Siemens SAB-C515C-8RM, SAB-C515C-LM, SAF-C515C-8RM, SAF-C515C-LM Datasheet

0 (0)

Microcomputer Components

8-Bit CMOS Microcontroller

C515C

Data Sheet 07.97

C515C Data Sheet

 

Revision History :

1997-07-01

 

 

Previous Releases :

09.96

 

 

Page

Subjects (changes since last revision)

 

 

4

SSC transfer rate at 10 MHz = 2.5 MHz

19

Figure reference corrected

52, 53

Power saving modes : description of hardware power down mode added

56, 57

Icc specification has been extended

62

tSCLK for Master Mode corrected

Edition 1997-07-01

Published by Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstraße 73, 81541 München

© Siemens AG 1997.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG.

1A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

2Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

8-Bit CMOS Microcontroller

C515C

Advance Information

Full upward compatibility with SAB 80C515A

64k byte on-chip ROM (external program execution is possible)

256 byte on-chip RAM

2K byte of on-chip XRAM

Up to 64K byte external data memory

Superset of the 8051 architecture with 8 datapointers

Up to 10 MHz external operating frequency (1 s instruction cycle time at 6 MHz external clock)

On-chip emulation support logic (Enhanced Hooks Technology TM)

Current optimized oscillator circuit and EMI optimized design

Eight ports : 48+1 digital I/O lines, 8 analog inputs

Quasi-bidirectional port structure (8051 compatible)

Port 5 selectable for bidirectional port structure (CMOS voltage levels)

Full-CAN controller on-chip

256 register/data bytes are located in external data memory area

max.1 MBaud at 8-10 MHz operating frequency

Three 16-bit timer/counters

Timer 2 can be used for compare/capture functions

(further features are on next page)

Figure 1

C515C Functional Units

Enhanced Hooks Technology TM is a trademark of Siemens AG.

Semiconductor Group

3

1997-07-01

C515C

Features (continued) :

10-bit A/D converter with multiplexed inputs and built-in self calibration

Full duplex serial interface with programmable baudrate generator (USART)

SSC synchronous serial interface (SPI compatible)

Master and slave capable

Programmable clock polarity / clock-edge to data phase relation

LSB/MSB first selectable

2.5 MHz transfer rate at 10 MHz operating frequency

Seventeen interrupt vectors, at four priority levels selectable

Extended watchdog facilities

15-bit programmable watchdog timer

Oscillator watchdog

Power saving modes

Slow-down mode

Idle mode (can be combined with slow-down mode)

Software power-down mode with wake-up capability through INT0 pin

Hardware power-down mode

CPU running condition output pin

ALE can be switched off

Multiple separate VCC/VSS pin pairs

P-MQFP-80-1 package

Temperature Ranges : SAB-C515C-8R SAF-C515C-8R SAH-C515C-8R

TA = 0 to 70 °C TA = -40 to 85 °C TA = -40 to 110 °C

The C515C is an enhanced, upgraded version of the SAB 80C515A 8-bit microcontroller which additionally provides a full CAN interface, a SPI compatible synchronous serial interface, extended power save provisions, additional on-chip RAM, 64K of on-chip program memory, two new external interrupts and RFI related improvements. With a maximum external clock rate of 10 MHz it achieves a 600 ns instruction cycle time (1 s at 6 MHz). The C515C is mounted in a P-MQFP-80 package.

Ordering Information

Type

Ordering Code

Package

Description

 

 

 

(8-Bit CMOS microcontroller)

 

 

 

 

SAB-C515C-LM

Q67121-C1066

P-MQFP-80-1

for external memory (10 MHz)

 

 

 

 

SAF-C515C-LM

Q67121-C1058

P-MQFP-80-1

for external memory (10 MHz)

 

 

 

ext. temp. – 40 °C to 85 °C

 

 

 

 

SAB-C515C-8RM

Q67121-DXXXX

P-MQFP-80-1

with mask programmable ROM (10 MHz)

 

 

 

 

SAF-C515C-8RM

Q67121-DXXXX

P-MQFP-80-1

with mask programmable ROM (10 MHz)

 

 

 

ext. temp. – 40 °C to 85 °C

 

 

 

 

Note: Versions for extended temperature ranges – 40 °C to 110 °C (SAH-C515C-LM and SAH- C515C-8RM) are available on request. The ordering number of ROM types (DXXXX extensions) is defined after program release (verification) of the customer.

