Sharp LH543621P-20, LH543621P-15, LH543621M-30, LH543621M-25, LH543621M-15 Datasheet

...
0 (0)

LH543611/21

Synchronous Bidirectional FIFO

 

512 × 36 × 2 / 1024 × 36 × 2

FEATURES

Pin-Compatible and Functionally Upwards-Compatible with Sharp LH5420 and LH543601, but Deeper

Expanded Control Register that is Fully Readable as well as Writeable

Fast Cycle Times: 18/20/25/30/35 ns

Improved Input Setup and Flag Out Timing

Two 512 × 36-bit FIFO Buffers (LH543611) or Two 1024 × 36-bit FIFO Buffers (LH543621)

Full 36-bit Word Width

Selectable 36/18/9-bit Word Width on Port B;

Selection May be Changed Without Resetting the BiFIFO

Programmable Byte-Order Reversal – ‘Big-Endian Little-Endian Conversion’

Independently-Synchronized (‘Fully-Asynchronous’) Operation of Port A and Port B

‘Synchronous’Enable-Plus-Clock Control at Both Ports

R/W, Enable, Request, and Address Control Inputs are Sampled on the Rising Clock Edge

Synchronous Request/Acknowledge ‘Handshake’ Capability; Use is Optional

Device Comes Up Into a Known Default State at Reset; Programming is Allowed, but is not Required

Asynchronous Output Enables

Five Status Flags per Port: Full, Almost-Full, Half-Full, Almost-Empty, and Empty

All Flags are Independently Programmable for Either Synchronous or Asynchronous Operation

Almost-Full Flag and Almost-Empty Flag Have Programmable Offsets

Mailbox Registers with Synchronized Flags

Data-Bypass Function

Data-Retransmit Function

Automatic Byte Parity Checking with

Programmable Parity Flag Latch

Programmable Byte Parity Generation

Programmable Byte, Half-Word, or Full-Word Oriented Parity Operations

8 mA-IOL High-Drive Three-State Outputs with Built-In Series Resistor

TTL/CMOS-Compatible I/O

Space-Saving PQFP and TQFP Packages

BOLD = Additions over the 5420/3601 feature set

FUNCTIONAL DESCRIPTION

The LH543611 and LH543621 contain two FIFO buffers, FIFO #1 and FIFO #2. These operate in parallel, but in opposite directions, for bidirectional data buffering. FIFO #1 and FIFO #2 each are organized as 512 or 1024 by 36 bits. The LH543611 and LH543621 are ideal either for wide unidirectional applications or for bidirectional data applications; component count and board area are reduced.

The LH543611 and LH543621 have two 36-bit ports, Port A and Port B. Each port has its own port-synchro- nous clock, but the two ports may operate asynchronously relative to each other. Data flow is initiated at a port by the rising edge of the appropriate clock; it is gated by the corresponding edge-sampled enable, request, and read/write control signals. At the maximum operating frequency, the clock duty cycle may vary from 40% to 60%. At lower frequencies, the clock waveform may be quite asymmetric, as long as the minimum pulse-width conditions for clock-HIGH and clock-LOW remain satisfied; the LH543611 and LH543621 are fully-static parts.

Conceptually, the port clocks CKA and CKB are freerunning, periodic ‘clock’ waveforms, used to control other signals which are edge-sensitive. However, there actually is not any absolute requirement that these ‘clock’ waveforms must be periodic. An ‘asynchronous’ mode of operation is possible, in one or both directions, independently, if the appropriate enable and request inputs are continuously asserted, and enough aperiodic ‘clock’ pulses of suitable duration are generated by external logic to cause all necessary actions to occur.

A synchronous request/acknowledge handshake facility is provided at each port for FIFO data access. This request/ acknowledge handshake resolves FIFO full and empty boundary conditions, when the two ports are operated asynchronously relative to each other.

FIFO status flags monitor the extent to which each FIFO buffer has been filled. Full, Almost-Full, Half-Full, Almost-Empty, and Empty flags are included for each FIFO. Each of these flags may be independently programmed for either synchronous or asynchronous operation. Also, the Almost-Full and Almost-Empty flags are programmable over the entire FIFO depth, but are automatically initialized to eight locations from the respective FIFO boundaries at reset. Adata block of 512 (LH543611) or 1024 (LH543621) or fewer words may be retransmitted any desired number of times.

1

LH543611/21

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

Two mailbox registers provide a separate path for passing control words or status words between ports. Each mailbox has a New-Mail-Alert Flag, which is synchronized to the reading port’s clock. This mailbox function facilitates the synchronization of data transfers between asynchronous systems.

Data-bypass mode allows Port A to directly transfer data to or from Port B at reset. In this mode, the device acts as a registered transceiver under the control of Port A. For instance, a master processor on Port A can use the data bypass feature to send or receive initialization or configuration information directly, to or from a peripheral device on Port B, during system startup.

A word-width-select option is provided on Port B for 36-bit, 18-bit, or 9-bit data access. This feature allows word-width matching between Port A and Port B, with no additional logic needed. It also ensures maximum utilization of bus band widths. Subject to meeting timing requirements, the word-width selection may be changed at any time during the operation of an LH543611 or LH543621, without the need either for a reset operation or for passing dummy words through Port B immediately after the

change; except that if the change is not made at a full-word boundary, at least one dummy word must be passed through Port B before any actual data words are transmitted.

A Byte Parity Check Flag at each port monitors data integrity. Control-Register bit 00 (zero) selects the parity mode, odd or even. This bit is initialized for odd data parity at reset; but it may be reprogrammed for even parity, or back again to odd parity, as desired. The parity flags may be programmed to operate either in a latched mode or in a flowthrough mode. The parity checking may be performed over 36-bit full-words, over 18-bit half-words, or over 9-bit single bytes.

Parity generation may be selected as well as parity checking, and may likewise be performed over full-words or half-words or single bytes. In any case, a parity bit of the proper mode is generated over the least-significant eight bits of a byte, and then is stored in the most-signifi- cant bit position of the byte as it passes through the LH543611/21, overwriting whatever bit was present in that bit position previously.

2

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

PIN CONNECTIONS

132-PIN PQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOP VIEW

 

 

11A

12A

13A

14A

SSO

15A

16A

17A

 

A

1

1

1

CC

A

2A

1A

0A

 

A

A

A

A

SS

A

2

2

2

18A

19A

SSO

20A

21A

22A

A

 

 

 

 

 

23

 

 

 

D

D

D

D

V

D D D

PF

HF

AF

FF V

OE

A

A

A

CK

R/W

EN

REQ

V

ACK

EF

AE

MBF

D

D

V

D D

D

D

 

 

VCCO

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

Pin 1

Pin 132

131

130

129

128

127

126

125

124

123

122

121

120 119

118

117

116

VCCO

D10A

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

115

D24A

D9A

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114

D25A

D8A

21

 

 

 

 

 

 

 

 

 

 

CHAMFERED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

113

D26A

VSSO

22

 

 

 

 

 

 

 

 

 

 

 

EDGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

112

VSSO

D7A

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

111

D27A

D6A

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110

D28A

D5A

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

109

D29A

VCCO

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

108

VCCO

D4A

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

107

D30A

D3A

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

106

D31A

D2A

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

105

D32A

VSSO

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

104

VSSO

D1A

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103

D33A

D0A

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102

D34A

RS

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

D35A

RT1

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

RT2

D0B

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99

VSS

D1B

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98

D35B

D2B

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97

D34B

VSSO

38

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96

VSSO

D3B

39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95

D33B

D4B

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94

D32B

D5B

41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93

D31B

VCCO

42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92

VCCO

D6B

43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91

D30B

D7B

44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

D29B

D8B

45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89

D28B

VSSO

46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

VSSO

D9B

47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87

D27B

D10B

48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86

D26B

D11B

49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

D25B

VCCO

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84

VCCO

 

 

51

52

53

54

55

56

57

58

 

59

60

61

62

63

64

65

66

67

 

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

 

 

 

12B

13B

14B

15B

SSO

16B

17B

1

1

1

B

SS

B

B

B

B

0B

0

1

B

CC

2

2

2

B

18B

19B

20B

SSO

21B

22B

B

B

 

 

 

23

24

 

 

 

D

D D

D

V

D

D

MBF

AE

EF

ACK

V

REQ

EN

R/W

CK

A

WS

WS

OE

V

FF

AF

HF

PF

D

D

D

V

D

D

D D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

543611-1

Figure 1. Pin Connections for 132-Pin PQFP Package (Top View)

3

LH543611/21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

144-PIN TQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOP VIEW

 

SSO

23A

22A

21A

20A

SSO

19A

18A

2

2

2

A

SS

A

A

A

A

SS

0A

1A

2A

 

A

CC

1

1

1

A

17A

16A

15A

SSO

14A

13A

12A

11A

SSO

 

 

V

D

D

D

D

V

D D

MBF

AE

EF

ACK V

REQ

EN

R/W CK

V

A A A

OE

V

FF

AF

HF PF D

D

D

V

D

D

D

D

V

 

 

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

111

110

109

 

FR1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

108

VCCO

VCCO

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

107

VCCO

D24A

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

106

D10A

D25A

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

105

D9A

D26A

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

104

D8A

VSSO

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103

VSSO

D27A

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102

D7A

D28A

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

D6A

D29A

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

D5A

VCCO

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99

VCCO

D30A

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98

D4A

D31A

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97

D3A

D32A

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96

D2A

VSSO

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95

VSSO

D33A

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94

D1A

D34A

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93

D0A

D35A

17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92

RS

RT2

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91

RT1

VSSO

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

VSSO

VSS

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89

D0B

D35B

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

D1B

D34B

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87

D2B

VSSO

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86

VSSO

D33B

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

D3B

D32B

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84

D4B

D31B

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83

D5B

VCCO

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82

VCCO

D30B

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81

D6B

D29B

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

D7B

D28B

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79

D8B

VSSO

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78

VSSO

D27B

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77

D9B

D26B

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

D10B

D25B

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75

D11B

VCCO

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74

VCCO

VCCO

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

73

FR2

 

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 

 

SSO

24B

23B

22B

21B

SSO

20B

19B

18B

B

2

2

2

CC

B

1

0

SS

0B

B

B

B

B

SS

B

1

1

1

17B

16B SSO

15B

14B 13B

12B

SSO

 

 

V

D D

D D

V

D

D

D

PF

HF

AF

FF

V

OE

WS

WS

V

A

CK

R/W

EN

REQ

V

ACK

EF

AE

MBF

D

D

V

D

D

D

D

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

543611-2

Figure 2. Pin Connections for 144-Pin TQFP Package (Top View)

4

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

PIN LIST

SIGNAL

PQFP

TQFP

 

NAME

PIN NO.

PIN NO.

 

A0A

1

126

 

A1A

2

125

 

A2A

3

124

 

OE

A

4

123

 

 

 

 

 

 

 

 

FF1

6

121

 

 

 

 

 

 

 

 

AF1

7

120

 

 

 

 

 

 

 

 

HF1

8

119

 

 

 

 

 

 

 

 

PFA

9

118

 

D17A

10

117

D16A

11

116

D15A

12

115

D14A

14

113

D13A

15

112

D12A

16

111

D11A

17

110

D10A

19

106

D9A

20

105

D8A

21

104

D7A

23

102

D6A

24

101

D5A

25

100

D4A

27

98

D3A

28

97

D2A

29

96

D1A

31

94

D0A

32

93

 

RS

 

33

92

 

 

 

 

 

 

 

RT1

34

91

D0B

35

89

D1B

36

88

D2B

37

87

D3B

39

85

D4B

40

84

D5B

41

83

D6B

43

81

D7B

44

80

D8B

45

79

D9B

47

77

D10B

48

76

D11B

49

75

D12B

51

71

D13B

52

70

D14B

53

69

D15B

54

68

D16B

56

66

D17B

57

65

 

 

 

58

64

 

MBF1

 

 

 

59

63

 

AE1

SIGNAL

PQFP

TQFP

NAME

PIN NO.

PIN NO.

 

 

 

 

 

EF1

60

62

ACKB

61

61

REQB

63

59

ENB

64

58

 

 

 

65

57

R/WB

CKB

66

56

A0B

67

55

WS0

68

53

WS1

69

52

OE

B

70

51

 

 

 

 

FF2

72

49

 

 

 

 

AF2

73

48

 

 

 

 

HF2

74

47

 

 

 

 

PFB

75

46

D18B

76

45

D19B

77

44

D20B

78

43

D21B

80

41

D22B

81

40

D23B

82

39

D24B

83

38

D25B

85

34

D26B

86

33

D27B

87

32

D28B

89

30

D29B

90

29

D30B

91

28

D31B

93

26

D32B

94

25

D33B

95

24

D34B

97

22

D35B

98

21

 

 

 

 

RT2

100

18

D35A

101

17

D34A

102

16

D33A

103

15

D32A

105

13

D31A

106

12

D30A

107

11

D29A

109

9

D28A

110

8

D27A

111

7

D26A

113

5

D25A

114

4

D24A

115

3

D23A

117

143

D22A

118

142

D21A

119

141

SIGNAL

PQFP

TQFP

 

NAME

PIN122 NO.

PIN NO.

 

D20A

120

140

 

D19A

122

138

 

D18A

 

123

137

 

MBF2

124

136

 

 

 

 

125

135

 

AE2

 

 

 

 

126

134

 

EF2

 

ACKA

127

133

 

REQA

129

131

 

ENA

130

130

 

 

 

A

131

129

 

R/W

 

CKA

132

128

 

VCC

5

122

 

VSSO

13

114

 

VSSO

 

109

 

VCCO

 

108

 

VCCO

18

107

 

VSSO

22

103

 

VCCO

26

99

 

VSSO

30

95

 

VSSO

 

90

 

VSSO

38

86

 

VCCO

42

82

 

VSSO

46

78

 

VCCO

50

74

 

VCCO

 

73

 

VSSO

 

72

 

VSSO

55

67

 

VSS

62

60

 

VSS

 

54

 

VCC

71

50

 

VSSO

79

42

 

VSSO

 

37

 

VCCO

 

36

 

VCCO

84

35

 

VSSO

88

31

 

VCCO

92

27

 

VSSO

96

23

 

VSS

99

20

 

VSSO

 

19

 

VSSO

104

14

 

VCCO

108

10

 

VSSO

112

6

 

VCCO

116

2

 

VCCO

 

1

 

VSSO

 

144

 

VSSO

121

139

 

VSS

128

132

 

VSS

 

127

NOTE:

PINS

VCC

VCCO

COMMENTS

Supply internal logic. Connected to each other.

