Motorola LM2575T, LM2575TV, LM2575D2T Datasheet

0 (0)

Order this document by LM2575/D

 

 

 

 

 

 

 

LM2575

Advance Information

 

 

EASY SWITCHER

Easy

Switcher

1.0

 

A

 

1.0 A STEP±DOWN

 

 

 

 

 

 

Step-Down

Voltage

Regulator

VOLTAGE REGULATOR

The LM2575 series of regulators are monolithic integrated circuits ideally

 

SEMICONDUCTOR

suited for easy and convenient design of a step±down switching regulator

 

TECHNICAL DATA

(buck converter). All circuits of this series are capable of driving a 1.0 A load

 

 

 

with excellent line and load regulation. These devices are available in fixed

 

 

 

output voltages of 3.3 V, 5.0 V, 12 V, 15 V, and an adjustable output version.

 

 

 

These regulators were designed to minimize the number of external

 

 

 

components to

simplify the

power

supply design. Standard series of

T SUFFIX

 

inductors optimised for use with the LM2575 are offered by several different

 

PLASTIC PACKAGE

 

inductor manufacturers.

 

 

 

 

 

 

 

 

 

CASE 314D

 

Since the LM2575 converter is a switch±mode power supply, its efficiency

1

 

 

 

 

 

is significantly higher in comparison with popular three±terminal linear

 

 

5

regulators, especially with higher input voltages. In many cases, the power

Pin 1.

Vin

 

dissipated by the LM2575 regulator is so low, that no heatsink is required or

2.

Output

 

its size could be reduced dramatically.

 

 

 

3.

Ground

 

 

 

 

4.

Feedback

 

The LM2575 features include a guaranteed ±4% tolerance on output

 

5. ON/OFF

 

voltage within specified input voltages and output load conditions, and ±10%

 

 

 

 

on the oscillator frequency (±2% over 0°C to 125°C). External shutdown is

 

 

 

included, featuring 80 μA typical standby current. The output switch includes

 

 

 

cycle±by±cycle

current limiting, as

well as thermal

shutdown for full

TV SUFFIX

1

protection under fault conditions.

 

 

 

 

 

 

PLASTIC PACKAGE

 

Features

 

 

 

 

 

CASE 314B

5

 

 

 

 

 

 

 

3.3 V, 5.0 V, 12 V, 15 V, and Adjustable Output Versions

Heatsink surface

 

Adjustable Version Output Voltage Range of 1.23 V to 37 V ±4%

connected to Pin 3.

 

 

 

 

Maximum Over Line and Load Conditions

 

 

 

 

 

Guaranteed 1.0 A Output Current

 

 

 

D2T SUFFIX

 

Wide Input Voltage Range: 4.75 V to 40 V

 

 

 

 

 

PLASTIC PACKAGE

1

Requires Only 4 External Components

 

 

CASE 936A

 

 

(D2PAK)

5

52 kHz Fixed Frequency Internal Oscillator

 

 

 

 

 

 

 

TTL Shutdown Capability, Low Power Standby Mode

 

 

 

 

High Efficiency

 

 

 

 

Heatsink surface (shown as terminal 6 in case outline

 

 

 

 

 

drawing) is connected to Pin 3.

Uses Readily Available Standard Inductors

 

 

 

 

 

 

 

 

Thermal Shutdown and Current Limit Protection

 

 

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

 

 

 

 

 

 

Applications

Simple and High±Efficiency Step±Down (Buck) Regulators

Efficient Pre±Regulator for Linear Regulators

On±Card Switching Regulators

Positive to Negative Converters (Buck±Boost)

Negative Step±Up Converters

Power Supply for Battery Chargers

LM2575±3.3

3.3 V

LM2575±5

5.0 V

LM2575±12

12 V

LM2575±15

15 V

LM2575±Adj

1.23 V to 37 V

 

 

ORDERING INFORMATION

 

Operating

 

Device

Temperature Range

Package

 

 

 

LM2575T±**

 

Straight Lead

 

 

 

LM2575TV±**

TJ = ±40° to +125°C

Vertical Mount

LM2575D2T±**

 

Surface Mount

 

 

 

** = Voltage Option, ie. 3.3, 5.0, 12, 15 V and

 

Adjustable Output.

