Intel CORE 2 DUO E4000, CORE 2 DUO E6000, CORE 2 EXTREME X6800 Manual

4 (2)

Intel® Core™2 Extreme Processor

X6800 and Intel® Core™2 Duo

Desktop Processor E6000 and

E4000 Series

Datasheet

—on 65 nm Process in the 775-land LGA Package and supporting Intel® 64 Architecture and supporting Intel® Virtualization Technology±

March 2008

Document Number: 313278-008

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/ processor_number for details.

Intel® 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers, and applications enabled for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary depending on your hardware and software configurations. See http://www.intel.com/technology/intel64/index.htm for more information including details on which processors support Intel 64, or consult with your system vendor for more information.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, a Intel Trusted Execution Technology-enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other Intel Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses.

±Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

The Intel® Core™2 Duo desktop processor E6000 and E4000 series and Intel® Core™2 Extreme processor X6800 may contain design defects or errors known as errata which may cause the product to deviate from published specifications.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Pentium, Intel Core, Core Inside, Intel Inside, Intel Leap ahead, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others. Copyright © 2006–2008 Intel Corporation.

2

Datasheet

Contents

1

Introduction

............................................................................................................

11

 

1.1

Terminology .....................................................................................................

12

 

 

1.1.1

Processor Terminology ............................................................................

12

 

1.2

References .......................................................................................................

14

2

Electrical Specifications...........................................................................................

15

 

2.1

Power and ....................................................................................Ground Lands

15

 

2.2

Decoupling ........................................................................................Guidelines

15

 

 

2.2.1 .....................................................................................

VCC Decoupling

15

 

 

2.2.2 .......................................................................................

Vtt Decoupling

15

 

 

2.2.3 ......................................................................................

FSB Decoupling

16

 

2.3

Voltage .........................................................................................Identification

16

 

2.4

Market .................................................................Segment Identification (MSID)

18

 

2.5

Reserved, ................................................................Unused, and TESTHI Signals

18

 

2.6

Voltage ........................................................................and Current Specification

19

 

 

2.6.1 ..................................................Absolute Maximum and Minimum Ratings

19

 

 

2.6.2 ........................................................DC Voltage and Current Specification

20

 

 

2.6.3 .......................................................................................

V CC Overshoot

24

 

 

2.6.4 .............................................................................

Die Voltage Validation

24

 

2.7

Signaling ......................................................................................Specifications

25

 

 

2.7.1 ..................................................................................

FSB Signal Groups

25

 

 

2.7.2 .................................................................CMOS and Open Drain Signals

27

 

 

2.7.3 .....................................................................

Processor DC Specifications

27

 

 

.............................................

2.7.3.1 GTL+ Front Side Bus Specifications

28

 

 

2.7.4 ................................................................................

Clock Specifications

29

 

 

2.7.5 ............................Front Side Bus Clock (BCLK[1:0]) and Processor Clocking

29

 

 

2.7.6 .................................................FSB Frequency Select Signals (BSEL[2:0])

29

 

 

2.7.7 ..............................................................Phase Lock Loop (PLL) and Filter

30

 

 

2.7.8 .....................................BCLK[1:0] Specifications (CK505 based Platforms)

30

 

 

2.7.9 .....................................BCLK[1:0] Specifications (CK410 based Platforms)

32

 

2.8

PECI DC .......................................................................................Specifications

33

3

Package Mechanical ..........................................................................Specifications

35

 

3.1

Package ...............................................................................Mechanical Drawing

35

 

 

3.1.1 ......................................................Processor Component Keep-Out Zones

39

 

 

3.1.2 ................................................................

Package Loading Specifications

39

 

 

3.1.3 ....................................................................

Package Handling Guidelines

39

 

 

3.1.4 ...............................................................

Package Insertion Specifications

40

 

 

3.1.5 ....................................................................

Processor Mass Specification

40

 

 

3.1.6 .................................................................................

Processor Materials

40

 

 

3.1.7 .................................................................................

Processor Markings

40

 

 

3.1.8 .....................................................................

Processor Land Coordinates

43

4

Land Listing .......................................................................and Signal Descriptions

45

 

4.1

Processor ...............................................................................Land Assignments

45

 

4.2

Alphabetical ............................................................................Signals Reference

68

5

Thermal Specifications ..................................................and Design Considerations

77

 

5.1

Processor .........................................................................Thermal Specifications

77

 

 

5.1.1 ............................................................................

Thermal Specifications

77

 

 

5.1.2 .................................................................................

Thermal Metrology

84

 

5.2

Processor ................................................................................Thermal Features

84

 

 

5.2.1 .....................................................................................

Thermal Monitor

84

 

 

5.2.2 ..................................................................................

Thermal Monitor 2

85

 

 

5.2.3 ..................................................................................

On - Demand Mode

86

Datasheet

3

 

 

 

5.2.4

..................................................................................PROCHOT# Signal

87

 

 

 

5.2.5

THERMTRIP# Signal ................................................................................

87

 

5.3

Thermal Diode...................................................................................................

 

88

 

 

5.4 Platform Environment Control Interface (PECI) ......................................................

90

 

 

 

5.4.1

Introduction...........................................................................................

90

 

 

 

 

5.4.1.1 Key Difference with Legacy Diode-Based Thermal

 

 

 

 

 

 

Management ............................................................................

90

 

 

 

5.4.2

PECI Specifications .................................................................................

92

 

 

 

 

5.4.2.1

PECI Device Address..................................................................

92

 

 

 

 

5.4.2.2

PECI Command Support .............................................................

92

 

 

 

 

5.4.2.3 PECI Fault Handling Requirements ...............................................

92

 

 

 

 

5.4.2.4 PECI GetTemp0() Error Code Support ..........................................

92

6

 

Features ..................................................................................................................

 

 

93

 

6.1

Power-On Configuration Options ..........................................................................

93

 

 

6.2 Clock Control and Low Power States.....................................................................

93

 

 

 

6.2.1

Normal State .........................................................................................

94

 

 

 

6.2.2 HALT and Extended HALT Powerdown States ..............................................

94

 

 

 

 

6.2.2.1

HALT Powerdown State ..............................................................