Supply output drivers only. Connected to each other.

PINS

VSS

VSSO

COMMENTS

Supply internal logic. Connected to each other.

Supply output drivers only. Connected to each other.

5

Sharp LH543621P-20, LH543621P-15, LH543621M-30, LH543621M-25, LH543621M-15 Datasheet

LH543611/21

 

 

 

 

 

 

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WRITE

 

READ

 

 

 

 

 

PORT A

FIFO 1

PORT B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

 

 

 

WRITE

I/O

 

 

 

 

 

 

READ

FIFO 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT A

 

 

 

 

 

 

 

 

 

PORT B

 

 

 

 

CONTROL

 

 

 

 

 

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

543611-3

 

Figure 3a. Simplified LH543611/21 Block Diagram

 

 

BYPASS

 

 

FR1

RESET

FR2

 

 

MBF1

 

 

 

 

MAILBOX

 

 

RS

LOGIC

 

 

 

REGISTER

 

 

 

 

#1

 

 

 

MBF2

 

 

 

 

 

 

 

MAILBOX

 

 

A2A

COMMAND

REGISTER

COMMAND

 

#2

 

A0B

A1A

PORT AND

 

 

PORT AND

A0A

REGISTER

 

 

REGISTER

 

FIFO #1

 

 

 

 

 

 

 

 

MEMORY ARRAY

 

 

CKA

 

512 x 36/1024 x 36

 

CKB

PORT A

 

 

PORT B

R/WA

 

 

R/WB

SYNCH-

 

 

SYNCH-

ENA

RONOUS

WRITE

READ

RONOUS

ENB

REQA

CONTROL

POINTER

POINTER

CONTROL

REQB

ACKA

LOGIC

 

 

LOGIC

ACKB

 

 

 

FF1

 

FIXED AND

 

EF1

AF1

 

PROGRAMMABLE

 

 

 

AE1

HF1

 

STATUS FLAGS

 

 

 

 

 

RT1

RT2

 

 

 

 

EF2

 

FIXED AND

 

FF2

 

PROGRAMMABLE

 

AF2

AE2

 

 

 

STATUS FLAGS

 

HF2

 

 

 

 

 

 

 

READ

WRITE

 

OEB

OEA

PORT A

POINTER

POINTER

PORT B

 

 

 

 

 

 

D0B - D35B

D0A - D35A

I/O

 

 

I/O

 

FIFO #2

 

WS0, WS1

 

 

 

 

 

MEMORY ARRAY

 

 

 

 

512 x 36/1024 x 36

 

 

 

PARITY

 

 

PARITY

 

PFA

CHECKING

RESOURCE

CHECKING

PFB

AND

AND

 

GENERATION

REGISTERS

GENERATION

 

 

 

 

 

 

 

 

 

 

543611-4

Figure 3b. Detailed LH543611/21 Block Diagram

6

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

PIN DESCRIPTIONS

 

 

 

 

 

 

 

 

 

PIN

PIN TYPE 1

DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

GENERAL

 

 

VCC, VSS

V

Power, Ground

 

 

 

 

 

 

 

 

 

 

I

 

 

 

RS

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT A

 

CKA

I

Port A Free-Running Clock

 

 

 

 

 

 

 

 

I

Port A Edge-Sampled Read/Write Control

 

R/W

A

ENA

I

Port A Edge-Sampled Enable

 

A0A, A1A, A2A

I

Port A Edge-Sampled Address Pins

 

 

 

 

 

 

I

 

 

OEA

Port A Level-Sensitive Output Enable

 

REQA

I

Port A Request/Enable

 

 

 

 

 

I

 

 

RT2

FIFO #2 Retransmit

 

D0A – D35A

I/O/Z

Port A Bidirectional Data Bus

 

 

 

 

O

 

 

FF1

FIFO #1 Full Flag (Write Boundary)

 

 

 

 

O

 

 

AF1

FIFO #1 Programmable Almost-Full Flag (Write Boundary)

 

 

 

 

O

 

 

HF1

FIFO #1 Half-Full Flag

 

 

 

 

O

 

 

AE2

FIFO #2 Programmable Almost-Empty Flag (Read Boundary)

 

 

 

O

FIFO #2 Empty Flag (Read Boundary)

 

EF

2

 

 

 

 

O

 

 

MBF2

New-Mail-Alert Flag for Mailbox #2

 

 

 

O

 

 

PFA

Port A Parity Flag

ACKA

O

Port A Acknowledge

 

 

 

 

 

 

 

 

 

 

 

PORT B

CKB

I

 

 

 

 

 

 

 

I

R/WB

ENB

I

A0B

I

 

 

 

 

 

I

OEB

WS0, WS1

I

REQB

I

 

 

 

I

RT

1

 

D0B – D35B

I/O/Z

 

 

 

O

FF2

 

 

 

O

AF2

 

 

 

O

HF2

 

 

 

O

AE1

 

 

 

O

EF1

 

 

O

MBF1

 

 

O

PFB

ACKB

O

NOTE:

Port B Free-Running Clock

Port B Edge-Sampled Read/Write Control

Port B Edge-Sampled Enable

Port B Edge-Sampled Address Pin

Port B Level-Sensitive Output Enable

Port B Word-Width Select

Port B Request/Enable

FIFO #1 Retransmit

Port B Bidirectional Data Bus

FIFO #2 Full Flag (Write Boundary)

FIFO #2 Programmable Almost-Full Flag (Write Boundary) FIFO #2 Half-Full Flag

FIFO #1 Programmable Almost-Empty Flag (Read Boundary) FIFO #1 Empty Flag (Read Boundary)

New-Mail-Alert Flag for Mailbox #1

Port B Parity Flag

Port B Acknowledge

1. I = Input, O = Output, Z = High-Impedance, V = Power Voltage Level

7

LH543611/21 512 x 36 x 2/1024 x 36 x 2 BiFIFOs

ABSOLUTE MAXIMUM RATINGS 1

PARAMETER

 

RATING

Supply Voltage to VSS Potential

–0.5

V to 7 V

Signal Pin Voltage to VSS Potential 3

–0.5

V to VCC + 0.5 V

DC Output Current 2

± 40 mA

Storage Temperature Range

–65oC to 150oC

Power Dissipation (Package Limit)

2 Watts (Quad Flat Pack)

NOTES:

1.Stresses greater than those listed under ‘Absolute Maximum Ratings’ may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the ‘Operating Range’ of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2.Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

3.Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns, once per cycle.