Semiconductor Group

4

1997-07-01

C515C

Figure 2

Logic Symbol

Semiconductor Group

5

1997-07-01

C515C

Figure 3

C515C Pin Configuration (P-MQFP-80-1, Top View)

Semiconductor Group

6

1997-07-01

C515C

Table 1

Pin Definitions and Functions

Symbol

Pin Number

I/O*)

 

Function

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

 

1

I

 

 

 

RESET

RESET

 

 

 

 

 

A low level on this pin for the duration of two machine

 

 

 

 

 

cycles while the oscillator is running resets the C515C. A

 

 

 

 

 

small internal pullup resistor permits power-on reset

 

 

 

 

 

using only a capacitor connected to VSS .

 

 

 

 

 

VAREF

3

 

Reference voltage for the A/D converter

 

 

 

 

 

VAGND

4

 

Reference ground for the A/D converter

 

 

 

 

 

P6.0-P6.7

12-5

I

 

Port 6

 

 

 

 

 

is an 8-bit unidirectional input port to the A/D converter.

 

 

 

 

 

Port pins can be used for digital input, if voltage levels

 

 

 

 

 

simultaneously meet the specifications high/low input

 

 

 

 

 

voltages and for the eight multiplexed analog inputs.

 

 

 

 

 

 

*) I = Input

 

 

 

 

 

O = Output

 

 

 

 

 

Semiconductor Group

7

1997-07-01

C515C

Table 1

Pin Definitions and Functions (cont’d)

Symbol

Pin Number

I/O*)

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.0-P3.7

15-22

I/O

Port 3

 

 

 

 

 

 

 

 

 

 

is an 8-bit quasi-bidirectional I/O port with internal pullup

 

 

 

resistors. Port 3 pins that have 1's written to them are

 

 

 

pulled high by the internal pullup resistors, and in that

 

 

 

state can be used as inputs. As inputs, port 3 pins being

 

 

 

externally pulled low will source current (I IL, in the DC

 

 

 

characteristics) because of the internal pullup resistors.

 

 

 

Port 3 also contains the interrupt, timer, serial port and

 

 

 

external memory strobe pins that are used by various

 

 

 

options. The output latch corresponding to a secondary

 

 

 

function must be programmed to a one (1) for that

 

 

 

function to operate. The secondary functions are

 

 

 

assigned to the pins of port 3, as follows:

 

15

 

P3.0

RXD

Receiver data input (asynch.) or

 

 

 

 

 

 

 

 

data input/output (synch.) of serial

 

 

 

 

 

 

 

 

interface

 

16

 

P3.1

TXD

Transmitter data output (asynch.) or

 

 

 

 

 

 

 

 

clock output (synch.) of serial

 

 

 

 

 

 

 

 

interface

 

17

 

P3.2

 

 

 

 

External interrupt 0 input / timer 0

 

 

INT0

 

 

 

 

 

 

 

 

gate control input

 

18

 

P3.3

 

 

 

 

External interrupt 1 input / timer 1

 

 

INT1

 

 

 

 

 

 

 

 

gate control input

 

19

 

P3.4

T0

Timer 0 counter input

 

20

 

P3.5

T1

Timer 1 counter input

 

21

 

P3.6

 

 

 

 

 

control output; latches the data

 

 

WR

WR

 

 

 

 

 

 

 

 

byte from port 0 into the external

 

 

 

 

 

 

 

 

data memory

 

22

 

P3.7

 

 

 

control output; enables the

 

 

RD

RD

 

 

 

 

 

 

 

 

external data memory

 

 

 

 

 

 

 

 

 

 

 

*) I = Input

 

 

 

 

 

 

 

 

 

 

O = Output

 

 

 

 

 

 

 

 

 

 

Semiconductor Group

8

1997-07-01

C515C

Table 1

Pin Definitions and Functions (cont’d)

Symbol

Pin Number

I/O*)

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P7.0 /

 

 

23

I/O

Port 7

 

 

 

 

INT7

 

 

 

 

 

 

 

 

 

is an 1-bit quasi-bidirectional I/O port with internal pull-up

 

 

 

 

 

resistor. When a 1 is written to P7.0 it is pulled high by an

 

 

 

 

 

internal pull-up resistor, and in that state can be used as

 

 

 

 

 

input. As input, P7.0 being externally pulled low will

 

 

 

 

 

source current (I IL, in the DC characteristics) because of

 

 

 

 

 

the internal pull-up resistor. If P7.0 is used as interrupt

 

 

 

 

 

input, its output latch must be programmed to a one (1).