94

 

 

 

 

6.2.2.2 Extended HALT Powerdown State ................................................

95

 

 

 

6.2.3 Stop Grant and Extended Stop Grant States ...............................................

95

 

 

 

 

6.2.3.1

Stop Grant State .......................................................................

95

 

 

 

 

6.2.3.2 Extended Stop Grant State .........................................................

96

6.2.4Extended HALT State, HALT Snoop State, Extended Stop Grant Snoop

 

 

State, and Stop Grant Snoop State ...........................................................

96

 

 

6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................

96

 

 

6.2.4.2 Extended HALT Snoop State, Extended Stop Grant Snoop

 

 

 

State .......................................................................................

96

 

6.3

Enhanced Intel® SpeedStep® Technology .............................................................

96

7

Boxed Processor Specifications................................................................................

99

 

7.1

Mechanical Specifications..................................................................................

100

 

 

7.1.1 Boxed Processor Cooling Solution Dimensions...........................................

100

 

 

7.1.2 Boxed Processor Fan Heatsink Weight .....................................................

101

 

 

7.1.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip

 

 

 

Assembly.............................................................................................

101

 

7.2

Electrical Requirements ....................................................................................

101

 

 

7.2.1 Fan Heatsink Power Supply ....................................................................

101

 

7.3

Thermal Specifications......................................................................................

103

 

 

7.3.1 Boxed Processor Cooling Requirements....................................................

103

 

 

7.3.2 Fan Speed Control Operation (Intel® Core2 Extreme Processor

 

 

 

X6800 Only) ........................................................................................

105

 

 

7.3.3 Fan Speed Control Operation (Intel® Core2 Duo Desktop Processor

 

 

 

E6000 and E4000 Series Only) ...............................................................

105

8

Balanced Technology Extended (BTX) Boxed Processor Specifications...................

107

 

8.1

Mechanical Specifications..................................................................................

108

8.1.1Balanced Technology Extended (BTX) Type I and Type II Boxed Processor

 

 

 

Cooling Solution Dimensions ..................................................................

108

 

 

8.1.2 Boxed Processor Thermal Module Assembly Weight ...................................

110

 

 

8.1.3 Boxed Processor Support and Retention Module (SRM) ..............................

111

 

8.2

Electrical Requirements ....................................................................................

112

 

 

8.2.1 Thermal Module Assembly Power Supply..................................................

112

 

8.3

Thermal Specifications......................................................................................

114

 

 

8.3.1 Boxed Processor Cooling Requirements....................................................

114

 

 

8.3.2

Variable Speed Fan ...............................................................................

114

9

Debug Tools Specifications ....................................................................................

117

 

9.1

Logic Analyzer Interface (LAI) ...........................................................................

117

 

 

9.1.1

Mechanical Considerations .....................................................................

117

 

 

9.1.2

Electrical Considerations ........................................................................

117

4

Datasheet

Figures

 

1

VCC Static and Transient Tolerance .............................................................................

23

2

VCC Overshoot Example Waveform .............................................................................

24

3

Differential Clock Waveform ......................................................................................

31

4

Differential Clock Crosspoint Specification ...................................................................

31

5

Differential Measurements.........................................................................................

31

6

Differential Clock Crosspoint Specification ...................................................................

32

7

Processor Package Assembly Sketch ...........................................................................

35

8

Processor Package Drawing Sheet 1 of 3 .....................................................................

36

9

Processor Package Drawing Sheet 2 of 3 .....................................................................

37

10

Processor Package Drawing Sheet 3 of 3 .....................................................................

38

11

Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop

 

 

Processor E6000 Series with 4 MB L2 Cache with 1333 MHz FSB.....................................

40

12

Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop

 

 

Processors E6000 Series with 4 MB L2 Cache with 1066 MHz FSB ...................................

41

13

Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop

 

 

Processors E6000 Series with 2 MB L2 Cache ...............................................................

41

14

Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop

 

 

Processors E4000 Series with 2 MB L2 Cache ...............................................................

42

15

Processor Top-Side Markings for the Intel® Core™2 Extreme Processor X6800 .................

42

16

Processor Land Coordinates and Quadrants (Top View) .................................................

43

17

land-out Diagram (Top View – Left Side) .....................................................................

46

18

land-out Diagram (Top View – Right Side) ...................................................................

47

19

Thermal Profile 1 .....................................................................................................

79

20

Thermal Profile 2 .....................................................................................................

80

21

Thermal Profile 3 .....................................................................................................

81

22

Thermal Profile 4 .....................................................................................................

82

23

Thermal Profile 5 .....................................................................................................

83

24

Case Temperature (TC) Measurement Location ............................................................

84

25

Thermal Monitor 2 Frequency and Voltage Ordering ......................................................

86

26

Processor PECI Topology...........................................................................................

90

27

Conceptual Fan Control on PECI-Based Platforms .........................................................

91

28

Conceptual Fan Control on Thermal Diode-Based Platforms............................................

91

29

Processor Low Power State Machine ...........................................................................

94

30

Mechanical Representation of the Boxed Processor .......................................................

99

31

Space Requirements for the Boxed Processor (Side View)............................................

100

32

Space Requirements for the Boxed Processor (Top View).............................................

100

33

Space Requirements for the Boxed Processor (Overall View) ........................................

101

34

Boxed Processor Fan Heatsink Power Cable Connector Description ................................

102

35

Baseboard Power Header Placement Relative to Processor Socket.................................

103

36

Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) .................

104

37

Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View).................

104

38

Boxed Processor Fan Heatsink Set Points...................................................................

106

39

Mechanical Representation of the Boxed Processor with a Type I TMA ...........................

109

40

Mechanical Representation of the Boxed Processor with a Type II TMA ..........................

110

41

Requirements for the Balanced Technology Extended (BTX) Type I Keep-out

 

 

Volumes ...............................................................................................................

111

42

Requirements for the Balanced Technology Extended (BTX) Type II Keep-out

 

 

Volume.................................................................................................................

112

43

Assembly Stack Including the Support and Retention Module .......................................

113

44

Boxed Processor TMA Power Cable Connector Description ............................................

