Datasheet CXB1577Q Datasheet (Sony)

Page 1
– 1 –
CXB1577Q
E96Z24-PS
Post-Amplifier for Optical Fiber Communication Receiver
Description
The CXB1577Q achieves the 2R optical-fiber communication receiver functions (Reshaping and Regenerating) on a single chip. This IC is equipped with the signal detection function, which is used to enable TTL/ECL outputs. Also, the output disable function performs the output shutdown. 3.3V/5.0V can be used for the supply voltage.
Features
Output disable function (TTL input)
Signal detection function (TTL/ECL output)
Supply voltage supports both 3.3V/5.0V
Applications
SONET/SDH: 622.08Mbps
Fibre Channel: 531.25Mbps
: 1.062Gbps
Gigabit-Ethernet: 1.25Gbps
Absolute maximum Ratings
Supply voltage VCC – VEE –0.3 to +7 V
Storage temperature Tstg –65 to +150 °C
Input voltage difference VD – VD Vdif 0 to +2 V
SW input voltage Vi VEE to VCC V
ECL output current IOQ/SD-ECL –30 to 0 mA
TTL output current (High level) IOH SD-TTL –20 to 0 mA
TTL output current (Low level) IOL SD-TTL 0 to 20 mA
Recommended Operating Conditions
Supply voltage VCC – VEE 3.3 ± 0.2/5 ±0.25 V
Termination voltage (for data) VCC – VTD 1.8 to 2.2 V
Termination voltage (for alarm 1,alarm 2) VTA VEE V
Termination resistance (for data) RTD 46 to 56
Termination resistance (for alarm 1) RTA1 240 to 300
Termination resistance (for alarm 2) RTA2 460 to 560
Operating temperature Ta –40 to +85 °C
Structure
Bipolar silicon monolithic IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
40 pin QFP (Plastic)
Page 2
– 2 –
CXB1577Q
Block Diagram and Pin Configuration
V
EE
4
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2627
28
29
30
40
39
38
37
36
35
34
31
32
33
1
N.C.
V
EE
3
ODIS
SW
VC2
N.C.
N.C.
V
EE
1
V
EE
2
N.C.
N.C.
VC3
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
N.C.
VCC3
QB
Q
VC1
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
TM
V
CC1
N.C.
CAP1B
CAP1
D
V
CC2
V
CC
2
VC0
DB
V
EE1
SD-ECL
peak hold peak hold
V
Page 3
– 3 –
CXB1577Q
Pin Description
Pin
No.
1
VEE3
–3.3V
/
–5V
Negative power supply for ECL output buffer.
Switches the identification maximum voltage amplitude. High voltage when open; the identification maximum voltage amplitude becomes 40mVp-p. Low voltage when connected to VEE; the amplitude becomes 20mVp-p.
2
ODIS
0V
(Open)
or
–3.3V
/
–5V
3
SW
0V
(Open)
or
–3.3V
/
–5V
Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE.
No connected.
Negative power supply for digital block.
Negative power supply for analog block.
Chip temperature monitor.
4
VCC2
0V
6
VC2
0V
/
–1.7V
(Open)
7
N.C.
8 9
10
5
VEE2
–3.3V
/
–5V
VEE1
–3.3V
/
–5V
11
TM
–1.8V
/ –3.5V
Controls the output shutdown function. High voltage when open; the Q output is fixed to Low. Low voltage when connected to VEE; the D input results in the Q output with ECL level. TTL level is also available.
Symbol
Typical pin voltage
DC
AC
Equivalent circuit
Description
VCC2
VEE2
40k
60k
3
2
VCC2
VEE2
VREF
10k
10k
300
5
VCC2
VEE2
6k
2k
Positive power supply for digital block.
10
11
VEE1
Page 4
– 4 –
CXB1577Q
12
13
14 15
16
17
18
19 20
21
22
23
24
25
VCC1
VC0
N.C. CAP1B
CAP1
DB
D
VEE1 VCC2
N.C.
UP
DN
VEEI
VEE2
0V
–0.9V
to
–1.7V –0.9V
to
–1.7V
Positive power supply for analog block.
No connected.
Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE.
Pins 15 and 16 connect a capacitor which determines the cut-off frequency for DC feedback block. Pins 17 and 18 are input pins for limiting amplifier block. Input the signal with AC coupled.