 

This document contains information on a new product. Specifications and information herein

Motorola, Inc. 1997

Rev 1

are subject to change without notice.

 

 

LM2575

Figure 1. Block Diagram and Typical Application

Typical Application (Fixed Output Voltage Versions)

7.0 V ± 40 V

 

 

 

 

 

 

+Vin

Unregulated

 

 

 

 

 

 

 

 

DC Input

 

1

 

 

Cin

 

 

 

 

 

 

100 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback

 

 

 

LM2575

4

L1

 

 

 

 

330 μH

 

 

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

 

2

D1

Cout

 

3

Gnd

5

ON/OFF

1N5819

μF

 

 

 

 

 

330

5.0 V Regulated

Output 1.0 A Load

Representative Block Diagram and Typical Application

Unregulated

+Vin

 

3.1 V Internal

ON/OFF

ON/OFF

Output

 

R2

DC Input

1

 

Regulator

 

Voltage Versions

(Ω)

 

 

 

5

 

 

 

 

 

 

 

1.7 k

 

Cin

 

 

 

 

 

3.3 V

 

 

4

 

 

 

 

 

5.0 V

 

3.1 k

 

 

 

 

 

 

12 V

 

8.84 k

 

 

 

 

 

 

 

 

 

Feedback

 

 

Current

 

 

15 V

 

11.3 k

 

 

 

 

 

 

For adjustable version

 

 

R2

Fixed Gain

 

Limit

 

 

 

 

 

Error Amplifier Comparator

 

 

 

R1 = open, R2 = 0 Ω

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

Driver

 

 

 

Regulated

 

Freq

 

Latch

 

 

 

 

Output

 

1.0 k

 

 

 

L1

 

 

Shift

 

 

 

Output

 

Vout

 

 

 

 

 

 

 

 

 

18 kHz

 

 

1.0 Amp

2

 

 

 

 

1.235 V

 

 

 

 

 

 

52 kHz

 

Switch

Gnd

D1

Cout

 

 

Band±Gap

Reset

Thermal

3

 

 

Load

 

Reference

Oscillator

Shutdown

 

 

 

 

 

 

 

This device contains 162 active transistors.

ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.)

 

 

Rating

Symbol

Value

Unit

 

 

 

 

 

 

 

Maximum Supply Voltage

Vin

45

V

 

 

 

±

±0.3 V V +Vin

V

 

ON/OFF Pin Input Voltage

 

Output Voltage to Ground (Steady±State)

±

±1.0

V

 

 

 

 

 

 

Power Dissipation

 

 

 

 

Case 314B and 314D (TO±220, 5±Lead)

PD

Internally Limited

W

 

Thermal Resistance, Junction±to±Ambient

RθJA

65

°C/W

 

Thermal Resistance, Junction±to±Case

RθJC

5.0

°C/W

 

Case 936A (D2PAK)

P

Internally Limited

W

 

 

 

D

 

°C/W

 

Thermal Resistance, Junction±to±Ambient

RθJA

70

 

(Figure 34)

 

 

 

 

Thermal Resistance, Junction±to±Case

RθJC

5.0

°C/W

 

Storage Temperature Range

Tstg

±65 to +150

°C

 

Minimum ESD Rating (Human Body Model: C

±

3.0

kV

 

= 100 pF, R = 1.5 kΩ)

 

 

 

 

 

 

 

 

 

Lead Temperature (Soldering, 10 s)

±

260

°C

 

 

 

 

 

 

Maximum Junction Temperature

TJ

150

°C

NOTE: ESD data available upon request.

2

MOTOROLA ANALOG IC DEVICE DATA

LM2575

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.)