114

45

Balanced Technology Extended (BTX) Mainboard Power Header Placement

 

 

(hatched area) ......................................................................................................

115

46

Boxed Processor TMA Set Points...............................................................................

117

Datasheet

5

Tables

 

1

Reference Documents ...............................................................................................

14

2

Voltage Identification Definition..................................................................................

17

3

Market Segment Selection Truth Table for MSID[1:0] ...................................................

18

4

Absolute Maximum and Minimum Ratings ....................................................................

20

5

Voltage and Current Specifications..............................................................................

20

6

VCC Static and Transient Tolerance .............................................................................

22

7

VCC Overshoot Specifications......................................................................................

24

8

FSB Signal Groups ....................................................................................................

25

9

Signal Characteristics................................................................................................

26

10

Signal Reference Voltages .........................................................................................

26

11

GTL+ Signal Group DC Specifications ..........................................................................

27

12

Open Drain and TAP Output Signal Group DC Specifications ...........................................

27

13

CMOS Signal Group DC Specifications..........................................................................

28

14

GTL+ Bus Voltage Definitions .....................................................................................

28

15

Core Frequency to FSB Multiplier Configuration.............................................................

29

16

BSEL[2:0] Frequency Table for BCLK[1:0] ...................................................................

30

17

Front Side Bus Differential BCLK Specifications .............................................................

30

18

Front Side Bus Differential BCLK Specifications .............................................................

32

19

PECI DC Electrical Limits ...........................................................................................

33

20

Processor Loading Specifications.................................................................................

39

21

Package Handling Guidelines......................................................................................

39

22

Processor Materials...................................................................................................

40

23

Alphabetical Land Assignments...................................................................................

48

24

Numerical Land Assignment .......................................................................................

58

25

Signal Description (Sheet 1 of 9) ................................................................................

68

26

Processor Thermal Specifications ................................................................................

78

27

Thermal Profile 1......................................................................................................

79

28

Thermal Profile 2......................................................................................................

80

29

Thermal Profile 3......................................................................................................

81

30

Thermal Profile 4......................................................................................................

82

31

Thermal Profile 5......................................................................................................

83

32

Thermal “Diode” Parameters using Diode Model............................................................

88

33

Thermal “Diode” Parameters using Transistor Model ......................................................

89

34

Thermal Diode Interface ............................................................................................

89

35

GetTemp0() Error Codes ...........................................................................................

92

36

Power-On Configuration Option Signals .......................................................................

93

37

Fan Heatsink Power and Signal Specifications.............................................................

102

38

Fan Heatsink Power and Signal Specifications.............................................................

106

39

TMA Power and Signal Specifications .........................................................................

113

40

TMA Set Points for 3-wire operation of BTX Type I and Type II Boxed

 

 

Processors.............................................................................................................

115

6

Datasheet

Revision History

Revision

Description

Date

Number

 

 

 

 

 

-001

• Initial release

July 2006

 

 

 

-002

• Corrected L1 Cache information

September 2006

 

 

 

 

• Added Intel® Core™2 Duo Desktop Processor E4300 information

 

 

• Updated Table 5, DC Voltage and Current Specification

 

 

• Added Section 2.3, PECI DC Specifications

 

-003

• Updated Section 5.3, Platform Environment Control Interface (PECI)

January 2007

• Updated Section 7.1.2, Boxed Processor Fan Heatsink Weight

 

• Updated Table 37, Fan Heatsink Power and Signal Specifications

 

 

• Added Section 7.3.2, Fan Speed Control Operation Intel® Core2 Extreme Processor

 

 

X6800 Only) and Section 7.3.3, Fan Speed Control Operation (Intel® Core2 Duo Desktop

 

 

Processor E6000 and E4000 series Only)

 

 

 

 

-004

• Added Intel® Core™2 Duo Desktop Processor E6420, E6320, and E4400 information

April 2007

 

• Added Intel® Core™2 Duo Desktop Processor E6850, E6750, E6550, E6540, and E4500

 

 

information.

 

-005

• Added specifications for 1333 MHz FSB.

July 2007

 

• Added support for Extended Stop Grant State, Extended Stop Grant Snoop States.

 

 

• Added new thermal profile table and figure.

 

 

 

 

-006

• Added Intel® Core™2 Duo Desktop Processor E4400 with CPUID = 065Dh.

August 2007

-007

• Added Intel® Core™2 Duo Desktop Processor E4600

October 2007

-008

• Added Intel® Core™2 Duo Desktop Processor E4700

March 2008

Datasheet

7

8

 

Datasheet

Intel® Core™2 Extreme Processor

X6800 and Intel® Core™2 Duo

Desktop Processor E6000 and

E4000 Series Features

Available at 2.93 GHz (Intel Core™2 Extreme processor X6800 only)

Available at 3.00 GHz, 2.66 GHz, 2.40 GHz,

2.33GHz, 2.13 GHz, and 1.86 GHz (Intel Core™2 Duo desktop processor E6850, E6750, E6700, E6600, E6540, E6540, E6420, E6400, E6320, and E6300 only)

Available at 2.40 GHz, 2.20 GHz, 2.00 GHz, and

1.80GHz and (Intel Core™2 Duo desktop processor E4700, E4600, E4500, E4400, and E4300 only)

Enhanced Intel SpeedStep® Technology

Supports Intel® 64 architecture

Supports Intel® Virtualization Technology (Intel Core™2 Extreme processor X6800 and Intel Core™2 Duo desktop processor E6000 series only)

Supports Execute Disable Bit capability

Supports Intel® Trusted Execution Technology (Intel® TXT) (Intel Core2 Duo desktop processors E6850, E6750, and E6550 only)

FSB frequency at 1333 MHz (Intel Core2 Duo desktop processors E6850, E6750, E6550, and E6540 only)

FSB frequency at 1066 MHz (Intel Core™2 Extreme processor X6800 and Intel Core™2 Duo desktop processor E6700, E6600, E6420, E6400, E6320, and E6300 only)

FSB frequency at 800 MHz (Intel Core™2 Duo desktop processor E4000 series only)

Binary compatible with applications running on previous members of the Intel microprocessor line