DC
AC
VCC3
VEE3
6k
2k
13
Negative power supply for analog block.
Positive power supply for digital block. No connected.
Connects a resistor for alarm level setting. Default voltage can be generated without an external resistor by shorting the VEEI pin to VEE.
Generates the default voltage between UP and DOWN. The voltage (8.0mV for input conversion) can be generated between UP and DOWN (Pins 22 and 23)
as alarm setting level
by connecting this pin to VEE.
–1.3V
–1.3V
–3.3V
/–5V
0V
–3.3V
/–5V
–3.3V
/–5V
16
15
1k
18
17
1k
V
CC1
V
EE1
2007.5k
100p
2007.5k
Pin
No.
Symbol
Typical pin voltage
Equivalent circuit
Description
23
24
VCC2
VEE2
100
22
986
100
140.9
140.9
VCS
SW
SW
Negative power supply for digital block.
0V
/
–1.7V
(Open)
Page 5
– 5 –
CXB1577Q
32
DC
AC
26
CAP2
–1.8V
Connects a peak hold circuit capacitor for alarm block. 470pF should be connected to Vcc each.
CAP2 pin connects a peak hold capacitor for alarm level setting block. CAP3 pin connects a peak hold capacitor for limiting amplifier signal.
26
VCC2
VEE2
80
200
5µA
10p
27
CAP3
–1.8V
28
29 30
31
VC3
VEE4 N.C. VCC4
0V
/–1.7V
(Open)
–3.3V
/–5V
0V
Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE.
VCC2
VEE2
80
200
5µA
10p
27
VCC3
VEE3
6k
2k
28
VC1
0V
–1.7V
(Open)
Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE.
VCC3
VEE3
6k
2k
32
Pin
No.
Symbol
Typical pin voltage
Equivalent circuit
Description
Negative power supply for TTL output buffer.
No connected. Positive power supply for TTL
output buffer.
Page 6
– 6 –
CXB1577Q
DC
AC
33
SD-TTL
VEE
or
VEE +
3V
Alarm signal TTL level output.
VCC4
VEE4
33
40k
34
SDB-TTL
VEE
or
VEE +
3V
3536SD-ECL
SDB-ECL
–0.9V
or
–1.7V
–0.9V
or
–1.7V
Alarm signal ECL level output. Terminate this pin in 510to V
EE
at
VEE = 5V; in 270
to V
EE at VEE
= 3.3V.
VCC4
VEE4
40k
34
36
35
VCC3
VEE3
Pin
No.
Symbol
Typical pin voltage
Equivalent circuit
Description
Alarm signal TTL level output.
Page 7
– 7 –
CXB1577Q
DC
AC
37
Q
–0.9V
or
–1.7V
Data signal output. Terminates this pin in 50to VTT = Vcc–2V.
VCC3
VEE3
38
37
38 QB
–0.9V
or
–1.7V
39
40
VCC3
N.C.
0V
Pin
No.
Symbol
Typical pin voltage
Equivalent circuit
Description
Positive power supply for ECL output buffer.
No connected.
Page 8
– 8 –
CXB1577Q
Supply current Q/QB High output voltage Q/QB Low output voltage
SD-ECL/SDB-ECL High output voltage
SD-ECL/SDB-ECL Low output voltage
SD-TTL/SDB-TTL High output voltage 1
SD-TTL/SDB-TTL High output voltage 2
SD-TTL/SDB-TTL Low output voltage SW High input voltage
SW Low input voltage SW High input current SW Low input current ODIS High input voltage ODIS Low input voltage ODIS High input current ODIS Low input current D/DB input resistance
Electrical Characteristics
DC Characteristics
Item
IEE VOH VOL
VOH-E
VOL-E
VOH-T1
VOH-T2
VOL-T VIHSW
VILSW IIHSW IILSW VIHOD VILOD IIHOD IILOD Rin
50to VTT Ta = 0 to +85°C
When Vcc – VEE = 5.0V, 510to VEE; when Vcc – VEE = 3.3V, 270to VEE Ta = 0 to +85°C
IOH = –0.4mA, VCC – VEE = 3.3V, Ta = 0 to +85°C
IOH = –0.4mA, VCC – VEE = 5V, Ta = 0 to +85°C
IOL = 2mA Ta = 0 to +85°C
at SW pin Open: High
at ODIS pin Open: High
–74 –1100 –1860
–1100
–1890
VEE + 2.2
VEE + 2.4
VCC – 0.5
VEE
–100
VEE + 2.0
VEE
–400
765
–51
1020
–34
–860
–1620
–860
–1650
VEE + 0.5
VCC
VEE + 0.5
10
VCC + 0.5 VEE + 0.8
20
1275
mA
mV
V
µA
V
µA
Symbol Min. Typ. Max. UnitConditions
VCC = GND, VEE = –5V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = open, or VCC = GND, VEE = –3.3V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = GND
Page 9
– 9 –
CXB1577Q
AC Characteristics
1
VUP – VDOWN = 100mV, Vin = 100mVp-p (single ended), SW pin: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, connect VEEI to VEE.
