Datasheet CXB1573R Datasheet (Sony)

Page 1
Post-Amplifier for Optical Fiber Communication Receiver
Description
The CXB1573R achieves the 2R optical-fiber communication receiver functions (Reshaping and Regenerating) on a single chip. This IC is equipped with the signal detection function, which is used to enable TTL/ECL outputs. Also, the output disable function performs the output shutdown.
Features
Output disable function (TTL input)
Signal detection function (TTL/ECL output)
Applications
SONET/SDH: 622.08Mbps
Fibre Channel: 531.25Mbps
: 1.062Gbps
Gigabit-Ethernet: 1.25Gbps
Absolute maximum Ratings
Supply voltage VCC – VEE –0.3 to +6 V
Storage temperature Tstg –65 to +150 °C
Input voltage difference|VD – VD
|
Vdif 0 to +2 V
SW input voltage Vi VEE to VCC V
ECL output current IOQ/SD-ECL –30 to 0 mA
TTL output current (High level) IOH SD-TTL –20 to 0 mA
TTL output current (Low level) IOL SD-TTL 0 to 20 mA
D/DB input voltage Vcc – 2 to Vcc V
ODIS input voltage VEE – 0.5 to VEE + 5.5 V
Recommended Operating Conditions
Supply voltage VCC – VEE 3.3 ± 0.2 V
Termination voltage (for data) VCC – VTD 1.8 to 2.2 V
Termination voltage (for alarm 1,alarm 2) VTA VEE V
Termination resistance (for data) RTD 46 to 56
Termination resistance (for alarm 1) RTA1 240 to 300
Termination resistance (for alarm 2) RTA2 460 to 560
Operating temperature Ta –40 to +85 °C
Structure
Bipolar silicon monolithic IC
– 1 –
E98401-PS
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
CXB1573R
32 pin LQFP (Plastic)
Page 2
– 2 –
CXB1573R
Block Diagram and Pin Configuration
V
EE
4
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
V
EE
3
ODIS
SW
VccX
V
EE
2
V
EE
1
TM
VccZ
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
VCC3
QB
Q
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
V
CC1
VccY
CAP1B
CAP1
D
V
CC2
V
CC
2
DB
V
EE1
SD-ECL
peak hold peak hold
V
Page 3
– 3 –
CXB1573R
Pin Description
Pin
No.
1
VEE3
0
Negative power supply for ECL output buffer.
Switches the identification maximum voltage amplitude. High voltage when open; the identification maximum voltage amplitude becomes 40mVp-p. Low voltage when connected to VEE; the amplitude becomes 20mVp-p.
2
ODIS
0
or
3.3
(Open)
3
SW
0
or
3.3
(Open)
Positive power supply for digital block.
Negative power supply for digital block.
Negative power supply for analog block.
Chip temperature monitor.
4
VCC2 3.3
3.3
5
VccX
6
7
VEE2
0
VEE1
0
8
TM
1.6
Controls the output shutdown function. High voltage when open; the Q output is fixed to Low. Low voltage when connected to VEE; the D input results in the Q output with ECL level. TTL level is also available.
Symbol
Typical pin voltage (V)
DC
AC
Equivalent circuit
Description
VCC2
VEE2
40k
60k
3
2
VCC2
VEE2
VREF
10k
10k
300
Positive power supply for digital block.
VEE1
7
8
9
VCC1
3.3
Positive power supply for analog block.
Page 4
– 4 –
CXB1573R
11
12
13
14
15
16
17
18
19
20
CAP1B
CAP1
DB
D
VEE1
VCC2
UP
DN
VEEl
VEE2
1.6 to
2.4
1.6 to
2.4
Pins 11 and 12 connect a capacitor which determines the cut-off frequency for DC feedback block. Pins 13 and 14 are input pins for limiting amplifier block. Input the signal with AC coupled.
DC
AC
Negative power supply for analog block.
Positive power supply for digital block.
Connects a resistor for alarm level setting. Default voltage can be generated without an external resistor by shorting the VEEI pin to VEE.
