MOTOROLA MC74VHC393ML1, MC74VHC393ML2, MC74VHC393M, MC74VHC393MEL, MC74VHC393D Datasheet

...
0 (0)
MOTOROLA MC74VHC393ML1, MC74VHC393ML2, MC74VHC393M, MC74VHC393MEL, MC74VHC393D Datasheet

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Dual 4-Bit Binary Ripple

Counter

The MC74VHC393 is an advanced high speed CMOS dual 4±bit binary ripple counter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

This device consists of two independent 4±bit binary ripple counters with parallel outputs from each counter stage. A 256 counter can be obtained by cascading the two binary counters.

Internal flip±flops are triggered by high±to±low transitions of the clock input. Reset for the counters is asynchronous and active±high. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the VHC393.

The inputs tolerate voltages up to 7V, allowing the interface of 5V systems to 3V systems.

High Speed: fmax = 170MHz (Typ) at VCC = 5V

Low Power Dissipation: ICC = 4μA (Max) at TA = 25°C

High Noise Immunity: VNIH = VNIL = 28% VCC

Power Down Protection Provided on Inputs

Balanced Propagation Delays

Designed for 2V to 5.5V Operating Range

Low Noise: VOLP = 0.8V (Max)

Pin and Function Compatible with Other Standard Logic Families

Latchup Performance Exceeds 300mA

ESD Performance: HBM > 2000V; Machine Model > 200V

Chip Complexity: 236 FETs or 59 Equivalent Gates

LOGIC DIAGRAM

 

 

 

 

 

BINARY

3, 11

nQA

 

 

 

 

 

4, 10

 

 

1, 13

 

COUNTER

nQB

CPn

 

 

 

5, 9

 

 

 

 

 

 

 

 

 

nQC

 

 

 

 

 

 

 

6, 8

 

 

 

 

 

 

 

nQD

RDn

2, 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUNCTION TABLE

Inputs

 

Clock

Reset

Outputs

 

 

 

X

H

L

H

L

No Change

L

L

No Change

L

No Change

L

Next State

 

 

 

MC74VHC393

D SUFFIX

14±LEAD SOIC PACKAGE

CASE 751A±03

DT SUFFIX

14±LEAD TSSOP PACKAGE

CASE 948G±01

M SUFFIX

14±LEAD SOIC EIAJ PACKAGE

CASE 965±01

ORDERING INFORMATION

MC74VHCXXXD SOIC MC74VHCXXXDT TSSOP MC74VHCXXXM SOIC EIAJ

PIN ASSIGNMENT

 

 

 

 

 

 

 

 

 

CP1

1

14

 

VCC

RD1

2

13

 

CP2

 

1QA

3

12

 

RD2

1QB

4

11

 

2QA

1QC

5

10

 

2QB

1QD

6

9

 

2QC

GND

7

8

 

2QD

 

 

 

 

 

 

 

 

6/97

Motorola, Inc. 1997

1

REV 0

MC74VHC393

MAXIMUM RATINGS*

Symbol

Parameter

 

Value

Unit

 

 

 

 

 

VCC

DC Supply Voltage

 

± 0.5 to + 7.0

V

Vin

DC Input Voltage

 

± 0.5 to + 7.0

V

Vout

DC Output Voltage

 

± 0.5 to VCC + 0.5

V

IIK

Input Diode Current

 

± 20

mA

IOK

Output Diode Current

 

± 20

mA

Iout

DC Output Current, per Pin

 

± 25

mA

ICC

DC Supply Current, VCC and GND Pins

± 75

mA

PD

Power Dissipation in Still Air,

SOIC Packages²

500

mW

 

 

TSSOP Package²

450

 

 

 

 

 

 

Tstg

Storage Temperature

 

± 65 to + 150

_C

*Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute±maximum±rated conditions is not implied.

²Derating Ð SOIC Packages: ± 7 mW/ _C from 65_ to 125_C TSSOP Package: ± 6.1 mW/_C from 65_ to 125_C

RECOMMENDED OPERATING CONDITIONS

Symbol

Parameter

 

Min

Max

Unit

 

 

 

 

 

 

VCC

DC Supply Voltage

 

2.0

5.5

V

Vin

DC Input Voltage

 

0

5.5

V

Vout

DC Output Voltage

 

0

VCC

V

TA

Operating Temperature

 

± 40

+ 85

_C

tr, tf

Input Rise and Fall Time

VCC = 3.3V

0

100

ns/V

 

 

VCC = 5.0V

0

20

 

DC ELECTRICAL CHARACTERISTICS

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high±impedance circuit. For proper operation, Vin and Vout should be constrained to the

range GND v (Vin or Vout) v VCC. Unused inputs must always be

tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open.