 

 

 

 

 

The secondary function is assigned to the port 7 pin as

 

 

 

 

 

follows:

 

 

 

 

 

 

 

P7.0

 

 

Interrupt 7 input

 

 

 

 

 

INT7

 

 

 

 

 

 

 

 

P1.0 - P1.7

31-24

I/O

Port 1

 

 

 

 

 

 

 

 

 

is an 8-bit quasi-bidirectional I/O port with internal pullup

 

 

 

 

 

resistors. Port 1 pins that have 1's written to them are

 

 

 

 

 

pulled high by the internal pullup resistors, and in that

 

 

 

 

 

state can be used as inputs. As inputs, port 1 pins being

 

 

 

 

 

externally pulled low will source current (I IL, in the DC

 

 

 

 

 

characteristics) because of the internal pullup resistors.

 

 

 

 

 

The port is used for the low-order address byte during

 

 

 

 

 

program verification. Port 1 also contains the interrupt,

 

 

 

 

 

timer, clock, capture and compare pins that are used by

 

 

 

 

 

various options. The output latch corresponding to a

 

 

 

 

 

secondary function must be programmed to a one (1) for

 

 

 

 

 

that function to operate (except when used for the

 

 

 

 

 

compare functions). The secondary functions are

 

 

 

 

 

assigned to the port 1 pins as follows:

 

 

 

31

 

P1.0

 

 

CC0

Interrupt 3 input / compare 0 output /

 

 

 

 

INT3

 

 

 

 

 

 

 

 

 

capture 0 input

 

 

 

30

 

P1.1

INT4

CC1

Interrupt 4 input / compare 1 output /

 

 

 

 

 

 

 

 

 

capture 1 input

 

 

 

29

 

P1.2

INT5

CC2

Interrupt 5 input / compare 2 output /

 

 

 

 

 

 

 

 

 

capture 2 input

 

 

 

28

 

P1.3

INT6

CC3

Interrupt 6 input / compare 3 output /

 

 

 

 

 

 

 

 

 

capture 3 input

 

 

 

27

 

P1.4

 

 

 

Interrupt 2 input

 

 

 

 

INT2

 

 

 

 

26

 

P1.5

T2EX

 

Timer 2 external reload / trigger

 

 

 

 

 

 

 

 

 

input

 

 

 

25

 

P1.6

CLKOUT

System clock output

 

 

 

24

 

P1.7

T2

 

Counter 2 input

 

 

 

 

 

 

 

 

 

 

*) I = Input O = Output

Semiconductor Group

9

1997-07-01

C515C

Table 1

Pin Definitions and Functions (cont’d)

Symbol

Pin Number

I/O*)

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

XTAL2

36

I

 

XTAL2

 

 

 

 

 

Input to the inverting oscillator amplifier and input to the

 

 

 

 

 

internal clock generator circuits.

 

 

 

 

 

To drive the device from an external clock source, XTAL2

 

 

 

 

 

should be driven, while XTAL1 is left unconnected.

 

 

 

 

 

Minimum and maximum high and low times as well as

 

 

 

 

 

rise/fall times specified in the AC characteristics must be

 

 

 

 

 

observed.

 

 

 

 

 

XTAL1

37

O

 

XTAL1

 

 

 

 

 

Output of the inverting oscillator amplifier.

 

 

 

 

 

P2.0-P2.7

38-45

I/O

 

Port 2

 

 

 

 

 

is an 8-bit quasi-bidirectional I/O port with internal pullup

 

 

 

 

 

resistors. Port 2 pins that have 1's written to them are

 

 

 

 

 

pulled high by the internal pullup resistors, and in that

 

 

 

 

 

state can be used as inputs. As inputs, port 2 pins being

 

 

 

 

 

externally pulled low will source current (I IL, in the DC

 

 

 

 

 

characteristics) because of the internal pullup resistors.