Rating

Symbol

Value

Unit

 

 

 

 

Operating Junction Temperature Range

TJ

±40 to +125

°C

Supply Voltage

Vin

40

V

SYSTEM PARAMETERS ([Note 1] Test Circuit Figure 14)

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vin = 12 V for the 3.3 V, 5.0 V, and Adjustable version, Vin = 25 V for

the 12 V version, and Vin = 30 V for the 15 V version. ILoad = 200 mA. For typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

LM2575±3.3 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 12 V, ILoad = 0.2 A, TJ = 25°C)

Vout

3.234

3.3

3.366

V

Output Voltage (4.75 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

3.168

3.3

3.432

 

TJ = ±40 to +125°C

 

3.135

±

3.465

 

Efficiency (Vin = 12 V, ILoad = 1.0 A)

η

±

75

±

%

LM2575±5 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 12 V, ILoad = 0.2 A, TJ = 25°C)

Vout

4.9

5.0

5.1

V

Output Voltage (8.0 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

4.8

5.0

5.2

 

TJ = ±40 to +125°C

 

4.75

±

5.25

 

Efficiency (Vin = 12 V, ILoad = 1.0 A)

η

±

77

±

%

LM2575±12 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 25 V, ILoad = 0.2 A, TJ = 25°C)

Vout

11.76

12

12.24

V

Output Voltage (15 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

11.52

12

12.48

 

TJ = ±40 to +125°C

 

11.4

±

12.6

 

Efficiency (Vin = 15V, ILoad = 1.0 A)

η

±

88

±

%

LM2575±15 ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Output Voltage (Vin = 30 V, ILoad = 0.2 A, TJ = 25°C)

Vout

14.7

15

15.3

V

Output Voltage (18 V Vin 40 V, 0.2 A ILoad 1.0 A)

Vout

 

 

 

V

TJ = 25°C

 

14.4

15

15.6

 

TJ = ±40 to +125°C

 

14.25

±

15.75

 

Efficiency (Vin = 18 V, ILoad = 1.0 A)

η

±

88

±

%

LM2575 ADJUSTABLE VERSION ([Note 1] Test Circuit Figure 14)

 

 

 

 

 

 

 

 

 

 

 

Feedback Voltage (Vin = 12 V, ILoad = 0.2 A, Vout = 5.0 V, TJ = 25°C)

VFB

1.217

1.23

1.243

V

Feedback Voltage (8.0 V Vin 40 V, 0.2 A ILoad 1.0 A, Vout = 5.0 V)

VFB

 

 

 

V

TJ = 25°C

 

1.193

1.23

1.267

 

TJ = ±40 to +125°C

 

1.18

±

1.28

 

Efficiency (Vin = 12 V, ILoad = 1.0 A, Vout = 5.0 V)

η

±

77

±

%

NOTES: 1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2575 is used as shown in the Figure 14 test circuit, system performance will be as shown in system parameters section.

2. Tested junction temperature range for the LM2575:

Tlow = ±40°C

Thigh = +125°C

MOTOROLA ANALOG IC DEVICE DATA

3

 

LM2575

DEVICE PARAMETERS

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vin = 12 V for the 3.3 V, 5.0 V, and Adjustable version, Vin = 25 V for

the 12 V version, and Vin = 30 V for the 15 V version. ILoad = 200 mA. For typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

 

 

 

 

Characteristics

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

ALL OUTPUT VOLTAGE VERSIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback Bias Current (Vout = 5.0 V [Adjustable Version Only])

Ib

 

 

 

nA

 

 

TJ = 25°C

 

±

25

100

 

 

 

TJ = ±40 to +125°C

 

±

±

200

 

 

Oscillator Frequency [Note 3]

fosc

 

 

 

kHz

 

 

TJ = 25°C

 

±

52

±

 

 

 

TJ = 0 to +125°C

 

47

±

58

 

 

 

TJ = ±40 to +125°C

 

42

±

63

 

 

Saturation Voltage (Iout = 1.0 A [Note 4])

Vsat

 

 

 

V

 

 

TJ = 25°C

 

±

1.0

1.2

 

 

 

TJ = ±40 to +125°C

 

±

±

1.3

 

 

Max Duty Cycle (ªonº) [Note 5]

DC

94

98

±

%

 

 

 

 

 

 

 

 

 

 

 

 

 

Current Limit (Peak Current [Notes 4 and 3])

ICL

 

 

 

A

 

 

TJ = 25°C

 

1.7

2.3

3.0

 

 

 

TJ = ±40 to +125°C

 

1.4

±

3.2

 

 

Output Leakage Current [Notes 6 and 7], TJ = 25°C

IL

 

 

 

mA

 

 

Output = 0 V

 

±

0.8

2.0

 

 

 

Output = ±1.0 V

 

±

6.0

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quiescent Current [Note 6]