OPERATING RANGE

SYMBOL

PARAMETER

MIN

MAX

UNIT

TA

Temperature, Ambient

0

70

oC

Vcc

Supply Voltage

4.5

5.5

V

Vss

Supply Voltage

0

0

V

VIL

Logic LOW

– 0.5

0.8

V

Input Voltage1

 

 

 

VIH

Logic HIGH

2.2

Vcc + 0.5

V

Input Voltage

 

 

 

 

NOTE:

1.Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS (OVER OPERATING RANGE)

SYMBOL

PARAMETER

ILI

Input Leakage Current

ILO

I/O Leakage Current

VOL

Logic LOW Output Voltage

VOH

Logic HIGH Output Voltage

ICC

Average Supply Current 1, 2

ICC2

Average Standby Supply

Current

1, 3

 

 

ICC3

Power-Down Supply

Current

1

 

 

ICC4

Power-Down Supply

Current

1, 3

 

 

NOTES:

 

 

 

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VCC = 5.5 V, VIN = 0 V To VCC

–10

10

mA

 

³ VIH, 0 V £ VOUT £ VCC

–10

10

mA

OE

IOL = 8.0 mA

0.4

V

IOH = –8.0 mA

2.4

V

Measured at fCC = MAX

180

280

mA

All Inputs = VIHMIN (Clocks idle)

13

25

mA

All Inputs = VCC – 0.2 V (Clocks idle)

0.002

1

mA

All Inputs = VCC – 0.2 V

10

25

mA

(Clocks running at fCC = MAX)

 

 

 

 

1.ICC, ICC2, ICC3, and ICC4 are dependent upon actual output loading, and ICC, ICC4 are also dependent on cycle rates. Specified values are with outputs open (for ICC: CL = 0 pF); and, for ICC and ICC4, operating at minimum cycle times.

2. ICC (MAX.) using VCC = MAX = 5.5 V and ‘worst case’ data pattern. ICC (TYP.) using VCC = 5 V and ‘average’ data pattern. 3. ICC2 (TYP.) and ICC4 (TYP.) using VCC = 5 V and TA = 25°C.

8

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

AC TEST CONDITIONS

 

 

+5 V

 

 

PARAMETER

RATING

 

 

 

 

 

 

 

 

 

 

Input Pulse Levels

VSS to 3 V

 

470 Ω

 

 

DEVICE

 

 

Input Rise and Fall Times

 

 

 

5 ns

UNDER

 

 

 

 

 

 

 

 

 

 

(10% to 90%)

TEST

 

 

 

 

30 pF *

Output Reference Levels

1.5 V

 

240 Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Timing Reference Levels

1.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Load, Timing Tests

Figure 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPACITANCE 1,2

 

NOTE: * = Includes jig and scope capacitances 543611-14

 

Figure 4. Output Load Circuit

 

 

PARAMETER

RATING

 

 

 

 

 

 

 

 

 

 

CIN (Input Capacitance)

8 pF

 

 

 

 

 

 

 

 

 

 

COUT (Output Capacitance)

8 pF

 

 

 

 

 

 

 

 

 

 

NOTES:

1.Sample tested only.

2.Capacitances are maximum values at 25oC, measured at 1.0 MHz, with VIN = 0 V.

9

LH543611/21

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

AC ELECTRICAL CHARACTERISTICS 1 (VCC = 5 V ± +10%, TA = 0°C to 70°C)

SYMBOL

DESCRIPTION

–18

–20

–25

–30

 

–35

UNITS

MIN

MAX

MIN

MAX

MIN

MAX

MIN

 

 

 

 

 

 

 

 

 

 

 

 

MAX MIN MAX

fCC

Clock Cycle Frequency

55

50

40

33

28.5

MHz

tCC

Clock Cycle Time

18

20

25

30

35

ns

tCH

Clock HIGH Time

7

8

10

12

15

ns

tCL

Clock LOW Time

7

8

10

12

15

ns

tDS

Data Setup Time

7.5

7.5

9

10

12

ns

tDH

Data Hold Time

0.5

0.5

0.5

0.5

0.5

ns

tES

Enable Setup Time

5.5

5.5

7.5

8.5

10.5

ns

tEH

Enable Hold Time

0.5

0.5

0.5

0.5

0.5

ns

tRWS

Read/Write Setup Time

5.5

5.5

7.5

8.5

10.5

ns

tRWH

Read/Write Hold Time

0.5

0.5

0.5

0.5

0.5

ns

tRQS

Request Setup Time

5.5

5.5

7.5

8.5

10.5

ns

tRQH

Request Hold Time

0.5

0.5

0.5

0.5

0.5

ns

tAS

Address Setup Time 2

7.5

7.5

9

10

12

ns

tAH

Address Hold Time 2

0.5

0.5

0.5

0.5

0.5

ns

tWSS

Width Select Setup Time

5.5

5.5

7.5

8.5

10.5

ns

tWSH

Width Select Hold Time 3

0.5

0.5

0.5

0.5

0.5

ns

tA

Data Output Access Time

13

13.8

16

20

25

ns

tACK

Acknowledge Access Time

9.5

9.5

13

16

18

ns

tOH

Output Hold Time

 

 

4

4

4

4

4

ns

tZX

Output Enable Time, OE LOW to

1.5

1.5

2

3

3

ns

D0 – D35 Low-Z 3

 

 

 

 

 

 

 

 

 

 

 

tXZ

Output Disable Time,

OE

HIGH

9

9

12

15

20

ns

to D0 – D35 High-Z 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

14.5

19

22

27

ns

tEF

Clock to EF Flag Valid

tFF

 

 

 

14

14.5

19

22

27

ns

Clock to FF Flag Valid

tHF

 

 

 

 

14

14.5

19

22

27

ns

Clock to HF Flag Valid

tAE

 

 

 

 

14.5

15

19

22

27

ns

Clock to AE Flag Valid

tAF

 

 

 

 

14.5

15

19

22

27

ns

Clock to AF Flag Valid

tMBF

 

 

 

10

10

13

18

23

ns

Clock to MBF Flag Valid

tPF

Data to Parity Flag Valid 4

14

14

17

20

25

ns

tRS

Reset/Retransmit Pulse Width 5

18

20

25

30

35

ns

tRSS

Reset/Retransmit Setup Time 6

15

16

20

25

30

ns

tRSH

Reset/Retransmit Hold Time 6

7.2

8

10

15

20

ns

tRF

Reset LOW to Flag Valid

21

21

25

30

35

ns

tFRL

First Read Latency 7

18

20

25

30

35

ns

tFWL

First Write Latency 8

18

20

25

30

35

ns

tBS

Bypass Data Setup

8.5

8.5

10

13

15

ns

tBH

Bypass Data Hold

2

2

3

4

5

ns

tBA

Bypass Data Access

15.5

16

18

23

28

ns

tSKEW1

Skew Time Read-to-Write Clock

14

14.5

19

22

27

ns

tSKEW2

Skew Time Write-to-Read Clock

14

14.5

19

22

27

ns

NOTES:

1.Timing measurements performed at ‘AC Test Condition’evels.

2.tAS, tAH address setup times and hold times need only be satisfied at clock edges which occur while the corresponding enables are being asserted.

3.Values are guaranteed by design; not currently production tested.

4.Measured with Parity Flag operating in flowthrough mode.

5.When CKA or CKB is enabled; tRS = tRSS + tCH + tRSH.

6.tRSS and/or tRSH need not be met unless a rising edge of CKA occurs while ENA is being asserted, or else a rising edge of CKB occurs while ENB is being asserted.

7.tFRL is the minimum first-write-to-first-read delay, following an empty condition, which is required to assure valid read data.

8.tFWL is the minimum first-read-to-first-write delay, following a full condition, which is required to assure successful writing of data.