 

 

 

 

 

Port 2 emits the high-order address byte during fetches

 

 

 

 

 

from external program memory and during accesses to

 

 

 

 

 

external data memory that use 16-bit addresses

 

 

 

 

 

(MOVX @DPTR). In this application it uses strong

 

 

 

 

 

internal pullup resistors when issuing 1's. During

 

 

 

 

 

accesses to external data memory that use 8-bit

 

 

 

 

 

addresses (MOVX @Ri), port 2 issues the contents of

 

 

 

 

 

the P2 special function register.

 

 

 

 

 

 

 

 

46

O

 

CPU running condition

CPUR

 

 

 

 

 

This output pin is at low level when the CPU is running

 

 

 

 

 

and program fetches or data accesses in the external

 

 

 

 

 

data memory area are executed. In idle mode, hardware

 

 

 

 

 

and software power down mode, and with an active

 

 

 

 

 

 

 

signal

 

is set to high level.

 

 

 

 

 

RESET

CPUR

 

 

 

 

 

 

can be typically used for switching external

 

 

 

 

 

CPUR

 

 

 

 

 

memory devices into power saving modes.

 

 

 

 

 

 

 

 

 

*) I = Input

 

 

 

 

 

 

 

 

O = Output

 

 

 

 

 

 

 

 

Semiconductor Group

10

1997-07-01

C515C

Table 1

Pin Definitions and Functions (cont’d)

Symbol

Pin Number

I/O*)

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

O

 

The

 

 

 

PSEN

Program Store Enable

 

 

 

 

 

 

output is a control signal that enables the external

 

 

 

 

 

 

program memory to the bus during external fetch

 

 

 

 

 

 

operations. It is activated every six oscillator periods,

 

 

 

 

 

 

except during external data memory accesses. The

 

 

 

 

 

 

signal remains high during internal program execution.

 

 

 

 

 

ALE

48

O

 

The Address Latch enable

 

 

 

 

 

 

output is used for latching the address into external

 

 

 

 

 

 

memory during normal operation. It is activated every six

 

 

 

 

 

 

oscillator periods, except during an external data

 

 

 

 

 

 

memory access. ALE can be switched off when the

 

 

 

 

 

 

program is executed internally.

 

 

 

 

 

 

 

 

 

49

I

 

 

 

 

EA

External Access Enable

 

 

 

 

 

 

When held high, the C515C executes instructions always

 

 

 

 

 

 

from the internal ROM. When held low, the C515C

 

 

 

 

 

 

fetches all instructions from external program memory.

 

 

 

 

 

P0.0-P0.7

52-59

I/O

 

Port 0

 

 

 

 

 

 

is an 8-bit open-drain bidirectional I/O port.

 

 

 

 

 

 

Port 0 pins that have 1's written to them float, and in that

 

 

 

 

 

 

state can be used as high-impedance inputs.

 

 

 

 

 

 

Port 0 is also the multiplexed low-order address and data

 

 

 

 

 

 

bus during accesses to external program and data

 

 

 

 

 

 

memory. In this application it uses strong internal pullup

 

 

 

 

 

 

resistors when issuing 1's.

 

 

 

 

 

 

Port 0 also outputs the code bytes during program

 

 

 

 

 

 

verification in the C515C. External pullup resistors are

 

 

 

 

 

 

required during program verification.

 

 

 

 

 

P5.0-P5.7

67-60

I/O

 

Port 5

 

 

 

 

 

 

is an 8-bit quasi-bidirectional I/O port with internal pullup

 

 

 

 

 

 

resistors. Port 5 pins that have 1's written to them are

 

 

 

 

 

 

pulled high by the internal pullup resistors, and in that

 

 

 

 

 

 

state can be used as inputs. As inputs, port 5 pins being

 

 

 

 

 

 

externally pulled low will source current (I IL, in the DC

 

 

 

 

 

 

characteristics) because of the internal pullup resistors.

 

 

 

 

 

 

Port 5 can also be switched into a bidirectional mode, in

 

 

 

 

 

 

which CMOS levels are provided. In this bidirectional

 

 

 

 

 

 

mode, each port 5 pin can be programmed individually as

 

 

 

 

 

 

input or output.

 

 

 

 

 

 

 

 

*) I = Input

 

 

 

 

 

 

 

 

O = Output

 

 

 

 

 

 

 

Semiconductor Group

11

1997-07-01

C515C

Table 1

Pin Definitions and Functions (cont’d)

Symbol

Pin Number

I/O*)

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69

I

 

 

 

 

 

 

 

 

 

HWPD

Hardware Power Down

 

 

 

 

 

 

A low level on this pin for the duration of one machine

 

 

 

 

 

 

cycle while the oscillator is running resets the C515C.