Advance Dynamic Execution

Very deep out-of-order execution

Enhanced branch prediction

Optimized for 32-bit applications running on advanced 32-bit operating systems

Two 32-KB Level 1 data caches

4 MB Intel® Advanced Smart Cache (Intel Core™2 Extreme processor X6800 and Intel Core™2 Duo desktop processor E6850, E6750, E6700, E6540, E6540, E6600, E6420, and E6320, only)

2 MB Intel® Advanced Smart Cache (Intel Core™2 Duo desktop processor E6400, E6300, E4700, E4600, E4500, E4400, and E4300 only)

Intel® Advanced Digital Media Boost

Enhanced floating point and multimedia unit for enhanced video, audio, encryption, and 3D performance

Power Management capabilities

System Management mode

Multiple low-power states

8-way cache associativity provides improved cache hit rate on load/store operations

775-land Package

The Intel Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000, E4000 series deliver Intel's advanced, powerful processors for desktop PCs. The processor is designed to deliver performance across applications and usages where end-users can truly appreciate and experience the performance. These applications include Internet audio and streaming video, image processing, video content creation, speech, 3D, CAD, games, multimedia, and multitasking user environments.

Intel® 64 architecture enables the processor to execute operating systems and applications written to take advantage of the Intel 64 architecture. The processor supporting Enhanced Intel SpeedStep® technology allows tradeoffs to be made between performance and power consumption.

The Intel Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000, E4000 series also include the Execute Disable Bit capability. This feature, combined with a supported operating system, allows memory to be marked as executable or non-executable.

The Intel Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000 series support Intel® Virtualization Technology. Virtualization Technology provides silicon-based functionality that works together with compatible Virtual Machine Monitor (VMM) software to improve on softwareonly solutions.

The Intel Core™2 Duo desktop processors E6850, E6750, and E6550 support Intel® Trusted Execution Technology (Intel® TXT). Intel® Trusted Execution Technology (Intel® TXT) is a security

technology.

§ §

Datasheet

9

10

 

Datasheet

Introduction

1 Introduction

The Intel® Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000 and E4000 series combine the performance of the previous generation of desktop products with the power efficiencies of a low-power microarchitecture to enable smaller, quieter systems. These processors are 64-bit processors that maintain compatibility with IA-32 software.

The Intel® Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000 and E4000 series use Flip-Chip Land Grid Array (FC-LGA6) package technology, and plugs into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the LGA775 socket.

Note: In this document, unless otherwise specified, the Intel® Core™2 Duo desktop processor E6000 series refers to Intel® Core™2 Duo desktop processors E6850, E6750, E6550, E6540, E6700, E6600, E6420, E6400, E6320, and E6300. The Intel® Core™2 Duo desktop processor E4000 series refers to Intel® Core™2 Duo desktop processor E4700, E4600, E4500, E4400, and E4300.

Note: In this document, unless otherwise specified, the Intel® Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000 and E4000 series are referred to as “processor.”

The processors support several Advanced Technologies including the Execute Disable Bit, Intel® 64 architecture, and Enhanced Intel SpeedStep® Technology. The Intel Core™2 Duo desktop processor E6000 series and Intel Core™2 Extreme processor X6800 support Intel® Virtualization Technology (Intel VT). In addition, the Intel Core™2 Duo desktop processors E6850, E6750, and E6550 support Intel® Trusted Execution Technology (Intel® TXT).

The processor's front side bus (FSB) uses a split-transaction, deferred reply protocol like the Intel® Pentium® 4 processor. The FSB uses Source-Synchronous Transfer (SST) of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a "doubleclocked" or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 10.7 GB/s.

Intel has enabled support components for the processor including heatsink, heatsink retention mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly may be completed from the top of the baseboard and should not require any special tooling.

The processor includes an address bus power-down capability which removes power from the address and data signals when the FSB is not in use. This feature is always enabled on the processor.

Datasheet

11

Introduction

1.1Terminology

A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A’, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).

The phrase “Front Side Bus” refers to the interface between the processor and system core logic (a.k.a. the chipset components). The FSB is a multiprocessing interface to processors, memory, and I/O.

1.1.1Processor Terminology

Commonly used terms are explained here for clarification:

Intel® Core™2 Extreme processor X6800 — Dual core processor in the FCLGA6 package with a 4 MB L2 cache.

Intel® Core™2 Duo desktop processor E6850, E6750, E6550, E6540, E6700, E6600, E6420, and E6320, — Dual core processor in the FC-LGA6 package with a 4 MB L2 cache.

Intel® Core™2 Duo desktop processor E6400, E6300, E4700, E4600, E4500, E4400, and E4300— Dual core processor in the FC-LGA6 package with a 2 MB L2 cache.

Processor — For this document, the term processor is the generic form of the Intel® Core™2 Duo desktop processor E6000 and E4000 series and the Intel® Core™2 Extreme processor X6800. The processor is a single package that contains one or more execution units.

Keep-out zone — The area on or near the processor that system design can not use.

Processor core — Processor core die with integrated L2 cache.

LGA775 socket — The processors mate with the system board through a surface mount, 775-land, LGA socket.

Integrated heat spreader (IHS) —A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.

Retention mechanism (RM) — Since the LGA775 socket does not include any mechanical features for heatsink attach, a retention mechanism is required. Component thermal solutions should attach to the processor via a retention mechanism that is independent of the socket.

FSB (Front Side Bus) — The electrical interface that connects the processor to the chipset. Also referred to as the processor system bus or the system bus. All memory and I/O transactions as well as interrupt messages pass between the processor and chipset over the FSB.

Storage conditions — Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks. Upon exposure to “free air”(i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.

12

Datasheet

Introduction

Functional operation — Refers to normal operating conditions in which all processor specifications, including DC, AC, system bus, signal quality, mechanical and thermal are satisfied.

Execute Disable Bit — Allows memory to be marked as executable or nonexecutable, when combined with a supporting operating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit

buffer over run vulnerabilities and can thus help improve the overall security of the system. See the Intel® Architecture Software Developer's Manual for more detailed information.

Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing the processor to execute operating systems and applications written to take

advantage of Intel 64 architecture. Further details on Intel 64 architecture and programming model can be found in the Intel® Extended Memory 64 Technology Software Developer Guide at http://www.intel.com/technology/intel64/index.htm.