2
VUP – VDOWN = 100mV, Vin = 1Vp-p (single ended), SW pin: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, connect VEEI to VEE.
3
Vin = 50mVp-p (single ended), SW pin: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
4
Vin = 1Vp-p (single ended), SW pin: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
Maximum input voltage amplitude Amplifier gain (excluding the output buffer)
Identification maximum voltage amplitude of alarm level
SD/SDB hysteresis width
Alarm setting level for default
Q/QB rise time Q/QB fall time SD-TTL/SDB-TTL rise time SD-TTL/SDB-TTL fall time
SD-ECL/SDB-ECL rise time
SD-ECL/SDB-ECL fall time Propagation delay time
SD response assert time SD response deassert time SD response assert time for alarm
level default SD response deassert time for alarm
level default
Item
Vmax GL
VmaxA1
VmaxA2
P1
P2
Vdef
TrQ TfQ TrSDT TfSDT
TrSDE
TfSDE
TPD Tas Tdas
Tasd
Tdasd
single-ended input
SW pad: Low, single-ended input
SW pad: Open High, single-ended input
SW pin: Low, at default alarm level
SW pin: Open High, at default alarm level
UP/DOWN pin: open, VEEI = VEE, Differential voltage input
20% to 80% 50to VTT
VEE + 0.8V to VEE + 2.0V CL = 10pF
20% to 80% When Vcc – VEE = 5.0V, 510to VEE, when Vcc – VEE = 3.3V, 270to VEE
12
3
4
1600
52 20
40
3
3
7.0
0.4 0
2.3 0
2.3
6
6
8.4
230 230
7
7
9.7
350 350
10 10
1.6
1.6
1.9 100 100
100
100
mVp-p
dB
mVp-p
dB
mV
ps
ns
µs
Symbol Min. Typ. Max. UnitConditions
VCC = GND, VEE = –5V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = open, or VCC = GND, VEE = –3.3V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = GND
Page 10
– 10 –
CXB1577Q
DC Electrical Characteristics Measurement Circuit
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2627
28
29
30
40
39
38
37
36
35
34
31
32
33
1
N.C.
V
EE
3
ODIS
SW
VC2
N.C.
N.C.
V
EE
1
V
EE
2
N.C.
N.C.
V
EE
4
VC3
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
N.C.
VCC3
QB
Q
VC1
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
TM
V
CC1
N.C.
CAP1B
CAP1
D
V
CC2
V
CC
2
VC0
DB
V
EE1
SD-ECL
peak hold peak hold
V
C3C3
C1
C1
C2
V
D
VEE
–5.0V/–3.3V
V
SWVODIS
510
51
51
270 510
270
VTT –2V
When V
EE = –5.0V: VC0 to VC3 = open
When VEE = –3.3V: VC0 to VC3 = Vcc
Page 11
– 11 –
CXB1577Q
AC Electrical Characteristics Measurement Circuit
0.047µF
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
262728
29
30
40
39
38
37
36
35
34
31
32
33
1
N.C.
V
EE
3
ODIS
SW
VC2
N.C.
N.C.
V
EE
1
V
EE
2
N.C.
N.C.
V
EE
4
VC3
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
N.C.
VCC3
QB
Q
VC1
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
TM
V
CC1
N.C.
CAP1B
CAP1
D
V
CC2
V
CC
2
VC0
DB
V
EE1
SD-ECL
peak hold peak hold
V
470p470p
0.047µF
1µF
VCC +2V
When VEE = –3.0V: VC0 to VC3 = open
When VEE = –1.3V: VC0 to VC3 = Vcc
Z0 = 50
VEE
–3V/ –1.3V
Oscilloscope
50input
Z0 = 50
Z0 = 50
Z0 = 50
Oscilloscope
Hi-Z input
REX1
Page 12
– 12 –
CXB1577Q
Application Circuit
REX1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2627
28
29
30
40
39
38
37
36
35
34
31
32
33
1
N.C.
