432

 

TJ = ±40 to +125°C

 

3.135

±

3.465

 

Efficiency (Vin = 12 V, ILoad = 1.0 A)

η

±

75

±

%

LM2575±5 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 12 V, ILoad = 0.2 A, TJ = 25°C)

Vout

4.9

5.0

5.1

V

Output Voltage (8.0 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

4.8

5.0

5.2

 

TJ = ±40 to +125°C

 

4.75

±

5.25

 

Efficiency (Vin = 12 V, ILoad = 1.0 A)

η

±

77

±

%

LM2575±12 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 25 V, ILoad = 0.2 A, TJ = 25°C)

Vout

11.76

12

12.24

V

Output Voltage (15 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

11.52

12

12.48

 

TJ = ±40 to +125°C

 

11.4

±

12.6

 

Efficiency (Vin = 15V, ILoad = 1.0 A)

η

±

88

±

%

LM2575±15 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 30 V, ILoad = 0.2 A, TJ = 25°C)

Vout

14.7

15

15.3

V

Output Voltage (18 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

14.4

15

15.6

 

TJ = ±40 to +125°C

 

14.25

±

15.75

 

Efficiency (Vin = 18 V, ILoad = 1.0 A)

η

±

88

±

%

LM2575 ADJUSTABLE VERSION ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Feedback Voltage (Vin = 12 V, ILoad = 0.2 A, Vout = 5.0 V, TJ = 25°C)

VFB

1.217

1.23

1.243

V

Feedback Voltage (8.0 V Vin 40 V, 0.2 A ILoad 1.0 A, Vout = 5.0 V)

VFB

 

 

 

V

TJ = 25°C

 

1.193

1.23

1.267

 

TJ = ±40 to +125°C

 

1.18

±

1.28

 

Efficiency (Vin = 12 V, ILoad = 1.0 A, Vout = 5.0 V)

η

±

77

±

%

NOTES: 1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2575 is used as shown in the Figure 14 test circuit, system performance will be as shown in system parameters section.

2. Tested junction temperature range for the LM2575:

Tlow = ±40°C

Thigh = +125°C

MOTOROLA ANALOG IC DEVICE DATA

3

 

LM2575

DEVICE PARAMETERS

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vin = 12 V for the 3.3 V, 5.0 V, and Adjustable version, Vin = 25 V for

the 12 V version, and Vin = 30 V for the 15 V version. ILoad = 200 mA. For typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

 

 

 

 

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

ALL OUTPUT VOLTAGE VERSIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback Bias Current (Vout = 5.0 V [Adjustable Version Only])

Ib

 

 

 

nA

 

 

TJ = 25°C

 

±

25

100

 

 

 

TJ = ±40 to +125°C

 

±

±

200

 

 

Oscillator Frequency [Note 3]

fosc

 

 

 

kHz

 

 

TJ = 25°C

 

±

52

±

 

 

 

TJ = 0 to +125°C

 

47

±

58

 

 

 

TJ = ±40 to +125°C

 

42

±

63

 

 

Saturation Voltage (Iout = 1.0 A [Note 4])

Vsat

 

 

 

V

 

 

TJ = 25°C

 

±

1.0

1.2

 

 

 

TJ = ±40 to +125°C

 

±

±

1.3

 

 

Max Duty Cycle (ªonº) [Note 5]

DC

94

98

±

%

 

 

 

 

 

 

 

 

 

 

 

 

 

Current Limit (Peak Current [Notes 4 and 3])

ICL

 

 

 

A

 

 

TJ = 25°C

 

1.7

2.3

3.0

 

 

 

TJ = ±40 to +125°C

 

1.4

±

3.2

 

 

Output Leakage Current [Notes 6 and 7], TJ = 25°C

IL

 

 

 

mA

 

 

Output = 0 V

 

±

0.8

2.0

 

 

 

Output = ±1.0 V

 

±

6.0

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quiescent Current [Note 6]

IQ

 

 

 

mA

 

 

TJ = 25°C

 

±

5.0

9.0

 

 

 

TJ = ±40 to +125°C

 

±

±

11

 

 

Standby Quiescent Current

 

 

Istby

 

 

 