Enhanced Intel SpeedStep® Technology — Enhanced Intel Speedstep® technology allows trade-offs to be made between performance and power consumptions, based on processor utilization. This may lower average power consumption (in conjunction with OS support).

Intel® Virtualization Technology (Intel VT) — Intel Virtualization Technology provides silicon-based functionality that works together with compatible Virtual Machine Monitor (VMM) software to improve upon software-only solutions. Because this virtualization hardware provides a new architecture upon which the operating system can run directly, it removes the need for binary translation. Thus, it helps eliminate associated performance overhead and vastly simplifies the design of the

VMM, in turn allowing VMMs to be written to common standards and to be more robust. See the Intel® Virtualization Technology Specification for the IA-32 Intel® Architecture for more details.

Intel® Trusted Execution Technology (Intel® TXT)— Intel® Trusted Execution Technology (Intel® TXT) is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, a Intel Trusted Execution Technology-enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other Intel Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses.

Datasheet

13

Introduction

1.2References

Material and concepts available in the following documents may be beneficial when reading this document.

Table 1.

Reference Documents

 

 

 

 

 

Document

Location

 

 

 

 

Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo

www.intel.com/design/

 

processor/specupdt/

 

Desktop Processor E6000 and E4000 Series Specification Update

 

313279.htm

 

 

 

 

 

 

Intel® Core™2 Duo Processor and Intel® Pentium® Dual Core

http://www.intel.com/

 

design/processor/

 

Processor Thermal and Mechanical Design Guidelines

 

designex/317804.htm

 

 

 

 

 

 

Intel® Pentium® D Processor, Intel® Pentium® Processor Extreme

http://www.intel.com/

 

Edition, Intel® Pentium® 4 Processor, Intel® Core™2 Duo Extreme

design/pentiumXE/

 

Processor X6800 Thermal and Mechanical Design Guidelines

designex/306830.htm

 

 

 

 

Balanced Technology Extended (BTX) System Design Guide

www.formfactors.org

 

 

 

 

Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design

http://www.intel.com/

 

design/processor/

 

Guidelines For Desktop LGA775 Socket

 

applnots/313214.htm

 

 

 

 

 

 

 

http://intel.com/design/

 

LGA775 Socket Mechanical Design Guide

Pentium4/guides/

 

 

302666.htm

 

 

 

 

Intel® Virtualization Technology Specification for the IA-32 Intel®

http://www.intel.com/

 

technology/computing/

 

Architecture

 

vptech/index.htm

 

 

 

 

 

 

Intel® Trusted Exectuion Technology (Intel® TXT) Specification for

http://www.intel.com/

 

the IA-32 Intel® Architecture

technology/security/

 

Intel® 64 and IA-32 Intel Architecture Software Developer's Manuals

 

 

Volume 1: Basic Architecture

 

 

Volume 2A: Instruction Set Reference, A-M

http://www.intel.com/

 

 

 

Volume 2B: Instruction Set Reference, N-Z

products/processor/

 

Volume 3A: System Programming Guide

manuals/

 

 

 

Volume 3B: System Programming Guide

 

 

 

 

§ §

14

Datasheet

Electrical Specifications

2 Electrical Specifications

This chapter describes the electrical characteristics of the processor interfaces and signals. DC electrical characteristics are provided.

2.1Power and Ground Lands

The processor has VCC (power), VTT and VSS (ground) inputs for on-chip power distribution. All power lands must be connected to VCC, while all VSS lands must be connected to a system ground plane. The processor VCC lands must be supplied the voltage determined by the Voltage IDentification (VID) lands.

The signals denoted as VTT provide termination for the front side bus and power to the I/O buffers. A separate supply must be implemented for these lands, that meets the VTT specifications outlined in Table 5.

2.2Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings. This may cause voltages on power planes to sag below their minimum specified values if bulk decoupling is not adequate. Larger bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply current during longer lasting changes in current demand by the component, such as coming out of an idle condition. Similarly, they act as a storage well for current when entering an idle condition from a running condition. The motherboard must be designed to ensure that the voltage provided to the processor remains within the specifications listed in Table 5. Failure to do so can result in timing violations or reduced lifetime of the component.

2.2.1VCC Decoupling

VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the processor voltage specifications. This includes bulk capacitance with low effective series resistance (ESR) to keep the voltage rail within specifications during large swings in load current. In addition, ceramic decoupling capacitors are required to filter high frequency content generated by the front side bus and processor activity. Consult the

Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket.

2.2.2VTT Decoupling

Decoupling must be provided on the motherboard. Decoupling solutions must be sized to meet the expected load. To insure compliance with the specifications, various factors associated with the power delivery solution must be considered including regulator type, power plane and trace sizing, and component placement. A conservative decoupling solution would consist of a combination of low ESR bulk capacitors and high frequency ceramic capacitors.

Datasheet

15

Electrical Specifications

2.2.3FSB Decoupling

The processor integrates signal termination on the die. In addition, some of the high frequency capacitance required for the FSB is included on the processor package. However, additional high frequency capacitance must be added to the motherboard to properly decouple the return currents from the front side bus. Bulk decoupling must also be provided by the motherboard for proper [A]GTL+ bus operation.

2.3Voltage Identification

The Voltage Identification (VID) specification for the processor is defined by the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage to be delivered to the processor VCC pins (see Chapter 2.6.3 for VCC overshoot specifications). Refer to Table 13 for the DC specifications for these signals. Voltages for each processor frequency is provided in Table 5.

Individual processor VID values may be calibrated during manufacturing such that two devices at the same core speed may have different default VID settings. This is reflected by the VID Range values provided in Table 5. Refer to the Intel® Core™2 Duo Desktop Processor E6000 and E4000 Series and Intel® Core™2 Extreme Processor

X6800 Specification Update for further details on specific valid core frequency and VID values of the processor. Note this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep® Technology, or Extended HALT State).