 

 

 

VCC

 

TA = 25°C

 

TA = ± 40 to 85°C

 

Symbol

Parameter

Test Conditions

V

Min

Typ

Max

Min

Max

Unit

 

 

 

 

 

 

 

 

 

 

VIH

Minimum High±Level

 

2.0

1.50

 

 

1.50

 

V

 

Input Voltage

 

3.0 to

VCC x 0.7

 

 

VCC x 0.7

 

 

 

 

 

5.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

Maximum Low±Level

 

2.0

 

 

0.50

 

0.50

V

 

Input Voltage

 

3.0 to

 

 

VCC x 0.3

 

VCC x 0.3

 

 

 

 

5.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOH

Minimum High±Level

Vin = VIH or VIL

2.0

1.9

2.0

 

1.9

 

V

 

Output Voltage

IOH = ± 50μA

3.0

2.9

3.0

 

2.9

 

 

 

 

 

4.5

4.4

4.5

 

4.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vin = VIH or VIL

 

 

 

 

 

 

 

 

 

IOH = ± 4mA

3.0

2.58

 

 

2.48

 

 

 

 

IOH = ± 8mA

4.5

3.94

 

 

3.80

 

 

VOL

Maximum Low±Level

Vin = VIH or VIL

2.0

 

0.0

0.1

 

0.1

V

 

Output Voltage

IOL = 50μA

3.0

 

0.0

0.1

 

0.1

 

 

 

 

4.5

 

0.0

0.1

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

Vin = VIH or VIL

 

 

 

 

 

 

 

 

 

IOL = 4mA

3.0

 

 

0.36

 

0.44

 

 

 

IOL = 8mA

4.5

 

 

0.36

 

0.44

 

MOTOROLA

2

VHC Data ± Advanced CMOS Logic

 

 

DL203 Ð Rev 1

MC74VHC393

DC ELECTRICAL CHARACTERISTICS

 

 

 

VCC

 

TA = 25°C

 

TA = ± 40 to 85°C

 

Symbol

Parameter

Test Conditions

V

Min

Typ

Max

Min

Max

Unit

 

 

 

 

 

 

 

 

 

 

Iin

Maximum Input

Vin = 5.5V or GND

0 to 5.5

 

 

± 0.1

 

± 1.0

μA

 

Leakage Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICC

Maximum Quiescent

Vin = VCC or GND

5.5

 

 

4.0

 

40.0

μA

 

Supply Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)

 

 

 

 

 

 

TA = 25°C

 

 

TA = ± 40 to 85°C

 

Symbol

 

Parameter

Test Conditions

Min

Typ

Max

 

Min

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fmax

 

Maximum Clock Frequency

VCC = 3.3 ± 0.3V

CL = 15pF

75

120

 

 

65

 

 

ns

 

 

(50% Duty Cycle)

 

CL = 50pF

45

65

 

 

35

 

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 15pF

125

170

 

 

105

 

 

 

 

 

 

 

CL = 50pF

85

115

 

 

75

 

 

 

tPLH,

 

Maximum Propagation Delay,

VCC = 3.3 ± 0.3V

CL = 15pF

 

8.6

13.2

 

1.0

15.5

 

ns

tPHL

 

CP to QA

 

CL = 50pF

 

11.1

16.7

 

1.0

19.0

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 15pF

 

5.8

8.5

 

1.0

10.0

 

 

 

 

 

 

CL = 50pF

 

7.3

10.5

 

1.0

12.0

 

 

tPLH,

 

Maximum Propagation Delay,

VCC = 3.3 ± 0.3V

CL = 15pF

 

10.2

15.8

 

1.0

18.5

 

ns

tPHL

 

CP to QB

 

CL = 50pF

 

12.7

19.3

 

1.0

22.0

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 15pF

 

6.8

9.8

 

1.0

11.5

 

 

 

 

 

 

CL = 50pF

 

8.3

11.8

 

1.0

13.5

 

 

tPLH,

 

Maximum Propagation Delay,

VCC = 3.3 ± 0.3V

CL = 15pF

 

11.7

18.0

 

1.0

21.0

 

ns

tPHL

 

CP to QC

 

CL = 50pF

 

14.2

21.5

 

1.0

24.5

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 15pF

 

7.7

11.2

 

1.0

13.0

 

 

 

 

 

 

CL = 50pF

 

9.2

13.2

 

1.0

15.0

 

 

tPLH,

 

Maximum Propagation Delay,

VCC = 3.3 ± 0.3V

CL = 15pF

 

13.0

19.7

 

1.0

23.0

 

ns

tPHL

 

CP to QD

 

CL = 50pF

 

15.5

23.2

 

1.0

26.5

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 15pF

 

8.5

12.5

 

1.0

14.5

 

 

 

 

 

 

CL = 50pF

 

10.0

14.5

 

1.0

16.5

 

 

tPHL

 

Maximum Propagation Delay,

VCC = 3.3 ± 0.3V

CL = 15pF

 

7.9

12.3

 

1.0

14.5

 

ns

 

 

RD to Qn

 

CL = 50pF

 

10.4

15.8

 

1.0

18.0

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 15pF

 

5.4

8.1

 

1.0

9.5

 

 

 

 

 

 

CL = 50pF

 

6.9

10.1

 

1.0

11.5

 

 

tOSLH,

 

Output to Output Skew

VCC = 3.3 ± 0.3V

CL = 50pF

 

 

 

1.5

 

 

1.5

 

pF

tOSHL

 

 

(Note NO TAG)

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.0 ± 0.5V

CL = 50pF

 

 

 

1.0

 

 

1.0

 

pF

 

 

 

(Note NO TAG)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cin

 

Maximum Input Capacitance

 

 

 

4

10

 

 

10

 

pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical @ 25°C, VCC = 5.0V

 

 

CPD

 

Power Dissipation Capacitance (Note NO TAG)

 

 

 

 

 

23

 

 

pF

1.Parameter guaranteed by design. tOSLH = |tPLHm ± tPLHn|, tOSHL = |tPHLm ± tPHLn|.

2.CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 2 (per 4±bit counter). CPD is used to determine the no±load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC.

VHC Data ± Advanced CMOS Logic

3

MOTOROLA

DL203 Ð Rev 1

 

 

Loading...
+ 5 hidden pages