10

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

OPERATIONAL DESCRIPTION

Reset

The device is reset whenever the asynchronous Reset (RS) input is taken LOW, and at least one rising edge and one falling edge of both CKA and CKB occur while RS is LOW. A reset operation is required after power-up, before the first write operation may occur. The LH543611/21 is fully ready for operation after being reset. No device programming is required if the default states described below are acceptable.

A reset operation initializes the read-address and write-address pointers for FIFO #1 and FIFO #2 to those FIFO’s first physical memory locations. If the respective outputs are enabled, the initial contents of these first locations appear at the outputs. FIFO and mailbox status flags are updated to indicate an empty condition. In addition, the programmable-status-flag offset values are

initialized to eight. Thus, the AE1/AE2 flags get asserted within eight locations of an empty condition, and the AF1/AF2 flags likewise get asserted within eight locations of a full condition, for FIFO #1/FIFO #2 respectively.

Bypass Operation

During reset (whenever RS is LOW) the device acts as a registered transceiver, bypassing the internal FIFO memories. Port A acts as the master port. A write or read operation on Port A during reset transfers data directly to or from Port B. Port B is considered to be the slave, and cannot perform write or read operations independently on its own during reset.

The direction of the bypass data transmission is determined by the R/WA control input, which does not get

overridden by the RS input. Here, a ‘write’ operation means passing data from Port A to Port B, and a ‘read’ operation means passing data from Port B to Port A.

The bypass capability may be used to pass initialization or configuration data directly between a master processor and a peripheral device during reset.

Address Modes

Table 1. Resource-Register Addresses

A2A

A1A

A0A

 

 

 

 

 

RESOURCE

 

 

 

 

 

 

PORT A

H

H

H

FIFO

H

H

L

Mailbox

 

 

 

 

2,

 

2,

 

1,

 

1 Flag Offsets

H

L

H

AF

AE

AF

AE

Register (36-Bit Mode)

 

 

 

 

 

 

Control Register Flag-

H

L

L

Synchronization and Parity

 

 

 

Operating Mode

L

H

H

 

1 Flag Offset Register

AE

L

H

L

 

1 Flag Offset Register

AF

 

 

 

 

2 Flag Offset Register

L

L

H

AE

L

L

L

 

2 Flag Offset Register

AF

 

 

 

 

 

 

 

 

 

 

 

 

 

A0B

 

 

 

 

 

 

RESOURCE

 

 

 

 

 

 

PORT B

 

H

 

FIFO

 

L

 

Mailbox

Control Register

The eighteen Control-Register bits govern the synchronization mode of the fullness-status flags at each port, the choice of odd or even parity at both ports, the enabling of parity generation for data flow at each port, the optional latching behavior of the parity-error flags at each port, and the selection of a full-word or half-word or single-byte field for parity checking. A reset operation initializes the LH543611/21 Control Register for LH5420/LH543601-compatible operation, but it may be reprogrammed at will at any time during LH543611/21 operation.

FIFO Write

Port A writes to FIFO #1, and Port B writes to FIFO #2. A write operation is initiated on the rising edge of a clock (CKA or CKB) whenever: the appropriate enable (ENA or ENB) is held HIGH; the appropriate request (REQA or REQB) is held HIGH; the appropriate Read/Write control

Address pins select the device resource to be accessed by each port. Port A has three resource-regis- ter-select inputs,A0A,A1A, and A2A, which select between FIFO access, mailbox-register access, control-register access, and programmable flag-offset-value-register access. Port B has a single address input, A0B, to select between FIFO access or mailbox-register access.

The status of the resource-register-select inputs is sampled at the rising edge of an enabled clock (CKA or CKB). Resource-register select-input address definitions are summarized in Table 1.

(R/WA or R/WB) is held LOW; the FIFO address is selected for the address inputs (A2A – A0A or A0B); and the prescribed setup times and hold times are observed for all of these signals. Setup times and hold times must also be observed on the data-bus pins (D0A – D35A or D0B – D35B).

Normally, the appropriate Output Enable signal (OEA

or OEB) is HIGH, to disable the outputs at that port, so that the data word present on the bus from external sources gets stored. However, a ‘loopback’ mode of operation also is possible,in which the data word supplied by the outputs of one internal FIFO is ‘turned around’ at the port and read back into the other FIFO. In this mode, the outputs at the port are not disabled. To remain within specification for all timing parameters, the Clock Cycle Frequency must be reduced slightly below the value

11

LH543611/21

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

OPERATIONAL DESCRIPTION (cont’d)

which otherwise would be permissible for that speed grade of LH543611/21.

When a FIFO full condition is reached, write operations are locked out. Following the first read operation from a full FIFO, another memory location is freed up, and the corresponding Full Flag is deasserted (FF = HIGH). The first write operation should begin no earlier than a First Write Latency (tFWL) after the first read operation from a full FIFO, to ensure that correct read data are retrieved. (See Figures 33 and 34.)

FIFO Read

PortA reads from FIFO #2, and PortB reads from FIFO #1. A read operation is initiated on the rising edge of a clock (CKA or CKB) whenever: the appropriate enable (ENA or ENB) is held HIGH; the appropriate request (REQA or R EQB) is held HIGH; the appropriate Read/Write control (R/WA or R/WB) is held HIGH; the FIFO address is selected for the address inputs (A2A – A0A or A0B); and the prescribed setup times and hold times are observed for all of these signals. Read data becomes valid on the data-bus pins (D0A – D35A or D0B – D35B) by a time tA after the rising clock (CKA or CKB) edge, provided that the data outputs are enabled.

OEA and OEB are assertive-LOW, asynchronous, Output Enable control input signals. Their effect is only to enable or disable the output drivers of the respective port. Disabling the outputs does not disable a read operation; data transmitted to the corresponding output register will remain available later, when the outputs again are enabled, unless it subsequently is overwritten.

When an empty condition is reached, read operations are locked out until a valid write operation(s) has loaded additional data into the FIFO. Following the first write to an empty FIFO, the corresponding empty flag (EF) will be deasserted (HIGH). The first read operation should begin no earlier than a First Read Latency (tFRL) after the first write to an empty FIFO, to ensure that correct read data words are retrieved. (See Figures 31 and 32.)

Dedicated FIFO Status Flags

Six dedicated FIFO status flags are included for Full (FF1 and FF2), Half-Full (HF1 and HF2), and Empty (EF1

and EF2). FF1, HF1, and EF1 indicate the status of FIFO

#1; and FF2, HF2, and EF2 indicate the status of FIFO #2. A Full Flag is asserted following the first subsequent rising clock edge for a write operation which fills the FIFO. A Full Flag is deasserted following the first subsequent falling clock edge for a read operation to a full FIFO. A Half-Full Flag is updated following the first subsequent rising clock edge of a read or write operation to a FIFO which changes its ‘half-full’ status. An Empty Flag is asserted following the first subsequent rising clock edge for a read operation which empties the FIFO. An Empty Flag is deasserted following the falling clock edge for a

write operation to an empty FIFO.

Programmable Status Flags

Four programmable FIFO status flags are provided, two for Almost-Full (AF1 and AF2), and two for Almost-

Empty (AE1 and AE2). Thus, each port has two programmable flags to monitor the status of the two internal FIFO buffer memories. The offset values for these flags are initialized to eight locations from the respective FIFO boundaries during reset, but can be reprogrammed over the entire FIFO depth.