The processor uses six voltage identification signals, VID[6:1], to support automatic selection of power supply voltages. Table 2 specifies the voltage level corresponding to the state of VID[6:1]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low voltage level. If the processor socket is empty (VID[6:1] = 111111), or the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself. The Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket defines VID [7:0], VID7 and VID0 are not used on the processor; VID0 and VID7 are strapped to VSS on the processor package. VID0 and VID7 must be connected to the VR controller for compatibility with future processors.

The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage (VCC). This will represent a DC shift in the load line. It should be noted that a low-to-high or high-to-low voltage state change may result in as many VID transitions as necessary to reach the target core voltage. Transitions above the specified VID are not permitted. Table 5 includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Table 6 and Figure 1 as measured across the VCC_SENSE and VSS_SENSE lands.

The VRM or VRD used must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in Table 5 and Table 6. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for further details.

16

Datasheet

Electrical Specifications

Table 2. Voltage Identification Definition

VID6

VID5

VID4

VID3

VID2

VID1

VID (V)

 

 

 

 

 

 

 

1

1

1

1

0

1

0.8500

 

 

 

 

 

 

 

1

1

1

1

0

0

0.8625

 

 

 

 

 

 

 

1

1

1

0

1

1

0.8750

 

 

 

 

 

 

 

1

1

1

0

1

0

0.8875

 

 

 

 

 

 

 

1

1

1

0

0

1

0.9000

 

 

 

 

 

 

 

1

1

1

0

0

0

0.9125

 

 

 

 

 

 

 

1

1

0

1

1

1

0.9250

 

 

 

 

 

 

 

1

1

0

1

1

0

0.9375

 

 

 

 

 

 

 

1

1

0

1

0

1

0.9500

 

 

 

 

 

 

 

1

1

0

1

0

0

0.9625

 

 

 

 

 

 

 

1

1

0

0

1

1

0.9750

 

 

 

 

 

 

 

1

1

0

0

1

0

0.9875

 

 

 

 

 

 

 

1

1

0

0

0

1

1.0000

 

 

 

 

 

 

 

1

1

0

0

0

0

1.0125

 

 

 

 

 

 

 

1

0

1

1

1

1

1.0250

 

 

 

 

 

 

 

1

0

1

1

1

0

1.0375

 

 

 

 

 

 

 

1

0

1

1

0

1

1.0500

 

 

 

 

 

 

 

1

0

1

1

0

0

1.0625

 

 

 

 

 

 

 

1

0

1

0

1

1

1.0750

 

 

 

 

 

 

 

1

0

1

0

1

0

1.0875

 

 

 

 

 

 

 

1

0

1

0

0

1

1.1000

 

 

 

 

 

 

 

1

0

1

0

0

0

1.1125

 

 

 

 

 

 

 

1

0

0

1

1

1

1.1250

 

 

 

 

 

 

 

1

0

0

1

1

0

1.1375

 

 

 

 

 

 

 

1

0

0

1

0

1

1.1500

 

 

 

 

 

 

 

1

0

0

1

0

0

1.1625

 

 

 

 

 

 

 

1

0

0

0

1

1

1.1750

 

 

 

 

 

 

 

1

0

0

0

1

0

1.1875

 

 

 

 

 

 

 

1

0

0

0

0

1

1.2000

 

 

 

 

 

 

 

1

0

0

0

0

0

1.2125

 

 

 

 

 

 

 

0

1

1

1

1

1

1.2250

 

 

 

 

 

 

 

VID6

VID5

VID4

VID3

VID2

VID1

VID (V)

 

 

 

 

 

 

 

0

1

1

1

1

0

1.2375

 

 

 

 

 

 

 

0

1

1

1

0

1

1.2500

 

 

 

 

 

 

 

0

1

1

1

0

0

1.2625

 

 

 

 

 

 

 

0

1

1

0

1

1

1.2750

 

 

 

 

 

 

 

0

1

1

0

1

0

1.2875

 

 

 

 

 

 

 

0

1

1

0

0

1

1.3000

 

 

 

 

 

 

 

0

1

1

0

0

0

1.3125

 

 

 

 

 

 

 

0

1

0

1

1

1

1.3250

 

 

 

 

 

 

 

0

1

0

1

1

0

1.3375

 

 

 

 

 

 

 

0

1

0

1

0

1

1.3500

 

 

 

 

 

 

 

0

1

0

1

0

0

1.3625

 

 

 

 

 

 

 

0

1

0

0

1

1

1.3750

 

 

 

 

 

 

 

0

1

0

0

1

0

1.3875

 

 

 

 

 

 

 

0

1

0

0

0

1

1.4000

 

 

 

 

 

 

 

0

1

0

0

0

0

1.4125

 

 

 

 

 

 

 

0

0

1

1

1

1

1.4250

 

 

 

 

 

 

 

0

0

1

1

1

0

1.4375

 

 

 

 

 

 

 

0

0

1

1

0

1

1.4500

 

 

 

 

 

 

 

0

0

1

1

0

0

1.4625

 

 

 

 

 

 

 

0

0

1

0

1

1

1.4750

 

 

 

 

 

 

 

0

0

1

0

1

0

1.4875

 

 

 

 

 

 

 

0

0

1

0

0

1

1.5000

 

 

 

 

 

 

 

0

0

1

0

0

0

1.5125

 

 

 

 

 

 

 

0

0

0

1

1

1

1.5250

 

 

 

 

 

 

 

0

0

0

1

1

0

1.5375

 

 

 

 

 

 

 

0

0

0

1

0

1

1.5500

 

 

 

 

 

 

 

0

0

0

1

0

0

1.5625

 

 

 

 

 

 

 

0

0

0

0

1

1

1.5750

 

 

 

 

 

 

 

0

0

0

0

1

0

1.5875

 

 

 

 

 

 

 

0

0

0

0

0

1

1.6000

 

 

 

 

 

 

 

0

0

0

0

0

0

OFF

 

 

 

 

 

 

 

Datasheet

17

Electrical Specifications

2.4Market Segment Identification (MSID)

The MSID[1:0] signals may be used as outputs to determine the Market Segment of the processor. Table 3 provides details regarding the state of MSID[1:0]. A circuit can be used to prevent 130 W TDP processors from booting on boards optimized for 65 W TDP.