Generates the default voltage between UP and DOWN. The voltage (8.0mV for input conversion) can be generated between UP and DOWN (Pins 17 and 18)
as alarm setting level by
connecting this pin to VEE.
2
2
0
3.3
0
0
1k
1k
V
CC1
V
EE1
2007.5k
100p
2007.5k
11
12
13
14
Pin No.
Symbol
Typical pin voltage (V)
Equivalent circuit
Description
VCC2
VEE2
100
986
100
140.9
140.9
VCS
SW
SW
17
18
19
Negative power supply for digital block.
Positive power supply for analog block.
3.3
10
VccY
Page 5
– 5 –
CXB1573R
DC
AC
21
CAP2
1.5 Connects a peak hold circuit
capacitor for alarm block. 470pF should be connected to Vcc each.
CAP2 pin connects a peak hold capacitor for alarm level setting block. CAP3 pin connects a peak hold capacitor for limiting amplifier signal.
VCC2
VEE2
80
200
5µA
10p
21
22
CAP3
1.5
24
25
VEE4
VCC4
0
3.3
VCC2
VEE2
80
200
5µA
10p
22
Pin
No.
Symbol
Typical pin voltage (V)
Equivalent circuit
Description
Negative power supply for TTL output buffer.
Positive power supply for TTL output buffer.
26
SD-TTL
VEE
or
2.2
Alarm signal TTL level output.
VCC4
VEE4
40k
26
Positive power supply for ECL output buffer.
3.323
VccZ
Page 6
– 6 –
CXB1573R
DC
AC
27
SDB-TTL
VEE
or
2.2
28
29
SD-ECL
SDB-ECL
1.6 or
2.4
1.6 or
2.4
Alarm signal ECL level output. Terminate this pin in 270to VEE.
VCC4
VEE4
40k
27
VCC3
VEE3
28 29
Pin
No.
Symbol
Typical pin voltage (V)
Equivalent circuit
Description
Alarm signal TTL level output.
30
Q
1.6 or
2.4
Data signal output. Terminates this pin in 50to VTT = Vcc – 2V.
VCC3
VEE3
30
31
31 QB
1.6 or
2.4
32
VCC3
3.3
Positive power supply for ECL output buffer.
Page 7
– 7 –
CXB1573R
Supply current Q/QB High output voltage Q/QB Low output voltage SD-ECL/SDB-ECL High output voltage SD-ECL/SDB-ECL Low output voltage
SD-TTL/SDB-TTL High output voltage
SD-TTL/SDB-TTL Low output voltage SW High input voltage
SW Low input voltage SW High input current SW Low input current ODIS High input voltage ODIS Low input voltage ODIS High input current ODIS Low input current D/DB input resistance TM voltage
Electrical Characteristics
DC Characteristics
Item
IEE VOH VOL VOH-E VOL-E
VOH-T
VOL-T VIHSW
VILSW IIHSW IILSW VIHOD VILOD IIHOD IILOD Rin VTM
50to VTT
270to VEE
IOH = –0.4mA Ta = 0 to +85°C
IOL = 2mA Ta = 0 to +85°C
at SW pin Open: High
at ODIS pin Open: High
VIH = Vcc VIL = VEE
Iin = 1mA
–74 VCC – 1100 VCC – 1860 VCC – 1100 VCC – 1900
2.2
VCC – 0.5
0
–100
2.0 0
–400
765
1.2
–51
1020
VCC – 860
VCC – 1620
VCC – 860
VCC – 1620
0.5
VCC
0.5 10
VCC + 0.5
0.8 20
1275
2.0
mA
mV
V
µA
V
µA
V
Symbol Min. Typ. Max. UnitConditions
VCC = 3.3 ± 0.2V, VEE = GND, Ta = –40 to +85°C
Page 8
– 8 –
CXB1573R
AC Characteristics
1
VUP – VDOWN = 100mV, Vin = 100mVp-p (single ended), SW: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, VEEI: Open.
2
VUP – VDOWN = 100mV, Vin = 1Vp-p (single ended), SW: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, connect VEEI: Open.
