Fairchild FAN6300, FAN6300A, FAN6300H service manual

0 (0)

www.fairchildsemi.com

AN-6300

FAN6300 / FAN6300A / FAN6300H

Highly Integrated Quasi-Resonant PWM Controller

Abstract

This application note describes a detailed design strategy for higher-power conversion efficiency and better EMI using a Quasi-Resonant PWM controller compared to the conventional, hard-switched converter with a fixed switching frequency. Based on the proposed design guideline, a design example with detailed parameters demonstrates the performance of the controller.

Introduction

The highly integrated FAN6300/A/H PWM controller provides several features to enhance the performance of flyback converters. FAN6300/A are applied on QuasiResonant flyback converter where maximum operating frequency is below 100kHz and FAN6300H is suitable for high frequency operation that is around 190kHz. A built-in High Voltage (HV) startup circuit can provide more startup current to reduce the startup time of the controller. Once the VDD voltage exceeds the turn-on threshold voltage, the HV startup function is disabled immediately to reduce power consumption. An internal valley voltage detector ensures power system operates in quasi-resonant operation in wide-

range line voltage and reduces switching loss to minimize switching voltage on drain of the power MOSFET.

To minimize standby power consumption and improve lightload efficiency, a proprietary green-mode function provides off-time modulation to decrease switching frequency and perform extended valley voltage switching to keep to a minimum switching voltage.

FAN6300/A/H controller provides many protection functions. Pulse-by-pulse current limiting ensures the fixed peak current limit level, even when short-circuit occurs. Once an open-circuit failure occurs in the feedback loop, the internal protection circuit disables PWM output immediately. As long as VDD drops below the turn-off threshold voltage, the controller also disables the PWM output. The gate output is clamped at 18V to protect the power MOS from high gate-source voltage conditions. The minimum tOFF time limit prevents the system frequency from being too high. If the DET pin reaches OVP level, internal OTP is triggered, and the power system enters latch-mode until AC power is removed.

© 2009 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.2 • 5/21/10

 

Fairchild FAN6300, FAN6300A, FAN6300H service manual

AN-6300

 

 

 

APPLICATION NOTE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Basic Quasi-Resonant Converter

FB 2

CS 3

 

 

 

 

HV

 

 

VDD

 

 

 

 

 

 

 

8

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

 

 

 

 

IHV

 

OVP

 

 

Bias

 

 

 

 

 

 

Two Steps

 

 

 

 

 

 

4.2V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UVLO

 

 

 

 

 

 

 

 

27V

 

 

 

 

 

 

 

2R

 

Latched

16V/10V/8V

 

 

 

 

Soft-Start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5ms

 

Timer

FB OLP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

55ms

 

 

 

 

 

 

 

 

 

 

2ms

 

 

 

 

 

 

 

 

 

 

30µs

 

 

 

 

 

 

 

 

 

 

Starter

 

 

 

 

 

 

 

Blanking

 

 

 

 

 

 

DRV

 

 

Circuit

 

 

 

 

S SET

Q

5

GATE

 

 

 

PWM

 

 

 

 

 

 

 

 

 

 

 

 

 

18V

 

 

 

Over-Power

Current Limit

 

 

 

R CLR

Q

 

 

 

 

 

 

 

 

 

Compensation

IDET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3µs/13µs)

 

 

 

 

Latched

 

 

 

 

for H version

0.3V

 

 

 

 

 

 

 

 

 

tOFF-MIN

Valley

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8µs/38µs)

VDET

Detector

tOFF-MIN

tOFF-MIN +5µs

 

 

 

 

 

 

 

1st

+9µs

for H version

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valley

 

 

 

 

 

 

tOFF

 

S/H

VDET

 

 

 

 

 

 

 

Blanking

 

Latched

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4µs)

 

 

2.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.5µs) for H version

 

 

 

 

 

 

 

 

 

 

DET OVP

 

 

 

 

 

 

 

DET 1

0.3V

Internal

Latched

5V

IDET

OTP

 

 

 

 

4

 

7

 

GND

 

NC

Figure 2. Functional Block Diagram

© 2009 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.2 • 5/21/10

2

AN-6300

APPLICATION NOTE

Design Procedure for the Primary-Side Inductance of Transformer

In this section, a design procedure is described using the schematic of Figure 1 as a reference.

[a] Define the System Specifications

Line voltage range (Vin,min and Vin,max)

Maximum output power (Po).

Output voltage (Vo) and maximum output current (Io)

Estimated efficiency (η)

The power conversion efficiency must be estimated to calculate the maximum input power. In the case of NB adaptor applications, the typical efficiency is 85%~90%.

With the estimated efficiency, the maximum input power is given by:

Pin =

Po

(1)

η

 

[b] Estimate Reflected Output Voltage

Figure 3 shows the typical waveforms of the drain voltage of quasi-resonant flyback converter. When the MOSFET is turned off, the DC link voltage (Vo), together with the output voltage (Vo) and the forward voltage drop of the Schottky diode (Vd) reflected to the primary, are imposed on the MOSFET. The maximum nominal voltage across the MOSFET (Vds) is:

Vds,max = Vin,max + n(Vo +Vd )

(2)

where the turns ratio of primary to secondary side of transformer is defined as n and Vds is as specified in Equation 2.

By increasing n, the capacitive switching loss and conduction loss of the MOSFET is reduced. However, this increases the voltage stress on the MOSFET as shown in Figure 3. Therefore, determine n by a trade-off between the voltage margin of the MOSFET and the efficiency. Typically, a turn-off voltage spike of Vds is considered as

100V, thus Vds,max is designed around 490~550V (75~85% of MOSFET rated voltage).