IQ

 

 

 

mA

 

 

TJ = 25°C

 

±

5.0

9.0

 

 

 

TJ = ±40 to +125°C

 

±

±

11

 

 

Standby Quiescent Current

 

 

Istby

 

 

 

μA

(ON/OFF Pin = 5.0 V (ªoffº))

 

 

 

 

 

TJ = 25°C

 

±

80

200

 

 

 

TJ = ±40 to +125°C

 

±

±

400

 

 

 

 

 

 

 

 

 

 

 

 

V

 

ON/OFF Pin Logic Input Level (Test Circuit Figure 14)

 

 

 

 

 

 

Vout = 0 V

VIH

 

 

 

 

 

 

TJ = 25°C

 

2.2

1.4

±

 

 

 

TJ = ±40 to +125°C

 

2.4

±

±

 

 

 

Vout = Nominal Output Voltage

VIL

 

 

 

 

 

 

TJ = 25°C

 

±

1.2

1.0

 

 

 

TJ = ±40 to +125°C

 

±

±

0.8

 

 

 

 

 

 

 

 

 

 

 

 

μA

 

ON/OFF Pin Input Current (Test Circuit Figure 14)

 

 

 

 

 

 

 

 

I

±

15

30

 

 

 

ON/OFF Pin = 5.0 V (ªoffº), T= 25°C

 

 

 

 

 

 

J

IH

 

 

 

 

 

 

ON/OFF Pin = 0 V (ªonº), T= 25°C

I

±

0

5.0

 

 

 

 

 

J

IL

 

 

 

 

NOTES: 3. The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

4.Output (Pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.

5.Feedback (Pin 4) removed from output and connected to 0 V.

6.Feedback (Pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V, and 5.0 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor ªoffº.

7.Vin = 40 V.

4

MOTOROLA ANALOG IC DEVICE DATA

LM2575

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 14)

Figure 2. Normalized Output Voltage

Figure 3. Line Regulation

Vout, OUTPUT VOLTAGE CHANGE (%)

0.6

Vin = 20 V

ILoad = 200 mA 0.4 Normalized at

TJ = 25°C

0.2

0

±0.2

±0.4

±0.6

±25

0

25

50

75

100

125

±50

TJ, JUNCTION TEMPERATURE (°C)

Vout, OUTPUT VOLTAGE CHANGE (%)

1.0

ILoad = 200 mA

0.8TJ = 25°C

0.63.3 V, 5.0 V and Adj

0.2

 

 

 

 

 

 

 

 

0

 

 

 

 

12 V and 15 V

 

 

±0.20

5.0

10

15

20

25

30

35

40

 

 

 

Vin, INPUT VOLTAGE (V)

 

 

 

Vsat , SATURATION VOLTAGE (V)

Figure 4. Switch Saturation Voltage

1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.9

 

 

 

 

 

 

 

 

 

 

 

±40°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

125°C

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SWITCH CURRENT (A)

IO, OUTPUT CURRENT (A)

Figure 5. Current Limit

3.0

2.5

2.0

1.5

1.0

0.5

Vin = 25 V

0

±50

±25

0

25

50

75

100

125

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 6. Dropout Voltage

Figure 7. Quiescent Current

 

2.0

 

 

 

 

 

 

 

DIFFERENTIAL(V)

1.8

 

 

 

 

 

Vout = 5%

CURRENTQUIESCENT(mA)

ILoad = 1.0 A

 

 

 

Rind = 0.2 Ω

1.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

INPUT±OUTPUT

1.2

 

 

 

 

 

 

 

1.0

ILoad = 200 mA

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

0.4

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout =

5.0 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured at

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 25 C

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ILoad

= 1.0 A

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ILoad

= 200 mA

 

 

 

 

 

 

 

8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

10

15

20

25

30

35

40

0

Vin, INPUT VOLTAGE (V)

MOTOROLA ANALOG IC DEVICE DATA

5

 

Motorola LM2575T, LM2575TV, LM2575D2T Datasheet

LM2575

Istby, STANDBY QUIESCENT CURRENT (μ A)

 

 

Figure 8. Standby Quiescent Current

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 25

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5.0

10

15

20

25

30

35

40

Vin, INPUT VOLTAGE (V)