μA

(ON/OFF Pin = 5.0 V (ªoffº))

 

 

 

 

 

TJ = 25°C

 

±

80

200

 

 

 

TJ = ±40 to +125°C

 

±

±

400

 

 

 

 

 

 

 

 

 

 

 

 

V

 

ON/OFF Pin Logic Input Level (Test Circuit Figure 14)

 

 

 

 

 

 

Vout = 0 V

VIH

 

 

 

 

 

 

TJ = 25°C

 

2.2

1.4

±

 

 

 

TJ = ±40 to +125°C

 

2.4

±

±

 

 

 

Vout = Nominal Output Voltage

VIL

 

 

 

 

 

 

TJ = 25°C

 

±

1.2

1.0

 

 

 

TJ = ±40 to +125°C

 

±

±

0.8

 

 

 

 

 

 

 

 

 

 

 

 

μA

 

ON/OFF Pin Input Current (Test Circuit Figure 14)

 

 

 

 

 

 

 

 

I

±

15

30

 

 

 

ON/OFF Pin = 5.0 V (ªoffº), T = 25°C

 

 

 

 

 

 

J

IH

 

 

 

 

 

 

ON/OFF Pin = 0 V (ªonº), T = 25°C

I

±

0

5.0

 

 

 

 

 

J

IL

 

 

 

 

NOTES: 3. The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

4.Output (Pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.

5.Feedback (Pin 4) removed from output and connected to 0 V.

6.Feedback (Pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V, and 5.0 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor ªoffº.

7.Vin = 40 V.

4

MOTOROLA ANALOG IC DEVICE DATA

LM2575

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 14)

Figure 2. Normalized Output Voltage

Figure 3. Line Regulation

Vout, OUTPUT VOLTAGE CHANGE (%)

0.6

Vin = 20 V

ILoad = 200 mA 0.4 Normalized at

TJ = 25°C

0.2

0

±0.2

±0.4

±0.6

±25

0

25

50

75

100

125

±50

TJ, JUNCTION TEMPERATURE (°C)

Vout, OUTPUT VOLTAGE CHANGE (%)

1.0

ILoad = 200 mA

0.8TJ = 25°C

0.63.3 V, 5.0 V and Adj

0.2

 

 

 

 

 

 

 

 

0

 

 

 

 

12 V and 15 V

 

 

±0.20

5.0

10

15

20

25

30

35

40

 

 

 

Vin, INPUT VOLTAGE (V)

 

 

 

Vsat , SATURATION VOLTAGE (V)

Figure 4. Switch Saturation Voltage

1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.9

 

 

 

 

 

 

 

 

 

 

 

±40°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

125°C

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SWITCH CURRENT (A)

IO, OUTPUT CURRENT (A)

Figure 5. Current Limit

3.0

2.5

2.0

1.5

1.0

0.5

Vin = 25 V

0

±50

±25

0

25

50

75

100

125

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 6. Dropout Voltage

Figure 7. Quiescent Current

 

2.0

 

 

 

 

 

 

 

DIFFERENTIAL(V)

1.8

 

 

 

 

 

Vout = 5%

CURRENTQUIESCENT(mA)

ILoad = 1.0 A

 

 

 

Rind = 0.2 Ω

1.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

INPUT±OUTPUT

1.2

 

 

 

 

 

 

 

1.0

ILoad = 200 mA

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

0.4

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout =

5.0 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured at

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 25 C

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ILoad

= 1.0 A

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ILoad

= 200 mA

 

 

 

 

 

 

8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

6.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

10

15

20

25

30

35

40

0

Vin, INPUT VOLTAGE (V)

MOTOROLA ANALOG IC DEVICE DATA

5

 

MOTOROLA LM2575TV-ADJ, LM2575TV-3.3, LM2575TV-015, LM2575TV-012, LM2575T-ADJ Datasheet

LM2575

Istby, STANDBY QUIESCENT CURRENT (μ A)

 

 

Figure 8. Standby Quiescent Current

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 25

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5.0

10

15

20

25

30

35

40

Vin, INPUT VOLTAGE (V)

Istby, STANDBY QUIESCENT CURRENT (μA)