Table 3. Market Segment Selection Truth Table for MSID[1:0]1, 2, 3, 4

MSID1

MSID0

Description

 

 

 

0

0

Intel® Core™2 Duo desktop processor E6000 and E4000 series and the

Intel® Core™2 Extreme processor X6800

 

 

0

1

Reserved

 

 

 

1

0

Reserved

 

 

 

1

1

Reserved

 

 

 

NOTES:

1. The MSID[1:0] signals are provided to indicate the Market Segment for the processor and may be used for future processor compatibility or for keying. Circuitry on the motherboard may use these signals to identify the processor installed.

2. These signals are not connected to the processor die.

3. A logic 0 is achieved by pulling the signal to ground on the package.

4. A logic 1 is achieved by leaving the signal as a no connect on the package.

2.5 Reserved, Unused, and TESTHI Signals

All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS, VTT, or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 4 for a land listing of the processor and the location of all RESERVED lands.

In a system level design, on-die termination has been included by the processor to allow signals to be terminated within the processor silicon. Most unused GTL+ inputs should be left as no connects as GTL+ termination is provided on the processor silicon. However, see Table 8 for details on GTL+ signals that do not include on-die termination.

Unused active high inputs, should be connected through a resistor to ground (VSS). Unused outputs can be left unconnected, however this may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. Resistor values should be within ± 20% of the impedance of the motherboard trace for front side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the same value as the on-die termination resistors (RTT). For details, see Table 14.

TAP and CMOS signals do not include on-die termination. Inputs and used outputs must be terminated on the motherboard. Unused outputs may be terminated on the motherboard or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing.

All TESTHI[13:0] lands should be individually connected to VTT via a pull-up resistor that matches the nominal trace impedance.

18

Datasheet

Electrical Specifications

The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below. A matched resistor must be used for each group:

TESTHI[1:0]

TESTHI[7:2]

TESTHI8/FC42 – cannot be grouped with other TESTHI signals

TESTHI9/FC43 – cannot be grouped with other TESTHI signals

TESTHI10 – cannot be grouped with other TESTHI signals

TESTHI11 – cannot be grouped with other TESTHI signals

TESTHI12/FC44 – cannot be grouped with other TESTHI signals

TESTHI13 – cannot be grouped with other TESTHI signals

However, utilization of boundary scan test will not be functional if these lands are connected together. For optimum noise margin, all pull-up resistor values used for TESTHI[13:0] lands should have a resistance value within ± 20% of the impedance of the board transmission line traces. For example, if the nominal trace impedance is 50 Ω, then a value between 40 Ω and 60 Ω should be used.

2.6Voltage and Current Specification

2.6.1Absolute Maximum and Minimum Ratings

Table 4 specifies absolute maximum and minimum ratings only and lie outside the functional limits of the processor. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Datasheet

19

Electrical Specifications

Table 4.

Absolute Maximum and Minimum Ratings

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min

Max

Unit

Notes1, 2

 

VCC

Core voltage with respect to VSS

–0.3

1.55

V

 

-

 

 

VTT

FSB termination voltage with

–0.3

1.55

V

 

-

 

 

respect to VSS

 

 

 

 

 

 

 

 

 

 

 

TC

Processor case temperature

See

See

°C

 

-

 

 

Chapter 5

Chapter 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TSTORAGE

Processor storage temperature

–40

85

°C

3,

4,

5

 

 

 

 

NOTES:

1.For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.

2.Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.

3.Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, refer to the processor case temperature specifications.

4.This rating applies to the processor and does not include any tray or packaging.

5.Failure to adhere to this specification can affect the long term reliability of the processor.

2.6.2DC Voltage and Current Specification

Table 5.

Voltage and Current Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min

Typ

 

Max

Unit

Notes1, 2

VID Range

 

VID

 

0.8500

 

1.5

V

3

 

 

 

 

 

 

 

 

 

 

 

 

Processor Number

VCC for

 

 

 

 

 

 

 

 

(4 MB L2 Cache)

775_VR_CONFIG_06

 

 

 

 

 

 

 

 

E6850

3.00 GHz

 

 

 

 

 

 

 

 

E6750

2.66 GHz

 

 

 

 

 

 

 

 

E6700

2.66 GHz

 

 

 

 

 

 

 

 

E6600

2.40 GHz

 

 

 

 

 

 

 

 

E6550

2.33 GHz

 

 

 

 

 

 

 

 

E6540

2.33 GHz

 

 

 

 

 

 

 

 

E6420

2.13 GHz

 

 

 

 

 

 

 

 

E6320

1.86 GHz

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

Processor Number

VCC for

Refer to Table 6 and

V

4, 5, 6

 

(4 MB L2 Cache)

775_VR_CONFIG_05B

 

Figure 1

 

 

 

 

X6800

2.93 GHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Processor Number

VCC for

 

 

 

 

 

 

 

 

(2 MB L2 Cache)

775_VR_CONFIG_06

 

 

 

 

 

 

 

 

E6400

2.13 GHz

 

 

 

 

 

 

 

 

E6300

1.86 GHz

 

 

 

 

 

 

 

 

E4700

2.60 GHz

 

 

 

 

 

 

 

 

E4600,

2.40 GHz

 

 

 

 

 

 

 

 

E4500

2.20 GHz

 

 

 

 

 

 

 

 

E4400

2.00 GHz

 

 

 

 

 

 

 

 

E4300

1.80 GHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC_BOOT

 

Default VCC voltage for initial power up

1.10

 

V

 

20

 

 

 

 

 

 

 

 

Datasheet

Electrical Specifications

Table 5.