An Almost-Full Flag is asserted following the first subsequent rising clock edge after a write operation which has partially filled the FIFO up to the ‘almost-full’ offset point. An Almost-Full Flag is deasserted following the first subsequent falling clock edge after a read operation which has partially emptied the FIFO down past the ‘almost-full’ offset point. An Almost-Empty Flag is asserted following the first subsequent rising clock edge after a read operation which has partially emptied the FIFO down to the ‘almost-empty’ offset point. An Almost-Empty Flag is deasserted following the first subsequent falling clock edge after a write operation which has partially filled the FIFO up past the ‘almost-empty’ offset point.

Flag offsets may be written or read through the Port A data bus. All four programmable FIFO status flag offsets can be set simultaneously through a single 36-bit status word; or, each programmable flag offset can be set individually, through one of four nine-bit (LH543611) or ten-bit (LH543621) status words. Tables 3a and 3b illustrate the data format for flag-programming words. Note that when all four offsets are set simultaneously in an LH543621, the settings are limited to magnitudes expressible in nine bits; for larger offset values, the individual setting option must be used. (See Figure 3b.)

Also, Tables 4a and 4b define the meaning of each of the five flags, both the dedicated flags and the programmable flags, for the LH543611 and LH543621 respectively.

NOTE: Control inputs which may affect the computation of flag values at a port generally should not change while the clock for that port is HIGH, since some updating of flag values takes place on the falling edge of the clock.

Mailbox Operation

Two mailbox registers are provided for passing system hardware or software control/status words between ports. Each port can read its own mailbox and write to the other port’s mailbox. Mailbox access is performed on the rising edge of the controlling FIFO’s clock, with the mailbox address selected and the enable (ENA or ENB) HIGH. That is, writing to Mailbox Register #1, or reading from Mailbox Register #2, is synchronized to CKA; and writing to MailboxRegister #2, or reading from Mailbox Register #1, is synchronized to CKB.

The R/WA/B and OEA/B pins control the direction and availability of mailbox-register accesses. Each mailbox register has its own New-Mail-Alert Flag (MBF1 and

12

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

OPERATIONAL DESCRIPTION (cont’d)

MBF2), which is synchronized to the reading port’s clock. These New-Mail-Alert Flags are status indicators only, and cannot inhibit mailbox-register read or write operations.

Request Acknowledge Handshake

A synchronous request-acknowledge handshake feature is provided for each port, to perform boundary synchronization between asynchronously-operated ports. The use of this feature is optional. When it is used, the Request input (REQA/B) is sampled at a rising clock edge.

With REQA/B HIGH, R/WA/B determines whether a FIFO read operation or a FIFO write operation is being requested. The Acknowledge output (ACKA/B) is updated during the following clock cycle(s). ACKA/B meets the setup and hold time requirements of the Enable input (ENA or ENB). Therefore, ACKA/B may be tied back to the enable input to directly gate FIFO accesses, at a slight decrease in maximum operating frequency.

The assertion of ACKA/B signifies that REQA/B was asserted. However, ACKA/B does not depend logically on ENA/B; and thus the assertion of ACKA/B does not prove that a FIFO write access or a FIFO read access actually took place. While REQA/B and ENA/B are being held HIGH, ACKA/B may be considered as a synchronous, predictive boundary flag. That is, ACKA/B acts as a synchronized predictorofthe Almost-Full Flag AF for write operations, or as a synchronized predictor of the AlmostEmpty Flag AE for read operations.

Outside the ‘almost-full’ region and the ‘almost-empty’ region, ACKA/B remains continuously HIGH whenever REQA/B is held continuouslyHIGH. Within the ‘almost-full’ region or the ‘almost-empty’ region, ACKA/B occurs only on every third cycle, to prevent an overrun of the FIFO’s actual full or empty boundaries and to ensure thatthe tFWL (first write latency) and tFRL (first read latency) specifications are satisfied before ACKA/B is received.

The ‘almost-full egion’r is defined as ‘thatregion, where the Almost-Full Flag is being asserted’; and the ‘almostempty region’ as ‘that region, where the Almost-Empty Flag is being asserted.’ Thus, the extent of these ‘almost’ regions depends on how the systemhas programmed the offset values for the Almost-Full Flags and the AlmostEmpty Flags. If the system has not programmed them, then these offset values remain at their default values, eight in each case.

If a write attempt is unsuccessful because the corresponding FIFO is full, or if a read attempt is unsuccessful because the corresponding FIFO is empty, ACKA/B is not asserted in response to REQA/B.

If the REQ/ACK handshake is not used, then the REQA/B input may be used as a second enable input, at a possible minor loss in maximum operating speed. In this case, the ACKA/B output may be ignored.

WARNING: Whether or not the REQ/ACK handshake is being used, the REQA/B input for a port must be asserted for that port to function at all – for FIFO, mailbox, or databypass operation.

Data Retransmit

Aretransmit operation resets the read-address pointerof the corresponding FIFO (#1 or #2) back to the first FIFO physical memory location, so that data may be reread. The write pointer is not affected. The status flags are updated; and a block of up to 512 or 1024 data words, which previously had been written into and read from a FIFO, can be retrieved. The block to be retransmitted is bounded by the first FIFO memory location, and the FIFO memory location addressed by the write pointer. FIFO #1 retransmit is initiatedby strobing the RT1 pin LOW. FIFO#2 retransmit

is initiated by strobing the RT2 pin LOW. Read and write operations to a FIFO should be stopped while the corresponding Retransmit signal is being asserted.

Parity Checking

The Parity Check Flags, PFA and PFB, are asserted (LOW) whenever there is a parity error in the data word present on the Port A data bus or the Port B data bus respectively. The inputs to the parity-evaluation logic come directly (via isolation transistors) from the data-bus bonding pads, in each case. Thus, PFA and PFB provide parity-error indications for whatever 36-bit words are present at Port A and Port B respectively, regardless of whether those words originated within the LH543611/21 or in the external system.

The four bytes of a 36-bit data word are grouped as D0 – D8, D9 – D17, D18 – D26, and D27 – D35. The parity of each nine-bit byte is individually checked, and the four single-bit parity indications are logically ORed and inverted to produce the Parity-Flag output.

If the Parity Policy bit (Control-Register bit 09) is HIGH, then parity at Port B will be computed over the field defined by the Word-Width Selection control inputs WS0 and WS1, and then may be for full-words, for half-words, or for single bytes. Otherwise, parity will be computed over full-words regardless of the setting of WS0 and WS1.

Parity checking is initialized for odd parity at reset, but can be reprogrammed for even parity or for odd parity during operation. Control-Register bit 00 (zero) selects the parity mode, odd or even. (See Tables 3, 5, and 6, and Figure 10.)

13

LH543611/21

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

All nine bits of each byte are treated alike by the parity logic. The byte parity over the nine bits is compared with the Parity Mode bit in the Control Register, to generate a byte-parity-error indication. Then, the four byte-parity- error signals are NORed together, to compute the asser- tive-LOW parity-flag value. This value may pass through to the output pin on a flowthrough basis, or it may be latched, according to the setting of the Control-Register latching bit for that port (bit 02 or bit 11). (See Figure 6 for an example of parity checking.)