3
Vin = 50mVp-p (single ended), SW: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
4
Vin = 1Vp-p (single ended), SW: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
Maximum input voltage amplitude Amplifier gain (excluding the output buffer)
Identification maximum voltage amplitude of alarm level
SD/SDB hysteresis width
Alarm setting level for default
Q/QB rise time Q/QB fall time SD-TTL/SDB-TTL rise time SD-TTL/SDB-TTL fall time SD-ECL/SDB-ECL rise time SD-ECL/SDB-ECL fall time Propagation delay time SD response assert time SD response deassert time SD response assert time for alarm
level default SD response deassert time for alarm
level default
Item
Vmax GL
VmaxA1
VmaxA2
P1
P2
Vdef
TrQ TfQ TrSDT TfSDT TrSDE TfSDE TPD Tas Tdas
Tasd
Tdasd
single-ended input
SW: Low, single-ended input
SW: Open High, single-ended input
SW: Low, at default alarm level
SW: Open High, at default alarm level
SW: Open High, VEEI = VEE, fin = 100Mbps Differential voltage input
20% to 80% 50to VTT
0.6V to 2.2V CL = 10pF
20% to 80% 510to VEE
12
3
4
1600
52 20
40
3
3
6.6
0.4 0
2.3 0
2.3
6
6
8.0
230 230
7
7
9.3
350 350
10 10
1.6
1.6
1.9 100 100
100
100
mVp-p
dB
mVp-p
dB
mV
ps
ns
µs
Symbol Min. Typ. Max. UnitConditions
VCC = 3.3 ± 0.2V, VEE = GND, Ta = –40 to +85°C
Page 9
– 9 –
CXB1573R
DC Electrical Characteristics Measurement Circuit
V
EE
3
ODIS
SW
VccX
V
EE
1
V
EE
2
V
EE
4
VccZ
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
VCC3
QB
Q
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
V
CC1
VccY
CAP1B
CAP1
D
V
CC2
V
CC
2
DB
V
EE1
SD-ECL
C3C3
C1
C1
C2
V
D
3.3V
V
SWVODIS
270
51
51
VTT
1.3V
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
peak hold peak hold
V
TM
270
Page 10
– 10 –
CXB1573R
AC Electrical Characteristics Measurement Circuit
0.047µF
V
EE
3
ODIS
SW
VccX
V
EE
1
V
EE
2
V
EE
4
VccZ
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
VCC3
QB
Q
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
V
CC1
VccY
CAP1B
CAP1
D
V
CC2
V
CC
2
DB
V
EE1
SD-ECL
470p470p
0.047µF
1µF
VCC +2V
Z0 = 50
VEE
–1.3V
Oscilloscope
50input
Z0 = 50
Z0 = 50
Z0 = 50
Oscilloscope
Hi-Z input
REX1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
peak hold peak hold
V
TM
Page 11
– 11 –
CXB1573R
Application Circuit
REX1
V
EE
3
ODIS
SW
VccX
V
EE
1
V
EE
2
V
EE
4
VccZ
CAP3
CAP2
V
EE
2
V
EE
I
DN
UP
VCC3
QB
Q
SDB-ECL
SDB-TTL
SD-TTL
V
CC4
V
CC1
VccY
CAP1B
CAP1
D
V
CC2
V
CC
2
DB
V
EE1
SD-ECL
470p
51
0.047µF
V
IN
470p
VTT
51
Signal Generator
51
VTT
1µF
0.047µF
51
VTT
VEETTL
Input
VCC –2V
51
51
ECL Output
ECL Output
TTL Output
VEE
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
peak hold peak hold
V
TM
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
Page 12
– 12 –
CXB1573R
R1R1
R2
R2
To IC interior
C1
C1
D
C2
11
12
13
14
Fig. 1
Feedback frequency response
f2
Amplifier frequency response
f1
Frequency
Gain
Fig. 2
Notes on Operation
1. Limiting amplifier block
The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on the f1/f2 combination, set the C1 and C2 values so as to avoid the occurrence of peaking characteristics. The target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended input is used, provide AC grounding by connecting Pin 13 to a capacitor which has the same capacitance as capacitor C1.