Figure 9. Standby Quiescent Current

120

Vin = 12 V

VON/OFF = 5.0 V

100

80

60

40

20

0

±25

0

25

50

75

100

125

±50

TJ, JUNCTION TEMPERATURE (°C)

Figure 10. Oscillator Frequency

 

2.0

 

 

 

 

 

 

 

(%)

 

Vin = 12 V

 

 

 

 

 

 

0

Normalized at 25°C

 

 

 

 

 

FREQUENCY

 

 

 

 

 

 

 

±2.0

 

 

 

 

 

 

 

±4.0

 

 

 

 

 

 

 

NORMALIZED

 

 

 

 

 

 

 

±6.0

 

 

 

 

 

 

 

±8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±10

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 12. Switching Waveforms

OUTPUT

10 V

VOLTAGE

0

(PIN 2)

OUTPUT

1.0 A

CURRENT

 

(PIN 2)

0

INDUCTOR 1.0 A

CURRENT 0.5 A

OUTPUT

20 mV

RIPPLE

/DIV

VOLTAGE

 

 

5.0 μs/DIV

Figure 11. Feedback Pin Current

(nA)

40

Adjustable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Version

Only

 

 

 

 

 

 

 

 

 

 

 

 

CURRENTPIN

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEEDBACK,

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±25

0

25

50

75

100

125

 

±50

TJ, JUNCTION TEMPERATURE (°C)

OUTPUTVOLTAGE

Figure 13. Load Transient Response

100

0

(mV)CHANGE

,

±100

out

 

V

 

(A)

 

CURRENT

1.0

0.5

 

, LOAD

0

 

Load

100 μs/DIV

I

 

6

MOTOROLA ANALOG IC DEVICE DATA

LM2575

Figure 14. Typical Test Circuit

5.0 Output Voltage Versions

 

 

 

 

 

Feedback

 

 

 

 

 

Vin

 

 

4

 

 

Vout

 

 

LM2575±5

L1

 

 

+

 

1

330 μH

 

 

Regulated

 

 

 

 

 

 

 

 

 

 

Output

 

 

Output

 

 

 

 

 

2

 

 

 

Vin

 

3

Gnd

5

ON/OFF

 

 

 

Unregulated

Cin

μF/50 V

 

 

D1

Cout

 

DC Input

100

 

 

330

μF

Load

8.0 V ± 40 V

 

 

 

 

1N5819

/16 V

 

 

 

 

 

±

 

 

 

 

 

 

 

 

Adjustable Output Voltage Versions

 

 

 

 

 

Feedback

 

 

 

 

 

 

Vin

LM2575

4

 

 

 

 

 

 

Vout

 

 

 

 

 

 

 

L1

 

 

+

1

Adjustable

 

 

 

 

330 μH

 

Regulated

 

 

 

 

 

Output

 

 

 

Output

 

 

 

 

 

2

 

 

 

 

 

 

 

Unregulated

 

3

Gnd

5

ON/OFF

 

 

 

 

 

 

Cin

 

 

 

 

 

 

 

 

 

Cout

R2

DC Input

 

 

 

 

 

 

 

 

 

100

μF/50 V

 

 

 

 

 

 

 

D1

330 μF

 

8.0 V ± 40 V

 

 

 

 

 

 

 

Load

 

 

 

 

 

 

 

 

 

1N5819

/16 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout + V

ref

1 )

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

R2 + R1

Vout

± 1

 

 

 

 

 

 

 

Vref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where Vref = 1.23 V, R1

 

 

 

 

 

 

 

between 1.0 kΩ and 5.0 kΩ

 

 

PCB LAYOUT GUIDELINES

As in any switching regulator, the layout of the printed circuit board is very important. Rapidly switching currents associated with wiring inductance, stray capacitance and parasitic inductance of the printed circuit board traces can generate voltage transients which can generate electromagnetic interferences (EMI) and affect the desired operation. As indicated in the Figure 14, to minimize inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. For best results, single±point grounding (as indicated) or ground plane construction should be used.

On the other hand, the PCB area connected to the Pin 2 (emitter of the internal switch) of the LM2575 should be kept to a minimum in order to minimize coupling to sensitive circuitry.