 

 

 

 

 

 

A low level for a longer period will force the part to power

 

 

 

 

 

 

down mode with the pins floating.

 

 

 

 

 

 

 

 

 

 

 

 

P4.0-P4.7

72-74, 76-80

I/O

 

Port 4

 

 

 

 

 

 

 

 

 

 

 

 

 

is an 8-bit quasi-bidirectional I/O port with internal pull-up

 

 

 

 

 

 

resistors. Port 4 pins that have 1’s written to them are

 

 

 

 

 

 

pulled high by the internal pull-up resistors, and in that

 

 

 

 

 

 

state can be used as inputs. As inputs, port 4 pins being

 

 

 

 

 

 

externally pulled low will source current (I IL, in the DC

 

 

 

 

 

 

characteristics) because of the internal pull-up resistors.

 

 

 

 

 

 

P4 also contains the external A/D converter control pin,

 

 

 

 

 

 

the SSC pins, the CAN controller input/output lines, and

 

 

 

 

 

 

the external interrupt 8 input. The output latch

 

 

 

 

 

 

corresponding to a secondary functionmust be

 

 

 

 

 

 

programmed to a one (1) for that function to operate.

 

 

 

 

 

 

The alternate functions are assigned to port 4 as follows:

 

 

 

72

 

 

P4.0

 

 

 

 

External A/D converter start pin

 

 

 

 

 

ADST

 

 

 

73

 

 

P4.1

SCLK

SSC Master Clock Output /

 

 

 

 

 

 

 

 

 

 

 

SSC Slave Clock Input

 

 

 

74

 

 

P4.2

SRI

SSC Receive Input

 

 

 

76

 

 

P4.3

STO

SSC Transmit Output

 

 

 

77

 

 

P4.4

 

 

 

Slave Select Input

 

 

 

 

 

SLS

 

 

 

78

 

 

P4.5

 

 

External interrupt 8 input

 

 

 

 

 

INT8

 

 

 

79

 

 

P4.6

TXDC

Transmitter output of the CAN controller

 

 

 

80

 

 

P4.7

RXDC

Receiver input of the CAN controller

 

 

 

 

 

 

 

 

 

75

I

 

 

 

 

 

 

 

 

/ Start watchdog timer

PE/SWD

Power saving mode enable

 

 

 

 

 

 

A low level on this pin allows the software to enter the

 

 

 

 

 

 

power down, idle and slow down mode. In case the low

 

 

 

 

 

 

level is also seen during reset, the watchdog timer

 

 

 

 

 

 

function is off on default.

 

 

 

 

 

 

Use of the software controlled power saving modes is

 

 

 

 

 

 

blocked, when this pin is held on high level. A high level

 

 

 

 

 

 

during reset performs an automatic start of the watchdog

 

 

 

 

 

 

timer immediately after reset. When left unconnected this

 

 

 

 

 

 

pin is pulled high by a weak internal pull-up resistor.

 

 

 

 

 

 

 

 

 

 

 

 

*) I = Input

 

 

 

 

 

 

 

 

 

 

 

 

O = Output

 

 

 

 

 

 

 

 

 

 

 

Semiconductor Group

12

1997-07-01

C515C

Table 1

Pin Definitions and Functions (cont’d)

Symbol

Pin Number

I/O*)

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-MQFP-80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSSCLK

13

Ground (0 V) for on-chip oscillator

 

 

 

This pin is used for ground connection of the on-chip

 

 

 

oscillator circuit.

 

 

 

 

VCCCLK

14

Supply voltage for on-chip oscillator

 

 

 

This pin is used for power supply of the on-chip oscillator

 

 

 

circuit.

 

 

 

 

VCCE1

32

Supply voltage for I/O ports

VCCE2

68

 

These pins are used for power supply of the I/O ports

 

 

 

during normal, idle, and power-down mode.

 

 

 

 

VSSE1

35

Ground (0 V) for I/O ports

VSSE2

70

 

These pins are used for ground connections of the I/O

 

 

 

ports during normal, idle, and power-down mode.

 

 

 

 

VCC1

33

Supply voltage for internal logic

 

 

 

This pins is used for the power supply of the internal logic

 

 

 

circuits during normal, idle, and power down mode.

