Fairchild LM555, NE555, SA555 service manual

0 (0)

!

www.fairchildsemi.com

LM555/NE555/SA555

Single Timer

Features

Description

 

High Current Drive Capability (200mA)

The LM555/NE555/SA555 is a highly stable controller

Adjustable Duty Cycle

capable of producing

accurate timing pulses. With a

Temperature Stability of 0.005%/° C

monostable operation, the

time delay is controlled by one

Timing From Sec to Hours

external resistor and one capacitor. With an astable

Turn off Time Less Than 2 Sec

operation, the frequency and duty cycle are accurately

Applications

controlled by two external resistors and one capacitor.

 

 

 

8-DIP

 

 

Precision Timing

 

 

 

 

 

Pulse Generation

 

 

 

Time Delay Generation

1

 

 

Sequential Timing

8-SOP

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

Internal Block Diagram

GND

 

R

R

R

Vcc

1

 

 

8

Trigger

 

Comp.

Discharging Tr.

Discharge

2

 

 

7

Output

3

OutPut

F/F

6

Threshold

Stage

 

 

 

 

Comp.

 

Reset

4

 

 

5

Control

 

 

 

Vref

 

Voltage

Rev. 1.0.3

©2002 Fairchild Semiconductor Corporation

LM555/NE555/SA555

Absolute Maximum Ratings (TA = 25° C)

Parameter

Symbol

Value

Unit

Supply Voltage

VCC

16

V

 

 

 

 

Lead Temperature (Soldering 10sec)

TLEAD

300

° C

 

 

 

 

Power Dissipation

PD

600

mW

Operating Temperature Range

 

 

° C

LM555/NE555

TOPR

0 ~ +70

SA555

 

-40 ~ +85

 

Storage Temperature Range

TSTG

-65 ~ +150

° C

2

LM555/NE555/SA555

Electrical Characteristics

(TA = 25° C, VCC = 5 ~ 15V, unless otherwise specified)

Parameter

Symbol

Conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

Supply Voltage

VCC

 

-

4.5

-

16

V

Supply Current (Low Stable) (Note1)

ICC

VCC = 5V, RL = ∞

-

3

6

mA

 

 

 

 

 

 

VCC = 15V, RL = ∞

-

7.5

15

mA

 

 

 

 

 

 

 

 

 

 

Timing Error (Monostable)

 

 

 

 

 

 

 

Initial Accuracy (Note2)

ACCUR

 

 

-

1.0

3.0

%

Drift with Temperature (Note4)

RA = 1kΩ

to100kΩ

∆ t/∆ T

 

50

 

ppm/° C

Drift with Supply Voltage (Note4)

C = 0.1µ F

 

 

 

∆ t/∆ VCC

 

 

0.1

0.5

%/V

 

 

 

 

Timing Error (Astable)

ACCUR

 

 

-

 

 

 

Intial Accuracy (Note2)

RA = 1kΩ

to 100kΩ

2.25

-

%

 

Drift with Temperature (Note4)

∆ t/∆ T

C = 0.1µ F

 

 

150

 

ppm/° C

Drift with Supply Voltage (Note4)

∆ t/∆ VCC

 

 

 

0.3

 

%/V

Control Voltage

VC

VCC = 15V

9.0

10.0

11.0

V

 

 

 

 

 

 

VCC = 5V

 

2.6

3.33

4.0

V

 

 

 

 

 

 

 

 

 

 

Threshold Voltage

VTH

VCC = 15V

-

10.0

-

V

 

 

 

 

 

 

VCC = 5V

 

-

3.33

-

V

 

 

 

Threshold Current (Note3)

ITH

 

-

-

0.1

0.25

µ A

 

 

 

 

 

 

 

 

Trigger Voltage

VTR

VCC = 5V

 

1.1

1.67

2.2

V

 

 

 

 

 

 

VCC = 15V

4.5

5

5.6

V

 

 

Trigger Current

ITR

VTR = 0V

 

 

0.01

2.0

µ A

Reset Voltage

VRST

 

-

0.4

0.7

1.0

V

 

 

 

 

 

 

 

 

Reset Current

IRST

 

-

 

0.1

0.4

mA

 

 

 

 

 

 

 

 

 

VCC = 15V

 

 

 

 

 

 

ISINK = 10mA

-

0.06

0.25

V

Low Output Voltage

VOL

ISINK = 50mA

 

0.3

0.75

V

 

 

VCC = 5V

 

-

0.05

0.35

V

 

 

ISINK = 5mA

 

 

 

 

 

 

 

 

VCC = 15V

 

 

 

 

 

 

ISOURCE = 200mA

 

12.5

-

V

High Output Voltage

VOH

ISOURCE = 100mA

12.75

13.3

 

V

 

 

VCC = 5V

 

2.75

3.3

-

V

 

 

ISOURCE = 100mA

 

 

 

 

 

 

Rise Time of Output (Note4)

tR

 

-

-

100

-

ns

Fall Time of Output (Note4)

tF

 

-

-

100

-

ns

 

 

 

 

 

 

 

 

Discharge Leakage Current

ILKG

 

-

-

20

100

nA

 

 

 

 

 

 

 

 

Notes:

1.When the output is high, the supply current is typically 1mA less than at VCC = 5V.