Another sensitive part of the circuit is the feedback. It is important to keep the sensitive feedback wiring short. To assure this, physically locate the programming resistors near to the regulator, when using the adjustable version of the LM2575 regulator.

MOTOROLA ANALOG IC DEVICE DATA

7

 

 

 

 

 

LM2575

 

 

 

 

PIN FUNCTION DESCRIPTION

 

 

 

 

 

Pin

 

 

Symbol

Description (Refer to Figure 1)

 

 

 

 

 

1

Vin

This pin is the positive input supply for the LM2575 step±down switching regulator. In order to minimize

 

 

 

 

voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass

 

 

 

 

capacitor must be present (Cin in Figure 1).

2

Output

This is the emitter of the internal switch. The saturation voltage Vsat of this output switch is typically 1.0 V.

 

 

 

 

It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to

 

 

 

 

minimize coupling to sensitive circuitry.

 

 

 

 

 

3

Gnd

Circuit ground pin. See the information about the printed circuit board layout.

 

 

 

 

 

4

Feedback

This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the

 

 

 

 

internal resistor divider network R2, R1 and applied to the non±inverting input of the internal error amplifier.

 

 

 

 

In the Adjustable version of the LM2575 switching regulator this pin is the direct input of the error amplifier

 

 

 

 

and the resistor network R2, R1 is connected externally to allow programming of the output voltage.

 

 

 

 

 

5

 

 

 

It allows the switching regulator circuit to be shut down using logic level signals, thus dropping the total

ON/OFF

 

 

 

 

input supply current to approximately 80 μA. The input threshold voltage is typically 1.4 V. Applying a

 

 

 

 

voltage above this value (up to +Vin) shuts the regulator off. If the voltage applied to this pin is lower than

 

 

 

 

1.4 V or if this pin is connected to ground, the regulator will be in the ªonº condition.

 

 

 

 

 

 

 

 

 

DESIGN PROCEDURE

Buck Converter Basics

The LM2575 is a ªBuckº or Step±Down Converter which is the most elementary forward±mode converter. Its basic schematic can be seen in Figure 15.

The operation of this regulator topology has two distinct time periods. The first one occurs when the series switch is on, the input voltage is connected to the input of the inductor.

The output of the inductor is the output voltage, and the rectifier (or catch diode) is reverse biased. During this period, since there is a constant voltage source connected across the inductor, the inductor current begins to linearly ramp upwards, as described by the following equation:

IL(on) +

Vin ± Vout ton

L

 

During this ªonº period, energy is stored within the core material in the form of magnetic flux. If the inductor is properly designed, there is sufficient energy stored to carry the requirements of the load during the ªoffº period.

IL(off) +

Vout ± VD toff

L

This period ends when the power switch is once again turned on. Regulation of the converter is accomplished by varying the duty cycle of the power switch. It is possible to describe the duty cycle as follows:

d + tonT , where T is the period of switching.

For the buck converter with ideal components, the duty cycle can also be described as:

d + Vout Vin

Figure 16 shows the buck converter idealized waveforms of the catch diode voltage and the inductor current.

Figure 16. Buck Converter Idealized Waveforms

Von(SW)

 

Figure 15. Basic Buck Converter

 

 

Power

L

 

 

Switch

Vout

 

 

 

 

 

V

D1

Cout

RLoad

in

 

 

 

The next period is the ªoffº period of the power switch. When the power switch turns off, the voltage across the inductor reverses its polarity and is clamped at one diode voltage drop below ground by catch dioded. Current now flows through the catch diode thus maintaining the load current loop. This removes the stored energy from the inductor. The inductor current during this time is:

Voltage

Power

 

Power

Power

Switch

Power

Switch

Switch

Off

Off

On

Diode

 

Switch

 

 

 

On

 

 

 

 

 

 

 

 

 

 

Time

Current

VD(FWD)

 

 

 

 

 

Ipk

ILoad(AV)

Inductor

 

 

 

Imin

Power

 

Power

Diode

Switch

Diode

Switch

 

 

 

 

 

Time

8

MOTOROLA ANALOG IC DEVICE DATA

LM2575

Procedure (Fixed Output Voltage Version) In order to simplify the switching regulator design, a step±by±step design procedure and example is provided.