 

 

 

 

VSS1

34

Ground (0 V) for internal logic

 

 

 

This pin is used for the ground connection of the internal

 

 

 

logic circuits during normal, idle, and power down mode.

 

 

 

 

VCCEXT

50

Supply voltage for external access pins

 

 

 

This pin is used for power supply of the I/O ports and

 

 

 

control signals which are used during external accesses

 

 

 

(for Port 0, Port 2, ALE,

 

 

 

 

 

 

 

 

 

 

 

 

 

PSEN,

P3.6/WR,

and P3.7/RD).

 

 

 

 

VSSEXT

51

Ground (0 V) for external access pins

 

 

 

This pin is used for the ground connection of the I/O ports

 

 

 

and control signals which are used during external

 

 

 

accesses (for Port 0, Port 2, ALE,

 

 

 

and

 

 

 

PSEN,

P3.6/WR,

 

 

 

 

 

.

 

 

 

P3.7/RD)

 

 

 

 

N.C.

2, 71

Not connected

 

 

 

These pins should not be connected.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*) I = Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O = Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semiconductor Group

13

1997-07-01

Siemens SAB-C515C-8RM, SAB-C515C-LM, SAF-C515C-8RM, SAF-C515C-LM Datasheet

C515C

Figure 4

Block Diagram of the C515C

Semiconductor Group

14

1997-07-01

C515C

CPU

The C515C is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15% threebyte instructions. With a 6 MHz crystal, 58% of the instructions are executed in 1 s (10 MHz : 600 ns).

Special Function Register PSW (Address D0H)

 

 

Reset Value : 00H

Bit No.

MSB

 

 

 

 

 

 

LSB

 

D7H

D6H

D5H

D4H

D3H

D2H

D1H

D0H

D0H

CY

AC

F0

RS1

RS0

OV

F1

P

PSW

Bit

Function

CY

Carry Flag

 

Used by arithmetic instruction.

 

 

AC

Auxiliary Carry Flag

 

Used by instructions which execute BCD operations.

 

 

F0

General Purpose Flag

 

 

RS1

Register Bank select control bits

RS0

These bits are used to select one of the four register banks.

 

 

 

 

 

 

 

 

 

RS1

RS0

Function

 

 

 

 

 

 

 

 

 

 

 

0

0

Bank 0 selected, data address 00H-07H

 

 

 

 

0

1

Bank 1 selected, data address 08H-0FH

 

 

 

 

1

0

Bank 2 selected, data address 10H-17H

 

 

 

 

1

1

Bank 3 selected, data address 18H-1FH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OV

Overflow Flag

 

 

 

 

Used by arithmetic instruction.

 

 

 

 

 

 

 

F1

General Purpose Flag

 

 

 

 

 

 

 

 

 

 

P

Parity Flag

 

 

 

 

 

Set/cleared by hardware after each instruction to indicate an odd/even

 

number of "one" bits in the accumulator, i.e. even parity.

Semiconductor Group

15

1997-07-01

C515C

Memory Organization

The C515C CPU manipulates data and operands in the following five address spaces:

up to 64 Kbyte of internal/external program memory

up to 64 Kbyte of external data memory

256 bytes of internal data memory

256 bytes CAN controller registers / data memory

2K bytes of internal XRAM data memory

a 128 byte special function register area

Figure 5 illustrates the memory address spaces of the C515C.

Figure 5

C515C Memory Map

Semiconductor Group

16

1997-07-01

C515C

Control of XRAM/CAN Controller Access

The XRAM in the C515C is a memory area that is logically located at the upper end of the external memory space, but is integrated on the chip. Because the XRAM and the CAN controller is used in the same way as external data memory the same instruction types (MOVX) must be used for accessing the XRAM. Two bits in SFR SYSCON, XMAP0 and XMAP1, control the accesses to the XRAM and the CAN controller.

Special Function Register SYSCON (Address B1H)

 

 

Reset Value : X010XX01B

Bit No.

MSB

 

 

 

 

 

 

 

LSB

 

7

6

5

4

3

2

1

0

 

B1H

PMOD

EALE

RMAP

XMAP1

XMAP0

SYSCON

The function of the shaded bits is not described in this section.