R1 (internal): 1k R2 (internal): 7.5k
f2: 3.4kHz f1: 21Hz
C1 (external): 0.047µF C2 (external): 1µF
Page 13
– 13 –
CXB1573R
2. Alarm block
In order to operate the alarm block, give the voltage difference between Pins 17 and 18 to set an alarm level and connect the peak hold capacitor C3 shown in Fig. 3. This IC has two setting methods of alarm level; one is to connect Pin 19 to VEE and leave Pins 17 and 18 open to set an alarm level default value (8mV for input conversion). The other is to connect Pin 19 to VEE and set a desired alarm level using the external resistors REX1, REX2 and REX3 shown in Fig. 3. Connect REX1 between Pins 17 and 18 or connect REX3 between Pin 18 and Vcc when less alarm level is desired to be set than its default value; connect REX2 between Pin 17 and Vcc when more alarm level is desired to be set than its default value. However, the Pin 17 voltage must be higher than that of Pin 18. This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to 40mVp-p when Pin 3 is left open (High level) and it is set to 20mVp-p when Pin 3 is Low level. Therefore, the noise margin can be increased by setting Pin 3 to Low level when the small signal is input. The relation of input voltage and peak hold output voltage is shown in Fig. 5. In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to maintain a constant gain (design target value: 6dB) as shown in Fig. 4. This IC is designed to externally have the capacitor C3, and the C3 value should be set so as to obtain desired assert time and deassert time settings for the alarm signal. The electrical characteristics for the SD response assert and deassert times are guaranteed only when the waveforms are input as shown in the timing chart of Fig. 6.
REX1: 100(when the alarm level is set to 4mV for input conversion.) REX2: 8k(when the alarm level is set to 10mV for input conversion.) REX3: 4k(when the alarm level is set to 4mV for input conversion.) C3: 470pF
The table below shows the alarm logic.
The table below shows the output disable function logic.
VCC
C3
VCC
C3
Peak Hold SD-TTL
SD-ECL SDB-ECL
SDB-TTL
Peak Hold
V
10p 10p
VCCA
V
CCA
From limiting amplifier
VCC
REX3
REX1
REX2
VCCVEE
Ra1
986
VCCA
IC interior
DN
V
EE
I
IC exterior
VCS
UP
Ra2B
141
Ra2A
141
Ra1, Ra2A and Ra2B values are typical values.
17
18
19
3
19
18
21
22
17
Optical signal input state
Signal input Signal interruption
Low level
High level
SD
High level
Low level
SD
Optical signal input state
ODIS: Open High ODIS: Low
Fixed High
Data
Q
Fixed Low
Data
Q
Fig. 3
Page 14
– 14 –
CXB1573R
Input electrical signal amplitude
SD output
VASVDAS
3dB3dB
Alarm setting input level
Hysteresis
LargeSmall
High level
Low level
V
DAS Deassert level
VAS Assert level
Fig. 4
Input voltage [mVp-p]
Peak hold output voltage
SW Low
0
20 40
SW Open High
Fig. 5
Deassert time
Hysteresis width
Alarm setting level
Data input
(D)
Data output
(Q)
Assert time
Alarm output
(SD)
Fig. 6
Page 15
– 15 –
CXB1573R