 

Procedure

 

 

 

 

 

Example

 

 

 

 

 

 

 

 

 

 

 

 

Given Parameters:

 

 

 

 

 

 

 

 

 

Given Parameters:

 

Vout = Regulated Output Voltage (3.3 V, 5.0 V, 12 V or 15 V)

 

Vout = 5.0 V

 

Vin(max) = Maximum DC Input Voltage

 

 

 

Vin(max) = 20 V

 

ILoad(max) = Maximum Load Current

 

 

 

ILoad(max) = 0.8 A

1.

Controller IC Selection

 

 

 

 

 

 

 

 

 

1.

Controller IC Selection

 

According to the required input voltage, output voltage and

 

According to the required input voltage, output voltage, current

 

current, select the appropriate type of the controller IC output

 

polarity and current value, use the LM2575±5 controller IC

 

voltage version.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Input Capacitor Selection (Cin)

 

 

 

 

 

 

 

2. Input Capacitor Selection (Cin)

 

To prevent large voltage transients from appearing at the input

 

A 47 μF, 25 V aluminium electrolytic capacitor located near to

 

and for stable operation of the converter, an aluminium or

 

the input and ground pins provides sufficient bypassing.

 

tantalum electrolytic bypass capacitor is needed between the

 

 

 

input pin +Vin and ground pin Gnd. This capacitor should be

 

 

 

located close to the IC using short leads. This capacitor should

 

 

 

have a low ESR (Equivalent Series Resistance) value.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Catch Diode Selection (D1)

 

 

 

 

 

 

 

 

 

3. Catch Diode Selection (D1)

 

 

 

 

 

 

 

 

 

 

A. For this example the current rating of the diode is 1.0 A.

 

A. Since the diode maximum peak current exceeds the

 

 

 

 

 

regulator maximum load current the catch diode current

 

 

 

rating must be at least 1.2 times greater than the maximum

 

 

 

load current. For a robust design the diode should have a

 

 

 

current rating equal to the maximum current limit of the

 

 

 

LM2575 to be able to withstand a continuous output short

 

B. Use a 30 V 1N5818 Schottky diode, or any of the suggested

 

B. The reverse voltage rating of the diode should be at least

 

 

 

fast recovery diodes shown in the Table 4.

 

1.25 times the maximum input voltage.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

Inductor Selection (L1)

 

 

 

 

 

 

 

 

 

4.

Inductor Selection (L1)

 

A. According to the required working conditions, select the

 

A. Use the inductor selection guide shown in Figures 17 to 21.

 

correct inductor value using the selection guide from

 

 

 

Figures 17 to 21.

 

 

 

 

 

 

 

 

 

 

 

 

B. From the appropriate inductor selection guide, identify the

 

B. From the selection guide, the inductance area intersected

 

inductance region intersected by the Maximum Input

 

by the 20 V line and 0.8 A line is L330.

 

Voltage line and the Maximum Load Current line. Each

 

 

 

region is identified by an inductance value and an inductor

 

 

 

code.

 

 

 

 

 

 

 

 

 

 

 

 

C. Select an appropriate inductor from the several different

 

C. Inductor value required is 330 μH. From the Table 1 or

 

manufacturers part numbers listed in Table 1 or Table 2.

 

Table 2, choose an inductor from any of the listed

 

When using Table 2 for selecting the right inductor the

 

manufacturers.

 

designer must realize that the inductor current rating must

 

 

 

be higher than the maximum peak current flowing through

 

 

 

the inductor. This maximum peak current can be calculated

 

 

 

as follows:

 

 

 

V ±V

ton

 

 

 

 

 

 

 

 

 

 

 

Ip(max) + ILoad(max) )

 

 

in

out

 

 

 

 

 

 

2L

 

 

 

 

where ton is the ªonº time of the power switch and

 

 

 

ton +

Vout

x

 

 

1

 

 

 

 

 

 

V

in

 

 

f

osc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For additional information about the inductor, see the

 

 

 

inductor section in the ªExternal Componentsº section of

 

 

 

this data sheet.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOTOROLA ANALOG IC DEVICE DATA

9

 

Loading...
+ 19 hidden pages