Parity Generation

Unlike parity checking, parity generation at a port operates only when it is explicitly invoked by setting the corresponding Control-Register bit for that port (bit 01 or bit 10) HIGH. The presumed division of words into bytes still remains the same as for parity checking. However, it is no longer true that all nine bits of each byte are treated alike; now, the most-significant bit of each byte is explicitly designated as the parity bit for that byte. The parity-gen- eration process records a new value into that bit position for each byte passing through the port. (See Figure 6 for an example of parity generation.)

Ifthe Parity Policy bit (Control Register bit 09), is HIGH, parity at Port B will be generated for full-words, for halfwords, or for single bytes according to the setting of the Word-Width Selection control inputs WS0 and WS1. Otherwise, parity will be generated for full-words regardless of the setting of WS0 and WS1.

The parity bits generated may be even or odd, according to the setting of Control-Register bit 00, which is the same bit that governs their interpretation during parity checking.

Word-Width Selection and Byte-Order Reversal on Port B

The word width of data access on Port B is selected by the WS0 and WS1 control inputs. WS0 and WS1 both are tied HIGH for 36-bit access; they both are tied LOW for single-byte access. For double-byte access, WS1 is tied LOW; WS0 is tied HIGH for straight-through transmission of 36-bit words, or tied LOW for on-the-fly byte-order reversal of the four bytes in the word (‘big-endian little-endian conversion’). (See Table 2a and 2b.)

In the single-byte-access or double-byte-access modes, FIFO write operations on Port B essentially pack the data to form 36-bit words, as viewed from Port A. Similarly, singlebyte or double-byte FIFO read operations on Port B essentially unpack 36-bit words through a series of shift operations. FIFO status flags are updated following the last access which forms a complete 36-bit transfer.

Since the values for each status flag are computed by logic directly associated with one of the two FIFO-memory arrays, and not by logic associated with Port B, the flag values reflect the array fullness situation in terms of complete 36-bit words, and not in terms ofbytesordouble bytes.

However, there is no such restriction for switching from writing to reading, or from reading to writing, at Port B. As long as tRWS, tDS, and tA are satisfied, R/WB may change state after any single-byte or double-byte access, and not only after a full 36-bit-word access.

Also, WS0 and WS1 may be changed between fullwords during FIFO operation, without the need for any reset operation, or for passing any dummy words on through in advance of real data. If such a change is made other than at a full-word boundary, however, at least one dummy word should be used.

Also, the word-width-matching feature continues to operate properly in ‘loopback’ mode.

Note that the programmable word-width-matching feature is only supported for FIFO accesses. Mailbox and Data Bypass operations do not support word-width matching between Port A and Port B. Tables 2a and 2b and Figures 7, 8, and 9, summarize word-width selection for Port B.

Table 2a. Port B Word-Width Selection

WS1

WS0

PORT B DATA WIDTH

H

H

36-Bit

H

L

36-Bit with

Byte-Order Reversal

 

 

L

H

18-Bit

L

L

9-Bit

14

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

 

 

 

 

 

 

 

LH543611/21

 

 

 

 

 

 

 

 

 

 

PARITY CHECKING

 

 

 

 

 

 

 

DA/B35

 

 

 

 

DA/B0

Output word:

100111100

000111100

100111000

000111000

Odd parity:

Parity of Bytes = 0110; (1 = Byte Parity Error)

 

 

 

= L

PF

Even parity:

Parity of Bytes = 1001; (1 = Byte Parity Error)

 

= L

PF

 

PARITY GENERATION

 

 

 

 

 

 

 

DA/B35

 

 

 

 

DA/B0

Input word:

100111100

000111100

100111000

000111000

Output, odd parity:

100111100

100111100

000111000

000111000

Output, even parity:

000111100

000111100

100111000

100111000

 

 

 

 

 

 

 

 

 

Figure 6. Example of Parity Checking and Generation

 

 

 

 

 

 

Table 2b. Bus Funneling/Defunneling *

 

 

 

 

 

 

 

 

 

 

DA[35:0]

 

 

WS = 3 (HH)

 

 

WS = 2 (HL)

 

 

WS = 1 (LH)

 

 

 

WS = 0 (LL)

 

 

 

 

 

DB[35:0]

 

 

DB[35:0]

 

DB[35:18]

DB[17:0]

DB[35:9]

DB[8:0]

 

 

 

 

 

 

 

 

 

 

0

B3

B2

B1

B0

0

B3

B2

B1

B0

B0

B1

B2

B3

B3

B2

B1

B0

B3

B2

B1

B0

1

B7

B6

B5

B4

1

B7

B6

B5

B4

B4

B5

B6

B7

B1

B0

B3

B2

B0

B3

B2

B1

 

 

 

 

 

2

 

 

 

 

 

 

 

 

B7

B6

B5

B4

B1

B0

B3

B2

 

 

 

 

 

3

 

 

 

 

 

 

 

 

B5

B4

B7

B6

B2

B1

B0

B3

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

B7

B6

B5

B4

* NOTE: B0, B1, . . ., represent data bytes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT

 

 

 

LH543611/21

 

 

 

 

 

 

 

OUTPUT: WS[1:0]= 2 (HL)

 

 

B3

 

B7

 

 

DA35

 

 

 

 

DB35

 

 

B0

 

B4

 

 

 

 

 

BYTE #4

BYTE #8

 

.

 

 

 

 

 

.

 

 

BYTE #1

BYTE #5

 

 

 

 

 

 

 

 

 

. .

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

Bus Example: IBM, Motorala, etc.

Bus Example: Intel, DEC, etc.

 

 

 

 

 

DA27

 

 

 

 

DB27

 

 

 

 

 

 

 

 

 

B2

 

B6

 

 

DA26

 

 

 

 

DB26

 

 

B1

 

B5

 

 

 

BYTE #3

BYTE #7

 

.

 

 

 

 

 

.

 

 

BYTE #2

BYTE #6

 

 

 

. .

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DA18

 

 

 

 

DB18

 

 

 

 

 

 

 

 

 

B1

 

B5

 

 

DA17

 

 

 

 

DB17

 

 

B2

 

B6

 

 

 

BYTE #2

BYTE #6

 

.

 

 

 

 

 

.

 

 

BYTE #3

BYTE #7

 

 

 

. .

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DA9

 

 

 

 

 

DB9

 

 

 

 

 

 

 

 

 

B0

 

B4

 

 

DA8

 

 

 

 

 

DB8

 

 

B3

 

B7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYTE #1

BYTE #5

 

.

 

 

 

 

 

.

 

 

BYTE #4

BYTE #8

 

 

 

 

 

. .