Istby, STANDBY QUIESCENT CURRENT (μA)

Figure 9. Standby Quiescent Current

120

Vin = 12 V

VON/OFF = 5.0 V

100

80

60

40

20

0

±25

0

25

50

75

100

125

±50

TJ, JUNCTION TEMPERATURE (°C)

Figure 10. Oscillator Frequency

 

2.0

 

 

 

 

 

 

 

(%)

 

Vin = 12 V

 

 

 

 

 

 

0

Normalized at 25°C

 

 

 

 

 

FREQUENCY

 

 

 

 

 

 

 

±2.0

 

 

 

 

 

 

 

±4.0

 

 

 

 

 

 

 

NORMALIZED

 

 

 

 

 

 

 

±6.0

 

 

 

 

 

 

 

±8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±10

±25

0

25

50

75

100

125

 

±50

 

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

Figure 12. Switching Waveforms

OUTPUT

10 V

VOLTAGE

0

(PIN 2)

OUTPUT

1.0 A

CURRENT

 

(PIN 2)

0

INDUCTOR 1.0 A

CURRENT 0.5 A

OUTPUT

20 mV

RIPPLE

/DIV

VOLTAGE

 

 

5.0 μs/DIV

Figure 11. Feedback Pin Current

(nA)

40

Adjustable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Version

Only

 

 

 

 

 

 

 

 

 

 

 

 

CURRENTPIN

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEEDBACK,

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±25

0

25

50

75

100

125

 

±50

TJ, JUNCTION TEMPERATURE (°C)

OUTPUTVOLTAGE

Figure 13. Load Transient Response

100

0

(mV)CHANGE

,

±100

out

 

V

 

(A)

 

CURRENT

1.0

0.5

 

, LOAD

0

 

Load

100 μs/DIV

I

 

6

MOTOROLA ANALOG IC DEVICE DATA

LM2575

Figure 14. Typical Test Circuit

5.0 Output Voltage Versions

 

 

 

 

 

Feedback

 

 

 

 

 

Vin

 

 

4

 

 

Vout

 

 

LM2575±5

L1

 

 

+

 

1

330 μH

 

 

Regulated

 

 

 

 

 

 

 

 

 

 

Output

 

 

Output

 

 

 

 

 

2

 

 

 

Vin

 

3

Gnd

5

ON/OFF

 

 

 

Unregulated

Cin

μF/50 V

 

 

D1

Cout

μF

 

DC Input

100

 

 

330

Load

8.0 V ± 40 V

 

 

 

 

1N5819

/16 V

 

 

 

 

 

±

 

 

 

 

 

 

 

 

Adjustable Output Voltage Versions

 

 

 

 

 

Feedback

 

 

 

 

 

 

Vin

LM2575

4

 

 

 

 

 

 

Vout

 

 

 

 

 

 

 

L1

 

 

+

1

Adjustable

 

 

 

 

330 μH

 

Regulated

 

 

 

 

 

Output

 

 

 

Output

 

 

 

 

 

2

 

 

 

 

 

 

 

Unregulated

 

3

Gnd

5

ON/OFF

 

 

 

 

 

 

Cin

 

 

 

 

 

 

 

 

 

Cout

R2

DC Input

 

 

 

 

 

 

 

 

 

100

μF/50 V

 

 

 

 

 

 

 

D1

330 μF

 

8.0 V ± 40 V

 

 

 

 

 

 

 

Load

 

 

 

 

 

 

 

 

 

1N5819

/16 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout + V

ref

1 )

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

R2 + R1

Vout

± 1

 

 

 

 

 

 

 

Vref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where Vref = 1.23 V, R1

 

 

 

 

 

 

 

between 1.0 kΩ and 5.0 kΩ

 

 

PCB LAYOUT GUIDELINES

As in any switching regulator, the layout of the printed circuit board is very important. Rapidly switching currents associated with wiring inductance, stray capacitance and parasitic inductance of the printed circuit board traces can generate voltage transients which can generate electromagnetic interferences (EMI) and affect the desired operation. As indicated in the Figure 14, to minimize inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. For best results, single±point grounding (as indicated) or ground plane construction should be used.

On the other hand, the PCB area connected to the Pin 2 (emitter of the internal switch) of the LM2575 should be kept to a minimum in order to minimize coupling to sensitive circuitry.