1. Q/QB output waveform
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
V
CC = 3.3V
VEE = GND VTT = 1.3V Ta = 27°C D = 622Mbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
V
CC = 3.3V
VEE = GND VTT = 1.3V Ta = 27°C D = 1.25Gbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C D = 622Mbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Fig. 7
Fig. 8
Fig. 9
Example of Representative Characteristics
Page 16
– 16 –
CXB1573R
2. Bit error rate
3. Alarm level
622Mbps
1.0Gbps
1.25Gbps
Bit error rate vs. Data input level
Data input level [mVp-p]
1.5 2 2.5 3 3.5 4 4.5
10
–10
10
–9
10
–8
10
–7
10
–6
10
–5
10
–4
10
–3
VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Bit error rate
Alarm level vs.Temperature
Ta [°C]
–40
2.0 20 80
Alarm level [mV]
2.5
3.0
3.5
4.0
4.5
5.0
6.0
–20 400 60
5.5
Alarm level vs. REX1
UP-DOWN (REX1) []
10
2
2
10
3
10
4
Alarm level [mV]
3
4
5
6
7
8
9
SW = H SW = L
fin = 100Mbps V
CC – VEE = 3.3V
Ta = 27°C Differential input
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
V
CC = 3.3V
VEE = GND VTT = 1.3V Ta = 27°C D = 1.25Gbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50 to VTT
Fig. 10
Fig. 11
Fig. 12 Fig. 13
100
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Up-Down = 200 (REX1)
Page 17
– 17 –
CXB1573R
Alarm level vs. Supply voltage
VCC – VEE [V]
3.0
2.0
Fig. 14
3.3 3.6
Alarm level [mV]
2.5
3.0
3.5
4.0
4.5
5.0
6.0 SW = H SW = L
fin = 100Mbps Ta = 27°C Up-Down = 200 (REX1)
3.1 3.43.2 3.5
5.5
Alarm level vs. Temperature
Ta [°C]
–40
11.0 20 80
Alarm level [mV]
11.5
12.0
12.5
13.0
13.5
14.0
15.0
–20 400 60
14.5
Alarm level vs. Supply voltage
VCC – VEE [V]
3.0
11.0
3.3 3.6
Alarm level [mV]
11.5
12.0
12.5
12.0
13.5
14.0
15.0 SW = H SW = L
fin = 100Mbps Ta = 27°C VCC-UP = 5k (REX2)
3.1 3.43.2 3.5
14.5
Alarm level vs. REX2
VCC-UP (REX2) []
10
3
8
10
4
10
5
Alarm level [mV]
10
11
12
13
14
15
16
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input
9
Alarm level vs. Temperature
Ta [°C]
–40
2.5 20
Alarm level [mV]
3.0
3.5
4.0
4.5
5.0
6.0
–20 400 60
5.5
Alarm level vs. REX3
VCC-DOWN (REX3) []
10
3
3
10
4
10
5
Alarm level [mV]
4
5
6
7
8
9
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input
Fig. 15
Fig. 16 Fig. 17
Fig. 18 Fig. 19
fin = 100Mbps VCC – VEE = 3.3V VCC-UP = 5k (REX2)
100
SW = H SW = L
SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V VCC-Down = 3k (REX3)
80 100
Page 18
– 18 –
CXB1573R
Alarm level vs. Supply voltage
VCC – VEE [V]
3.0
2.0
3.3 3.6
Alarm level [mV]
2.5
3.0
3.5
4.0
4.5
5.0
6.0 SW = H SW = L
fin = 100Mbps Ta = 27°C VCC-Down = 3k (REX3)
3.1 3.43.2 3.5
5.5
Hyteresis width vs. Supply voltage
VCC – VEE [V]
3.0
0
3.3 3.6
HYS [dB]
1.0
2.0
3.0
4.0
5.0
6.0
8.0 SW = H SW = L
fin = 100Mbps Ta = 27°C Up, Down = Open VEEI = VEE
3.1 3.43.2 3.5
7.0
Hysteresis width vs. Alarm level
Alarm level [mV]
2.0
0
8.0 14.0
HYS [dB]
1.0
2.0
3.0
4.0
5.0
6.0
8.0 SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C
4.0 10.06.0 12.0
7.0