V
EE
3
ODIS
SW
VC2
N.C.
N.C.
V
EE
1
V
EE
2
N.C.
N.C.
V
EE
4
VC3
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
N.C.
VCC3
QB
Q
VC1
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
TM
V
CC1
N.C.
CAP1B
CAP1
D
V
CC2
V
CC
2
VC0
DB
V
EE1
SD-ECL
peak hold peak hold
V
470p
51
0.047µF
V
IN
When VEE = –3.3V: VC0 to VC3 = Vcc
When VEE = –5.0V: VC0 to VC3 = open
470p
VTT
51
Signal Generator
51
VTT
1µF
0.047µF
51
VTT
VEETTL
Input
VTT
–2.0V
51
51
ECL Output
ECL Output
TTL Output
VEE
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
Page 13
– 13 –
CXB1577Q
R1
15
16
17
R1
R2
R2
To IC interior
C1
C1
D
C2
18
Fig. 1
Feedback frequency response
f2
Amplifier frequency response
f1
Frequency
Gain
Fig. 2
Notes on Operation
1. Limiting amplifier block
The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on the f1/f2 combination, set the C1 and C2 values so as to avoid the occurrence of peaking characteristics. The target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended input is used, provide AC grounding by connecting Pin 17 to a capacitor which has the same capacitance as capacitor C1.
R1 (internal): 1k R2 (internal): 7.5k
f2: 3.4kHz f1: 21Hz
C1 (external): 0.047µF C2 (external): 1µF
Page 14
– 14 –
CXB1577Q
2. Alarm block
In order to operate the alarm block, give the voltage difference between Pins 22 and 23 to set an alarm level and connect the peak hold capacitor C3 shown in Fig. 3. This IC has two setting methods of alarm level; one is to connect Pin 24 to VEE and leave Pins 22 and 23 open to set an alarm level default value (8mV for input conversion). The other is to connect Pin 24 to VEE and set a desired alarm level using the external resistors REX1, REX2 and REX3 shown in Fig. 3. Connect REX1 between Pins 22 and 23 or connect REX3 between Pin 23 and Vcc when less alarm level is desired to be set than its default value; connect REX2 between Pin 22 and Vcc when more alarm level is desired to be set than its default value. However, the Pin 22 voltage must be higher than that of Pin 23. This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to 40mVp-p when Pin 3 is left open (High level) and it is set to 20mVp-p when Pin 3 is Low level. Therefore, the noise margin can be increased by setting Pin 3 to Low level when the small signal is input. The relation of input voltage and peak hold output voltage is shown in Fig. 5. In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to maintain a constant gain (design target value: 6dB) as shown in Fig. 4. This IC is designed to externally have the capacitor C3, and the C3 value should be set so as to obtain desired assert time and deassert time settings for the alarm signal. The electrical characteristics for the SD response assert and deassert times are guaranteed only when the waveforms are input as shown in the timing chart of Fig. 6.
REX1: 100(when the alarm level is set to 4mV for input conversion.) REX2: 8k(when the alarm level is set to 10mV for input conversion.) REX3: 4k(when the alarm level is set to 4mV for input conversion.) C3: 470pF
The table below shows the alarm logic.
The table below shows the output disable function logic.
VCC
C3
VCC
3
23
24
26
27
C3
Peak Hold SD-TTL
SD-ECL SDB-ECL
SDB-TTL
Peak Hold
V
10p 10p
VCCA
V
CCA
From limiting amplifier
VCC
REX3
REX1
REX2
VCCVEE
22
23
24
Ra1 986
VCCA
IC interior
DN
V
EE
I
IC exterior
VCS
22
UP
Ra2B
141
Ra2A
141
Ra1, Ra2A and Ra2B values are typical values.