2.Tested at VCC = 5.0V and VCC = 15V.

3.This will determine the maximum value of RA + RB for 15V operation, the max. total R = 20MΩ , and for 5V operation, the max. total R = 6.7MΩ.

4.These parameters, although guaranteed, are not 100% tested in production.

3

Fairchild LM555, NE555, SA555 service manual

LM555/NE555/SA555

Application Information

Table 1 below is the basic operating table of 555 timer:

 

Table 1. Basic Operating Table

 

 

 

 

 

 

 

Threshold Voltage

Trigger Voltage

Reset(PIN 4)

Output(PIN 3)

Discharging Tr.

(Vth)(PIN 6)

(Vtr)(PIN 2)

(PIN 7)

 

 

 

 

 

 

 

Don't care

Don't care

Low

Low

ON

Vth > 2Vcc / 3

Vth > 2Vcc / 3

High

Low

ON

Vcc / 3 < Vth < 2 Vcc / 3

Vcc / 3 < Vth < 2 Vcc / 3

High

-

-

Vth < Vcc / 3

Vth < Vcc / 3

High

High

OFF

When the low signal input is applied to the reset terminal, the timer output remains low regardless of the threshold voltage or the trigger voltage. Only when the high signal is applied to the reset terminal, the timer's output changes according to threshold voltage and trigger voltage.

When the threshold voltage exceeds 2/3 of the supply voltage while the timer output is high, the timer's internal discharge Tr. turns on, lowering the threshold voltage to below 1/3 of the supply voltage. During this time, the timer output is maintained low. Later, if a low signal is applied to the trigger voltage so that it becomes 1/3 of the supply voltage, the timer's internal discharge Tr. turns off, increasing the threshold voltage and driving the timer output again at high.

1. Monostable Operation

 

 

 

+Vcc

 

4

8

RA

Trigger

RESET

Vcc

7

TRIG

DISCH

2

 

 

 

 

THRES

6

3

OUT

CONT

C1

 

GND

5

 

 

 

RL

1

 

C2

Figure 1. Monoatable Circuit

 

102

 

 

 

 

 

 

 

 

 

101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=1k

 

 

 

 

 

10k

k

0M

 

 

 

 

 

00

M

 

 

 

 

R

A

 

1

1

 

Capacitance(uF)

 

 

 

 

1

 

 

100

 

 

 

 

 

 

 

 

10-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-2

 

 

 

 

 

 

 

 

 

10-3

 

 

 

 

 

 

 

 

 

10-5

10-4

10-3

 

10-2

10-1

100

101

102

Time Delay(s)

Figure 2. Resistance and Capacitance vs. Time delay(td)

Figure 3. Waveforms of Monostable Operation

4

LM555/NE555/SA555

Figure 1 illustrates a monostable circuit. In this mode, the timer generates a fixed pulse whenever the trigger voltage falls below Vcc/3. When the trigger pulse voltage applied to the #2 pin falls below Vcc/3 while the timer output is low, the timer's internal flip-flop turns the discharging Tr. off and causes the timer output to become high by charging the external capacitor C1 and setting the flip-flop output at the same time.

The voltage across the external capacitor C1, VC1 increases exponentially with the time constant t=RA*C and reaches 2Vcc/3 at td=1.1RA*C. Hence, capacitor C1 is charged through resistor RA. The greater the time constant RAC, the longer it takes for the VC1 to reach 2Vcc/3. In other words, the time constant RAC controls the output pulse width.

When the applied voltage to the capacitor C1 reaches 2Vcc/3, the comparator on the trigger terminal resets the flip-flop, turning the discharging Tr. on. At this time, C1 begins to discharge and the timer output converts to low.

In this way, the timer operating in the monostable repeats the above process. Figure 2 shows the time constant relationship based on RA and C. Figure 3 shows the general waveforms during the monostable operation.

It must be noted that, for a normal operation, the trigger pulse voltage needs to maintain a minimum of Vcc/3 before the timer output turns low. That is, although the output remains unaffected even if a different trigger pulse is applied while the output is high, it may be affected and the waveform does not operate properly if the trigger pulse voltage at the end of the output pulse remains at below Vcc/3. Figure 4 shows such a timer output abnormality.

Figure 4. Waveforms of Monostable Operation (abnormal)

2. Astable Operation

 

 

 

+Vcc

 

4

 

RA

 

8

 

 

RESET

Vcc

7

2

TRIG

DISCH

 

RB

 

 

 

 

 

THRES

6

3

OUT

CONT

C1

 

GND

5

 

 

 

RL

1

 

C2

Figure 5. Astable Circuit

 

100

 

 

 

 

 

 

 

 

 

 

 

(RA+2RB)

 

 

 

10

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

Capacitance(uF)

 

 

 

0k

 

 

 

1

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

M

 

 

 

0.1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

0M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

1E-3

 

 

 

 

 

 

 

100m

1

10

100

1k

10k

100k

 

 

 

 

Frequency(Hz)

 

 

 

Figure 6. Capacitance and Resistance vs. Frequency

5

Loading...
+ 9 hidden pages