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DA0

 

 

 

 

 

DB0

 

 

 

 

 

 

 

 

 

 

 

0

 

1

 

2

 

 

 

 

 

 

 

 

 

0

 

 

1

 

2

 

3

 

 

 

 

CKA

 

 

 

 

 

 

 

 

 

 

 

CKB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

543611-52

Figure 7. Example of 36-to-36 Byte Order Reversal

15

LH543611/21

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

PORT B WORD-WIDTH SELECTION

PORT

A

36-Bit Data Stream

 

 

 

18-Bit Data Streams

 

 

D35A

 

 

 

Bits 18-35

 

 

 

 

D35B

 

 

18

Bits

(2nd Halfword)

 

 

 

18

 

2nd Halfword, then 1st Halfword

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2nd

18-

35

 

 

 

 

 

 

 

D18A

 

 

Halfword)

0

 

 

D18B

 

 

 

 

 

 

 

-17

 

 

 

PORT

 

 

 

 

Bits

Halfword)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1st

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

D17A

 

 

 

 

 

 

 

 

D17B

 

1st Halfword, then 2nd Halfword

18

 

 

Bits 0-17

 

18

 

D0A

 

 

 

 

 

D0B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1st Halfword)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

543611-15

Figure 8a. 36-to-18 Funneling Through FIFO #1

36-Bit Data Stream

9-Bit Data Streams

 

D35A

 

Bits 27-35

 

 

 

D35B

 

 

 

 

 

 

 

9

(4th Byte)

 

 

9

 

4th Byte, then 1st Byte, then 2nd Byte, then 3rd Byte

 

 

 

 

 

D27A

 

 

 

D27B

 

 

 

 

 

 

 

 

 

 

 

 

D26A

 

Bits 18-26

 

 

 

D26B

 

 

 

 

 

 

 

9

(3rd Byte)

 

 

9

 

3rd Byte, then 4th Byte, then 1st Byte, then 2nd Byte

 

 

 

 

 

D18A

 

 

 

D18B

 

 

 

 

 

 

 

 

 

 

 

 

PORT

 

 

 

 

 

 

PORT

A

 

 

 

 

 

 

B

D17A

 

Bits 9-17

 

 

 

D17B

 

 

 

 

 

 

 

9

(2nd Byte)

 

 

9

 

2nd Byte, then 3rd Byte, then 4th Byte, then 1st Byte

 

 

 

 

 

D9A

 

 

 

D9B

 

 

 

 

 

 

 

 

 

 

 

 

D8A

 

Bits 0-8

 

 

 

D8B

 

 

 

 

 

 

 

9

(1st Byte)

 

 

9

 

1st Byte, then 2nd Byte, then 3rd Byte, then 4th Byte

 

 

 

 

 

D0A

 

 

 

D0B

 

 

 

 

 

543611-16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8b.

36-to-9 Funneling Through FIFO #1

NOTES:

1.The heavy black borders on register segments indicate the main data path, suitable for most applications. Alternate paths feature a different ordering of bytes within a word, at Port B.

2.The funneling process does not change the ordering of bits within a byte. Halfwords (Figure 8a) or bytes (Figure 8b) are transferred in parallel form from Port A to Port B.

3.The word-width setting may be changed during system operation; however, two clock intervals should be allowed for these signals to settle, before again attempting to read D0B – D35B. Also, incomplete data words may occur, when the word width is changed from shorter to longer at an inappropriate point in the data block passing through the FIFO.

16

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

LH543611/21

PORT B WORD-WIDTH SELECTION

36-Bit Data Stream

18-Bit Data Stream

D35A

18

D18A

PORT

A

D17A

18

D0A

Bits

 

(2nd

18-

35

 

Halfword)

Bits 0-17

(1st Halfword)

D35B

18

D18B

PORT

B

D17B

18

1st Halfword, then 2nd Halfword

D0B

543611-17

 

 

 

Figure 9a.

18-to-36 Defunneling Through FIFO #2

 

 

 

36-Bit Data Stream

9-Bit Data Stream

 

D35A

 

 

 

 

 

D35B

 

9

 

Bits 27-35

 

9

 

 

 

 

 

 

 

D27A

 

 

(4th Byte)

 

 

D27B

 

 

 

 

 

 

 

 

 

 

 

 

 

D26A

 

 

Bits 18-26

 

 

D26B

 

9

 

 

9

 

 

 

 

 

 

 

 

 

(3rd Byte)

 

 

 

 

 

 

 

 

 

 

 

 

D18A

 

 

 

 

 

D18B

 

 

 

 

 

 

 

PORT

 

 

 

 

 

 

PORT

A

 

 

 

 

 

 

B

D17A

 

 

Bits 9-17

 

 

D17B

 

9

 

 

9

 

 

 

 

 

 

 

 

 

(2nd Byte)

 

 

 

 

D9A

 

 

 

 

 

D9B

 

 

 

 

 

 

 

D8A

 

 

Bits 0-8

 

 

D8B

 

9

 

 

9

1st Byte, then 2nd Byte, then 3rd Byte, then 4th Byte

 

 

 

 

 

 

 

 

 

 

 

 

 

(1st Byte)

 

 

 

 

 

D0A

 

 

 

 

 

D0B

543611-18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9b.

9-to-36 Defunneling Through FIFO #2

NOTES:

1.The heavy black borders on register segments indicate the only data paths used. The other byte segments of Port B do not participate in the data path during defunneling.

2.The defunneling process does not change the ordering of bits within a byte. Halfwords (Figure 9a) or bytes (Figure 9b) are transferred in parallel form from Port B to Port A.

3.The word-width setting may be changed during system operation; however, two clock intervals should be allowed for these signals to settle, before again attempting to send data. Also, incomplete data words may occur, when the word width is changed from shorter to longer at an inappropriate point in the data block passing through the FIFO.

17

LH543611/21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

512 x 36 x 2/1024 x 36 x 2 BiFIFOs

 

 

 

 

 

Table 3a. LH543611 Resource-Register Programming

 

 

 

 

 

 

 

 

 

 

RESOURCE-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGISTER

 

 

 

 

 

 

 

 

RESOURCE-REGISTER CONTENTS

 

 

 

 

 

 

 

 

 

 

 

ADDRESS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2A

A1A

A0A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NORMAL FIFO OPERATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D0A

H

H

H

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAILBOX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D0A

H

H

L

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,

 

 

2,

 

1,

 

 

 

1 FLAG REGISTER (36-BIT MODE)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF

AE

AF

AE

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A . . . D27A

 

D26A . . . D18A

 

D17A . . . D9A

 

 

D8A . . . D0A

 

 

H

L

H

 

 

2 Offset 1

 

 

2 Offset 1

 

 

1 Offset 1

 

 

 

 

 

1 Offset 1

 

 

 

AF

AE

AF

 

 

AE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL REGISTER: FLAG SYNCHRONIZATION, PARITY CONFIGURATION

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

D18A

D17A

D9A

D8A

 

 

 

 

 

 

D1A

D0A

H

L

L

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

...X

Port B Control 3

Port A Control 3

PM 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9-BIT

AE

 

1 FLAG OFFSET REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D9A

 

 

 

D8A . . . D0A

 

 

L

H

H

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...X

 

 

 

1 Offset 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9-BIT

AF

1 FLAG OFFSET REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D9A

 

 

 

D8A . . . D0A

 

 

L

H

L

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..X

 

 

 

1 Offset 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9-BIT

AE

2 FLAG OFFSET REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D9A

 

 

 

D8A . . . D0A

 

 

L

L

H

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...X

 

 

 

2 Offset 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9-BIT

AF

2 FLAG OFFSET REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D35A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D9A

 

 

 

D8A . . . D0A

 

 

L

L

L

X...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...X

 

 

 

2 Offset 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF

 

 

NOTES:

1.All four programmable-flag-offset values are initialized to eight (8) during a reset operation.

2.Parity Mode: Odd parity = HIGH; even parity = LOW. The parity mode is initialized to odd during a reset operation.

3.See Tables 5 and 6 and Figure 10 for the detailed format of the Control Register word.

18

Loading...
+ 39 hidden pages