Optical signal input state
Signal input Signal interruption
Low level
High level
SD
High level
Low level
SD
Optical signal input state
ODIS: Open High ODIS: Low
Fixed High
Data
Q
Fixed Low
Data
Q
Fig. 3
Page 15
– 15 –
CXB1577Q
Input electrical signal amplitude
SD output
VASVDAS
3dB3dB
Alarm setting input level
Hysteresis
LargeSmall
High level
Low level
V
DAS Deassert level
VAS Assert level
Fig. 4
Input voltage [mVp-p]
Peak hold output voltage
SW Low
0
20 40
SW Open High
Fig. 5
Deassert time
Hysteresis width
Alarm setting level
Data input
(D)
Data output
(Q)
Assert time
Alarm output
(SD)
Fig. 6
Page 16
– 16 –
CXB1577Q
1. Q/QB output waveform
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 622Mbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 1.25Gbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 622Mbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Fig. 7
Fig. 8
Fig. 9
Example of Representative Characteristics
Page 17
– 17 –
CXB1577Q
2. Bit error rate
3. Alarm level
622Mbps
1.0Gbps
1.25Gbps
Bit error rate vs. Data input level
Data input level [mVp-p]
1.5 2 2.5 3 3.5 4 4.5
10
–10
10
–9
10
–8
10
–7
10
–6
10
–5
10
–4
10
–3
VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Bit error rate
Alarm level temperature
Ta [°C]
–40
2.0 20 80
Alarm level [mV]
2.5
3.0
3.5
4.0
4.5
5.0
6.0
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Up-Down = 200 (REX1)
–20 400 60
5.5
Alarm level vs. REX1
UP-DOWN (REX1) []
10
2
2
10
3
10
4
Alarm level [mV]
3
4
5
6
7
8
9
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 1.25Gbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Fig. 10
Fig. 11
Fig. 12 Fig. 13
Page 18
– 18 –
CXB1577Q
Alarm level supply voltage
VCC – VEE [V]
3.0
2.0
Fig. 14
3.3 3.6
Alarm level [mV]
2.5
3.0
3.5
4.0
4.5
5.0
6.0 SW = H SW = L
fin = 100Mbps Ta = 27°C Up-Down = 200 (REX1)
3.1 3.43.2 3.5
5.5
Alarm level temperature
Ta [°C]
–40
11.0 20 80
Alarm level [mV]
11.5
12.0
12.5
13.0
13.5
14.0
15.0
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V VCC-UP = 5k (REX2)
–20 400 60
14.5
Alarm level supply voltage
VCC – VEE [V]
3.0
11.0
3.3 3.6
Alarm level [mV]
11.5
12.0
12.5
12.0
13.5
14.0
15.0 SW = H SW = L
fin = 100Mbps Ta = 27°C VCC-UP = 5k (REX2)
3.1 3.43.2 3.5
14.5
Alarm level vs. REX2
VCC-UP (REX2) []
10
3
8
10
4
10
5
Alarm level [mV]
10
11
12
13
14
15
16
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input
9
Alarm level temperature
Ta [°C]
–40
2.5 20 80
Alarm level [mV]
3.0
3.5
4.0
4.5
5.0
6.0
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V VCC-Down = 3k (REX3)
–20 400 60
5.5
Alarm level vs. REX3
VCC-DOWN (REX3) []
10
3
3
10
4
10
5
Alarm level [mV]
4
5
6
7
8
9
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input
Fig. 15
Fig. 16 Fig. 17
Fig. 18 Fig. 19
Page 19
– 19 –
CXB1577Q
Alarm level supply voltage
VCC – VEE [V]
3.0
2.0
3.3 3.6
Alarm level [mV]
2.5
3.0
3.5
4.0
4.5
5.0
6.0 SW = H SW = L
fin = 100Mbps Ta = 27°C VCC-Down = 3k (REX3)
3.1 3.43.2 3.5
5.5
Hyteresis width supply voltage
VCC – VEE [V]
3.0
0.0
3.3 3.6
HYS [dB]
1.0
2.0
3.0
4.0
5.0
6.0
8.0 SW = H SW = L