Bit

Function

 

 

XMAP1

XRAM/CAN controller visible access control

 

Control bit for

 

 

 

 

 

 

 

 

 

 

 

 

 

RD/WR signals during XRAM/CAN Controller accesses. If

 

addresses are outside the XRAM/CAN controller address range or if

 

XRAM is disabled, this bit has no effect.

 

XMAP1 = 0 : The signals

 

and

 

are not activated during accesses to

 

RD

WR

 

the XRAM/CAN Controller

 

XMAP1 = 1 : Ports 0, 2 and the signals

 

and

 

are activated during

 

RD

WR

 

accesses to XRAM/CAN Controller. In this mode, address

 

and data information during XRAM/CAN Controller accesses

 

are visible externally.

 

 

XMAP0

Global XRAM/CAN controller access enable/disable control

 

XMAP0 = 0 : The access to XRAM and CAN controller is enabled.

 

XMAP0 = 1 : The access to XRAM and CAN controller is disabled (default

 

after reset). All MOVX accesses are performed via the

 

external bus. Further, this bit is hardware protected.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit XMAP0 is hardware protected. If it is reset once (XRAM/CAN controller access enabled) it cannot be set by software. Only a reset operation will set the XMAP0 bit again.

The XRAM/CAN controller can be accessed by read/write instructions (MOVX A,DPTR, MOVX @DPTR,A), which use the 16-bit DPTR for indirect addressing. For accessing the XRAM or CAN controller, the effective address stored in DPTR must be in the range of F700H to FFFFH.

The XRAM can be also accessed by read/write instructions (MOVX A,@Ri, MOVX @Ri,A), which use only an 8-bit address (indirect addressing with registers R0 or R1). Therefore, a special page register XPAGE which provides the upper address information (A8-A15) during 8-bit XRAM accesses. The behaviour of Port 0 and P2 during a MOVX access depends on the control bits XMAP0 and XMAP1 in register SYSCON and on the state of pin EA. Table 2 lists the various operating conditions.

Semiconductor Group

17

1997-07-01

Group Semiconductor

18

01-07-1997

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XMAP1, XMAP0

 

 

 

 

 

 

 

 

 

 

XMAP1, XMAP0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

 

 

 

 

 

 

10

 

 

 

 

 

 

 

X1

00

 

 

 

10

 

 

 

 

 

 

 

X1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOVX

DPTR

a)P0/P2Bus

a)P0/P2Bus

a)P0/P2Bus

a)P0/P2Bus

a)P0/P2Bus

a)P0/P2Bus

@DPTR

<

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)RD/WR active

b)RD/WR active

b)RD/WR active

b)RD/WR active

b)RD/WR active

b)RD/WR active

 

XRAM/CAN

c)ext.memory

c)ext.memory

c)ext.memory

c)ext.memory

c)ext.memory

c)ext.memory

 

address

is used

is used

is used

is used

is used

is used

 

range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPTR

a)P0/P2Bus

a)P0/P2Bus

a)P0/P2Bus

a)P0/P2I/0

a)P0/P2Bus

a)P0/P2Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(RD/WR-Data)

(RD/WR-Data)

 

 

 

 

 

 

 

 

 

 

(RD/WR-Data)

 

 

 

 

 

 

XRAMCAN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)RD/WR

b)RD/WR active

b)RD/WR active

b)RD/WR

b)RD/WR active

b)RD/WR active

 

address

inactive

c)XRAM is used

c) ext.memory

inactive

c)XRAM is used

c) ext.memory

 

range

c)XRAM is used

 

 

 

 

 

 

 

 

 

 

is used

c)XRAM is used

 

 

 

 

 

 

 

 

 

 

is used

 

 

 

 

 

 

 

 

MOVX

XPAGE

a)P0Bus

a)P0Bus

a)P0Bus

a)P0Bus

a)P0Bus

a)P0Bus

@ Ri

<

P2I/O

P2I/O

P2I/O

P2I/O

P2I/O

P2I/O

 

XRAMCAN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)RD/WR active

b)RD/WR active

b)RD/WR active

b)RD/WR active

b)RD/WR active

b)RD/WR active

 

addr.page

c)ext.memory

c)ext.memory

c)ext.memory

c)ext.memory

c)ext.memory

c)ext.memory

 

range

is used

is used

is used

is used

is used

is used

 

 

 

 

 

 

 

 

 

XPAGE

a)P0Bus

a)P0Bus

a)P0Bus

a)P2I/O

a)P0Bus

a)P0Bus

 