[c] Determine the Transformer Primary-side Inductance (LP)

Figure 4 shows the typical waveforms of MOSFET drain current (Ids), secondary diode current (Id), and the MOSFET drain voltage (Vds) of a QR converter. During tOFF, the current flows through the secondary side rectifier diode. When Id reduces to zero, Vds begins to drop by the resonance between the effective output capacitor of the MOSFET and the primary-side inductance (LP). To minimize the switching loss, the FAN6300/A/H is

designed to turn on the MOSFET when Vds reaches its minimum voltage Vin-n(Vo+Vd).

 

 

n:1

 

+

-

 

+

 

+ Vd -

Vin

 

 

n(Vo+Vd)

 

 

 

 

Vo

-

+

 

 

 

 

-

 

 

+

 

 

 

 

Coss

Vds

 

 

 

-

 

Vds

 

 

n(Vo+Vd)

 

 

 

 

n(Vo+Vd)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vds

 

 

 

 

n(Vo+Vd)

 

 

 

 

n(Vo+Vd)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vin,max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0V

Figure 3. Typical Waveform of MOSFET Drain Voltage for QR Operation

Ids

Iin Idspk

Id DTs

Vds

Vin+n(Vo+Vd)

 

n(Vo+Vd)

Vin

n(Vo+Vd)

Vin-n(Vo+Vd)

 

tON

tOFF

tF

 

TS

 

Figure 4. Typical Waveform of QR Operation

© 2009 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.2 • 5/21/10

3

AN-6300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPLICATION NOTE

To determine the primary-side inductance (LP), the

[d] Determine the Proper Core and the

 

following variables should be determined beforehand:

Minimum Primary Turns

 

 

The minimum switching frequency (fs,min): The

When designing the transformer, consider the maximum

 

maximum average input current occurs at the

flux density swing in normal operation (Bmax). The

 

minimum input voltage and full-load condition.

maximum flux density swing in normal operation is

 

Meanwhile, the switching frequency is at minimum

related to the hysteresis loss in the core, while the

 

value during QR operation.

 

 

 

maximum flux density in transient is related to the core

The falling time of the MOSFET drain voltage (tf):

saturation.

 

 

 

 

 

From Faraday’s law, the minimum number of turns for the

 

As shown in Figure 4, the falling time of MOSFET

 

drain voltage is half of the resonant period of the

transformer primary side is given by:

 

 

 

MOSFET effective output capacitance and primary-

 

 

 

LP Ids,max

pk

 

 

 

 

side inductance. If a resonant capacitor is added to be

 

 

 

 

 

 

 

NP,min

=

 

×106

 

 

(9)

 

 

 

 

 

 

 

paralleled with Coss, tf can be increased and EMI can

 

 

 

Bmax Ae

 

 

 

 

be

reduced. However,

this

forces

a

switching loss

where:

 

 

 

 

 

 

increase.

The

typical

value

of tf

for NB adaptor

 

 

 

 

 

 

LP

 

 

is

specified

in

Equation

7;

 

application is about 0.5~1μs.

 

 

 

 

 

 

 

 

 

Ids,maxpk is the peak drain current specified in Equation 6;

After determining fs,min and tf, the maximum duty cycle is

Ae is

 

the cross-sectional area of the

core in mm2;

and

calculated as:

 

 

 

 

 

 

 

 

 

Bmax

is the maximum flux density swing in tesla.

 

 

Dmax

=

 

 

n(Vo +Vd )

×(1 - fs,min ×tf )

 

(3)

Generally, it is possible to use Bmax =0.25~0.30 T.

 

 

n(Vo +Vd

)+Vin

 

Determine the Number of Turns for Auxiliary

 

 

 

 

 

 

 

 

 

 

where

Vin,min

 

is

specified

at low-line

and full-load.

 

Winding

 

 

 

 

 

According to Equation 1, the maximum average input

 

 

 

 

 

The number of turns for auxiliary winding (Na) can be

 

current Iin,max is determined as

 

 

 

 

 

 

 

 

 

 

 

VoIo

 

 

 

 

 

 

 

 

 

obtained by:

 

 

 

 

 

 

Iin,max

=

 

 

 

 

 

 

 

 

 

(4)

Na =

VDD +VD1

 

 

 

 

 

(10)

 

Vin,min η

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vo +Vd

 

 

 

 

According to Figure 3, Iin,max can be obtained as:

 

 

 

 

 

 

 

where:

 

 

 

 

 

 

 

=

1

 

 

 

 

 

 

 

 

 

 

VDD

 

is the

operating

voltage

for VDD

pin;

I

 

D

I

 

 

pk

 

 

 

 

(5)

VD1 is the forward voltage drop of D1 in Figure 5; and

 

 

 

 

 

 

 

 

 

 

in,max

 

2

max

 

ds,max

 

 

 

 

 

Vo and Vd as determined in Equation 2.

 

 

Ids,maxpk can be determined as:

Ids,max pk =

Vin,min Dmax

(6)

Lmfs,min

 

 

In Equation 5, replace Ids,maxpk by Equation 6, then combine Equations 4 and 5 to obtain LP:

LP

=

(Vin,min Dmax

)2

(7)

2Pin fs,min

 

 

 

 

 

where Pin, and Dmax are specified in Equations 1 and 3, respectively, and fs,min is the minimum switching

frequency.

Once LP is determined, the RMS current of the MOSFET in normal operation are obtained as:

rms

Dmax

peak

 

Ids,max =

 

Ids,max

(8)

3

 

© 2009 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.2 • 5/21/10

4

Loading...
+ 9 hidden pages