fin = 100Mbps Ta = 27°C Up, Down = Open VEEI = VEE
3.1 3.43.2 3.5
7.0
Hysteresis width vs. Alarm level
Alarm level [mV]
2.0
0.0
8.0 14.0
HYS [dB]
1.0
2.0
3.0
4.0
5.0
6.0
8.0 SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C
4.0 10.06.0 12.0
7.0
Hysteresis width temperature
Ta [°C]
–40
0.0 20 80
HYS [dB]
2.0
3.0
4.0
5.0
6.0
8.0
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Up, Down = Open VEEI = VEE
–20 400 60
7.0
1.0
Alarm level vs. Data rate
fin [Mbps]
200
2
800 1400
Alarm level [mV]
6
8
10
12
14
16
SW = H SW = L
VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE
400 1000600 1200
4
0
Hysteresis width vs. Data rate
fin [Mbps]
200
0
800 1400
HYS [dB]
4
6
8
10
12
SW = H SW = L
VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE
400 1000600 1200
2
0
Fig. 20 Fig. 21
Fig. 22 Fig. 23
Fig. 24 Fig. 25
Page 20
– 20 –
CXB1577Q
SD-ECL "H" level supply voltage
VCC – VEE [V]
3.0
–1100
3.3 3.6
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
SD-ECL SDB-ECL
Ta = 27°C
3.1 3.43.2 3.5
SD-ECL "L" level temperature
Ta [°C]
–50 100
SD-ECL SDB-ECL
VCC – VEE = 3.3V
500
–1880
"L" level [mV]
–1840
–1800
–1760
–1720
–1680
SD-ECL "L" level supply voltage
VCC – VEE [V]
3.0
–1880
3.3 3.6
"L" level [mV]
–1840
–1800
–1760
–1720
–1680
SD-ECL SDB-ECL
Ta = 27°C
3.1 3.43.2 3.5
SD-ECL "H" level temperature
Ta [°C]
–50 100
SD-ECL SDB-ECL
VCC – VEE = 3.3V
500
–1100
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
SD-TTL "H" level supply voltage
VCC – VEE [V]
3.0
2.2
3.3 3.6
"H" level [V]
2.4
2.6
2.8
3.0
3.4 Ta = 27°C
3.1 3.43.2 3.5
3.2
SD-TTL "H" level temperature
Ta [°C]
–50 100
VCC – VEE = 3.3V
500
2.2
"H" level [V]
2.4
2.6
2.8
3.0
3.4
3.2
4. DC voltage
Fig. 26 Fig. 27
Fig. 28 Fig. 29
Fig. 30 Fig. 31
Page 21
– 21 –
CXB1577Q
SD-TTL "L" level temperature
Ta [°C]
–50 100
VCC – VEE = 3.3V
500
200
"L" level [mV]
250
300
350
400
SD-TTL "L" level supply voltage
VCC – VEE [V]
3.0
200
3.3 3.6
"L" level [mV]
250
300
350
400
Ta = 27°C
3.1 3.43.2 3.5
Q "H" level supply voltage
VCC – VEE [V]
3.0
–1100
3.3 3.6
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
Q-H QB-H
Ta = 27°C
3.1 3.43.2 3.5
Q "H" level temperature
Ta [°C]
–50 100
Q-H QB-H
VCC – VEE = 3.3V
500
–1100
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
Q "L" level supply voltage
VCC – VEE [V]
3.0
–1860
3.3 3.6
"L" level [mV]
–1820
–1780
–1740
–1700
–1660
Q-L QB-L
Ta = 27°C
3.1 3.43.2 3.5
–1620
Q "L" level temperature
Ta [°C]
–50 100
Q-L QB-L
VCC – VEE = 3.3V
500
"L" level [mV]
–1860
–1820
–1780
–1740
–1700
–1660
–1620
Fig. 32 Fig. 33
Fig. 34 Fig. 35
Fig. 36 Fig. 37
Page 22
– 22 –
CXB1577Q
SONY CODE
EIAJ CODE
JEDEC CODE
PACKAGE MATERIAL
LEAD TREATMENT LEAD MATERIAL PACKAGE MASS
EPOXY RESIN
SOLDER / PALLADIUM
42/COPPER ALLOY
PACKAGE STRUCTURE
PLATING
0.2g
QFP-40P-L01 QFP040-P-0707
40PIN QFP (PLASTIC)
9.0 ± 0.4 + 0.4
0.3 – 0.1
1
10
11
20
21
30
31
40
1.5 – 0.15
+ 0.35
0.127 – 0.05
+ 0.1
(8.0)
A
ADETAIL
0.1 – 0.1
+ 0.15
+ 0.15
7.0 – 0.1
0.5 ± 0.2
0.1
M
± 0.12
0.65
NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
Package Outline Unit: mm
Loading...