Another sensitive part of the circuit is the feedback. It is important to keep the sensitive feedback wiring short. To assure this, physically locate the programming resistors near to the regulator, when using the adjustable version of the LM2575 regulator.

MOTOROLA ANALOG IC DEVICE DATA

7

 

 

 

 

 

LM2575

 

 

 

 

PIN FUNCTION DESCRIPTION

 

 

 

 

 

Pin

 

 

Symbol

Description (Refer to Figure 1)

 

 

 

 

 

1

Vin

This pin is the positive input supply for the LM2575 step±down switching regulator. In order to minimize

 

 

 

 

voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass

 

 

 

 

capacitor must be present (Cin in Figure 1).

2

Output

This is the emitter of the internal switch. The saturation voltage Vsat of this output switch is typically 1.0 V.

 

 

 

 

It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to

 

 

 

 

minimize coupling to sensitive circuitry.

 

 

 

 

 

3

Gnd

Circuit ground pin. See the information about the printed circuit board layout.

 

 

 

 

 

4

Feedback

This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the

 

 

 

 

internal resistor divider network R2, R1 and applied to the non±inverting input of the internal error amplifier.

 

 

 

 

In the Adjustable version of the LM2575 switching regulator this pin is the direct input of the error amplifier

 

 

 

 

and the resistor network R2, R1 is connected externally to allow programming of the output voltage.

 

 

 

 

5

 

 

 

It allows the switching regulator circuit to be shut down using logic level signals, thus dropping the total

ON/OFF

 

 

 

 

input supply current to approximately 80 μA. The input threshold voltage is typically 1.4 V. Applying a

 

 

 

 

voltage above this value (up to +Vin) shuts the regulator off. If the voltage applied to this pin is lower than

 

 

 

 

1.4 V or if this pin is connected to ground, the regulator will be in the ªonº condition.

 

 

 

 

 

 

 

 

 

DESIGN PROCEDURE

Buck Converter Basics

The LM2575 is a ªBuckº or Step±Down Converter which is the most elementary forward±mode converter. Its basic schematic can be seen in Figure 15.

The operation of this regulator topology has two distinct time periods. The first one occurs when the series switch is on, the input voltage is connected to the input of the inductor.

The output of the inductor is the output voltage, and the rectifier (or catch diode) is reverse biased. During this period, since there is a constant voltage source connected across the inductor, the inductor current begins to linearly ramp upwards, as described by the following equation:

IL(on) +

Vin ± Vout ton

L

 

During this ªonº period, energy is stored within the core material in the form of magnetic flux. If the inductor is properly designed, there is sufficient energy stored to carry the requirements of the load during the ªoffº period.

IL(off) +

Vout ± VD toff

L

This period ends when the power switch is once again turned on. Regulation of the converter is accomplished by varying the duty cycle of the power switch. It is possible to describe the duty cycle as follows:

d + tonT , where T is the period of switching.

For the buck converter with ideal components, the duty cycle can also be described as:

d + Vout Vin

Figure 16 shows the buck converter idealized waveforms of the catch diode voltage and the inductor current.

Figure 16. Buck Converter Idealized Waveforms

Von(SW)

 

Figure 15. Basic Buck Converter

 

 

Power

L

 

 

Switch

Vout

 

 

 

 

 

V

D1

Cout

RLoad

in

 

 

 

The next period is the ªoffº period of the power switch. When the power switch turns off, the voltage across the inductor reverses its polarity and is clamped at one diode voltage drop below ground by catch dioded. Current now flows through the catch diode thus maintaining the load current loop. This removes the stored energy from the inductor. The inductor current during this time is:

Voltage

Power

 

Power

Power

Switch

Power

Switch

Switch

Off

Off

On

Diode

 

Switch

 

 

 

On

 

 

 

 

 

 

 

 

 

 

Time

Current

VD(FWD)

 

 

 

 

 

Ipk

 

 

 

 

ILoad(AV)

Inductor

 

 

 

Imin

Power

 

Power

Diode

Switch

Diode

Switch

 

 

 

 

 

Time

8

MOTOROLA ANALOG IC DEVICE DATA

Loading...
+ 18 hidden pages