Hysteresis width vs. Temperature
Ta [°C]
–40
0
20 80
HYS [dB]
2.0
3.0
4.0
5.0
6.0
8.0 SW = H SW = L
fin = 100Mbps VCC – VEE = 3.3V Up, Down = Open VEEI = VEE
–20 400 60
7.0
1.0
Alarm level vs. Data rate
fin [Mbps]
200
2
800 1400
Alarm level [mV]
6
8
10
12
14
16
SW = H SW = L
VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE
400 1000600 1200
4
0
Hysteresis width vs. Data rate
fin [Mbps]
200
0
800 1400
HYS [dB]
4
6
8
10
12
SW = H SW = L
VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE
400 1000600 1200
2
0
Fig. 20 Fig. 21
Fig. 22 Fig. 23
Fig. 24 Fig. 25
Page 19
– 19 –
CXB1573R
SD-ECL "H" level vs. Supply voltage
VCC – VEE [V]
3.0
–1100
3.3 3.6
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
SD-ECL SDB-ECL
Ta = 27°C
3.1 3.43.2 3.5
SD-ECL "L" level vs. Temperature
Ta [°C]
–40 100200
–1880
"L" level [mV]
–1840
–1800
–1760
–1720
–1680
SD-ECL "L" level vs. Supply voltage
VCC – VEE [V]
3.0
–1880
3.3 3.6
"L" level [mV]
–1840
–1800
–1760
–1720
–1680
3.1 3.43.2 3.5
SD-ECL SDB-ECL
Ta = 27°C
SD-ECL "H" level vs. Temperature
Ta [°C]
–1100
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
SD-TTL "H" level vs. Supply voltage
VCC – VEE [V]
3.0
2.2
3.3 3.6
"H" level [V]
2.4
2.6
2.8
3.0
3.4 Ta = 27°C
3.1 3.43.2 3.5
3.2
SD-TTL "H" level vs. Temperature
Ta [°C]
2.2
"H" level [V]
2.4
2.6
2.8
3.0
3.4
3.2
4. DC voltage
Fig. 26 Fig. 27
Fig. 28 Fig. 29
Fig. 30 Fig. 31
–1640
–1640
SD-ECL SDB-ECL
VCC – VEE = 3.3V
40 60 80–20
–40 100200 40 60 80–20
VCC – VEE = 3.3V
–40 100200 40 60 80–20
VCC – VEE = 3.3V
SD-ECL SDB-ECL
Page 20
– 20 –
CXB1573R
SD-TTL "L" level vs. Temperature
Ta [°C]
200
"L" level [mV]
250
300
350
400
SD-TTL "L" level vs. Supply voltage
VCC – VEE [V]
3.0
200
3.3 3.6
"L" level [mV]
250
300
350
400
Ta = 27°C
3.1 3.43.2 3.5
Q "H" level vs. Supply voltage
VCC – VEE [V]
3.0
–1100
3.3 3.6
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
Q-H QB-H
Ta = 27°C
3.1 3.43.2 3.5
Q "H" level vs. Temperature
Ta [°C]
–1100
"H" level [mV]
–1060
–1020
–980
–940
–900
–860
Q "L" level vs. Supply voltage
VCC – VEE [V]
3.0
–1860
3.3 3.6
"L" level [mV]
–1820
–1780
–1740
–1700
–1660
Q-L QB-L
Ta = 27°C
3.1 3.43.2 3.5
–1620
Q "L" level vs. Temperature
Ta [°C]
"L" level [mV]
–1860
–1820
–1780
–1740
–1700
–1660
–1620
Fig. 32 Fig. 33
Fig. 34 Fig. 35
Fig. 36 Fig. 37
–40 100200 40 60 80–20
–40 100200 40 60 80–20
VCC – VEE = 3.3V
Q-H QB-H
–40 100200 40 60 80–20
VCC – VEE = 3.3V
Q-L QB-L
VCC – VEE = 3.3V
Page 21
– 21 –
CXB1573R
SONY CODE EIAJ CODE JEDEC CODE
PACKAGE STRUCTURE
PACKAGE MATERIAL LEAD TREATMENT LEAD MATERIAL
PACKAGE MASS
EPOXY RESIN
PALLADIUM PLATING
COPPER ALLOY
32PIN LQFP (PLASTIC)
LQFP-32P-L01 LQFP032-P-0505
0.1g
5.0
7.0
DETAIL A
0° to 8°
(0.5)
0.6 ± 0.15
0.25
0.1 ± 0.05 (0.2)
0.2 ± 0.03
(0.125)
0.125 ± 0.02
DETAIL
B
0.2
X4
S
A B
24
1
8
25
9
17
32
16
A
0.08
M
S
A B
0.2
X4
S
A B
0.5
A
B
(0.5)
0.08
S
1.7MAX S
B
NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
Package Outline Unit: mm
Loading...