 

 

 

 

 

 

P2I/O

P0/P2I/O

 

 

 

P2I/O

 

(RD/WR-Data)

(RD/WR-Data

(RD/WR-Data)

 

XRAMCAN

P2I/O

only)

 

 

 

 

 

 

 

 

 

 

P2I/O

 

 

 

 

 

 

addr.page

 

 

 

 

 

P2I/O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)RD/WR

b)RD/WR active

b)RD/WR

b)RD/WR active

b)RD/WR active

 

range

inactive

 

 

 

 

 

 

 

 

 

 

inactive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)RD/WR active

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)XRAM is used

 

 

 

 

 

 

 

 

 

 

c)ext.memory

c)XRAM is used

c)XRAM is used

c)ext.memory

 

 

 

 

 

 

 

 

 

 

 

c)XRAM is used

is used

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is used

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modes compatible to 8051/C501 family

Table 2

Behaviour of P0/P2 and RD/WR During MOVX Accesses

C515C

C515C

Reset and System Clock

The reset input is an active low input at pin RESET. Since the reset is synchronized internally, the RESET pin must be held low for at least two machine cycles (12 oscillator periods) while the oscillator is running. A pullup resistor is internally connected to VCC to allow a power-up reset with an external capacitor only. An automatic reset can be obtained when VCC is applied by connecting

the RESET pin to VSS via a capacitor. Figure 6 shows the possible reset circuitries.

Figure 6

Reset Circuitries

Figure 7 shows the recommended oscillator circiutries for crystal and external clock operation.

Figure 7

Recommended Oscillator Circuitries

Semiconductor Group

19

1997-07-01

C515C

Multiple Datapointers

As a functional enhancement to the standard 8051 architecture, the C515C contains eight 16-bit datapointers instead of only one datapointer. The instruction set uses just one of these datapointers at a time. The selection of the actual datapointer is done in the special function register DPSEL. Figure 8 illustrates the datapointer addressing mechanism.

 

-

-

-

-

-

 

.2

.1

 

.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPSEL(92 H)

 

 

 

 

 

 

 

 

DPTR7

 

 

 

 

 

 

 

 

 

 

DPSEL

 

 

 

Selected

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.2

 

.1

.0

 

 

pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

0

 

 

DPTR 0

 

 

 

 

 

DPTR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

1

 

 

DPTR 1

 

 

 

 

 

 

 

 

 

 

 

 

 

DPH(83H)

DPL(82H)

 

 

0

 

1

0

 

 

DPTR 2

 

 

 

 

 

0

 

1

1

 

 

DPTR 3

 

 

 

 

 

 

 

 

1

 

0

0

 

 

DPTR 4

 

 

 

 

 

 

External Data Memory

 

1

 

0

1

 

 

DPTR 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

0

 

 

DPTR 6

 

 

 

 

 

 

MCD00779

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

1

 

 

DPTR 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8

External Data Memory Addressing using Multiple Datapointers

Semiconductor Group

20

1997-07-01

C515C

Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative way to control the execution of C500 MCUs and to gain extensive information on the internal operation of the controllers. Emulation of on-chip ROM based programs is possible, too.

Each production chip has built-in logic for the supprt of the Enhanced Hooks Emulation Concept. Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation and production chips are identical.

The Enhanced Hooks TechnologyTM, which requires embedded logic in the C500 allows the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate all operating modes of the different versions of the C500 microcontrollers. This includes emulation of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in single step mode and to read the SFRs after a break.

 

 

 

 

ICE-System Interface

 

 

 

to Emulation Hardware

SYSCON

 

RESET

RSYSCON

 

 

 

EA

 

 

PCON

 

RPCON

 

EH-IC

TCON

 

ALE

RTCON

 

 

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

C500

Port 0

 

Enhanced Hooks

 

MCU

 

Interface Circuit

 

 

Port 2

 

 

 

 

Optional

Port 3

Port 1

RPort 2

RPort 0

TEA

TALE TPSEN

I/O Ports

 

 

 

Target System Interface

 

 

MCS03280

Figure 9

Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks Emulation Concept to control the operation of the device during emulation and to transfer informations about the programm execution and data transfer between the external emulation hardware (ICE-system) and the C500 MCU.

Semiconductor Group

21

1997-07-01

Loading...
+ 48 hidden pages