Voltage and Current Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min

Typ

Max

Unit

Notes1, 2

VCCPLL

 

PLL VCC

 

- 5%

1.50

+ 5%

 

 

 

 

Processor Number

ICC for

 

 

 

 

 

 

 

 

775_VR_CONFIG_06

 

 

 

 

 

 

 

E6850

3.00 GHz

 

 

75

 

 

 

 

E6750

2.66 GHz

 

 

75

 

 

 

 

E6700

2.66 GHz

 

 

75

 

 

 

 

E6600

2.40 GHz

 

 

75

 

 

 

 

E6550

2.33 GHz

75

 

 

 

 

E6540

2.33 GHz

75

 

 

ICC

 

E6400/E6420

2.13 GHz

 

 

75

A

7

 

E6300/E6320

1.86 GHz

 

 

75

 

 

 

 

 

 

E4700

2.60 GHz

 

 

75

 

 

 

 

E4600

2.40 GHz

 

 

75

 

 

 

 

E4500

2.20 GHz

 

 

75

 

 

 

 

E4400

2.00 GHz

 

 

75

 

 

 

 

E4300

1.80 GHz

 

 

75

 

 

 

 

 

 

 

 

 

 

 

 

 

Processor Number

ICC for

 

 

 

 

 

 

 

 

775_VR_CONFIG_05B

 

 

 

 

 

X6800

2.93 GHz

 

 

90

 

 

 

 

 

 

 

 

 

 

 

VTT

 

FSB termination voltage

1.14

1.20

1.26

V

8

 

(DC + AC specifications)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VTT_OUT_LEFT and

DC Current that may be drawn from

 

 

 

 

9

VTT_OUT_LEFT and VTT_OUT_RIGHT per

580

mA

VTT_OUT_RIGHT ICC

pin

 

 

 

 

 

 

ITT

 

ICC for VTT supply before VCC stable

4.5

A

10

 

ICC for VTT supply after VCC stable

4.6

 

 

 

 

 

 

 

ICC_VCCPLL

 

ICC for PLL land

 

130

mA

 

ICC_GTLREF

 

ICC for GTLREF

 

200

μA

 

NOTES:

1.Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date.

2.Adherence to the voltage specifications for the processor are required to ensure reliable processor operation.

3.Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note this differs

from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep® Technology, or Extended HALT State).

4.These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.3 and Table 2 for more information.

5.The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.

6.Refer to Table 6 and Figure 1 for the minimum, typical, and maximum VCC allowed for a given current. The processor should not be subjected to any VCC and ICC combination wherein VCC exceeds VCC_MAX for a given current.

7.ICC_MAX specification is based on the VCC_MAX loadline. Refer to Figure 1 for details.

8.VTT must be provided via a separate voltage source and not be connected to VCC. This specification is measured at the land.

9.Baseboard bandwidth is limited to 20 MHz.

10.This is maximum total current drawn from VTT plane by only the processor. This specification does not include the current coming from RTT (through the signal line). Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket to determine the total ITT drawn by the system. This parameter is based on design characterization and is not tested.

Datasheet

21

Electrical Specifications

Table 6.

VCC Static and Transient Tolerance

 

 

 

 

Voltage Deviation from VID Setting (V)1, 2, 3, 4

 

ICC (A)

 

 

 

 

Maximum Voltage

 

Typical Voltage

Minimum Voltage

 

 

1.30 mΩ

 

1.425 mΩ

1.55 mΩ

 

 

 

 

 

 

 

0

0.000

 

-0.019

-0.038

 

 

 

 

 

 

 

5

-0.007

 

-0.026

-0.046

 

 

 

 

 

 

 

10

-0.013

 

-0.033

-0.054

 

 

 

 

 

 

 

15

-0.020

 

-0.040

-0.061

 

 

 

 

 

 

 

20

-0.026

 

-0.048

-0.069

 

 

 

 

 

 

 

25

-0.033

 

-0.055

-0.077

 

 

 

 

 

 

 

30

-0.039

 

-0.062

-0.085

 

 

 

 

 

 

 

35

-0.046

 

-0.069

-0.092

 

 

 

 

 

 

 

40

-0.052

 

-0.076

-0.100

 

 

 

 

 

 

 

45

-0.059

 

-0.083

-0.108

 

 

 

 

 

 

 

50

-0.065

 

-0.090

-0.116

 

 

 

 

 

 

 

55

-0.072

 

-0.097

-0.123

 

 

 

 

 

 

 

60

-0.078

 

-0.105

-0.131

 

 

 

 

 

 

 

65

-0.085

 

-0.112

-0.139

 

 

 

 

 

 

 

70

-0.091

 

-0.119

-0.147

 

 

 

 

 

 

 

75

-0.098

 

-0.126

-0.154

 

 

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.

2.This table is intended to aid in reading discrete points on Figure 1.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.

4.Adherence to this loadline specification is required to ensure reliable processor operation.

22

Datasheet

Electrical Specifications

Figure 1. VCC Static and Transient Tolerance

Icc [A]

 

 

0

10

20

30

40

50

60

70

 

VID -

0.000

 

 

 

 

 

 

 

 

VID -

0.013

 

 

 

 

 

 

 

 

VID -

0.025

 

 

 

 

Vcc Maximum

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.038

 

 

 

 

 

 

 

 

VID -

0.050

 

 

 

 

 

 

 

 

VID -

0.063

 

 

 

 

 

 

 

Vcc [V]

VID -

0.075

Vcc Typical

 

 

 

 

 

 

VID -

0.088

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.100

 

 

 

 

 

 

 

 

 

 

 

 

Vcc Minimum

 

 

 

 

 

VID -

0.113

 

 

 

 

 

 

 

 

VID -

0.125

 

 

 

 

 

 

 

 

VID -

0.138

 

 

 

 

 

 

 

 

VID -

0.150

 

 

 

 

 

 

 

 

VID -

0.163

 

 

 

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.

2.This loadline specification shows the deviation from the VID set point.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.

Datasheet

23

Intel CORE 2 DUO E4000, CORE 2 DUO E6000, CORE 2 EXTREME X6800 Manual

Electrical Specifications

2.6.3VCC Overshoot

The processor can tolerate short transient overshoot events where VCC exceeds the VID voltage when transitioning from a high to low current load condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).

The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the maximum allowable time duration above VID). These specifications apply to the

processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.

Table 7.

VCC Overshoot Specifications

 

 

 

 

 

 

Symbol

Parameter

Min

Max

Unit

Figure

Notes

 

 

 

 

 

 

 

 

 

VOS_MAX

Magnitude of VCC overshoot above VID

50

mV

2

1

 

 

 

TOS_MAX

Time duration of VCC overshoot above VID

25

μs

2

1

 

 

NOTES:

1.Adherence to these specifications is required to ensure reliable processor operation.

Figure 2. VCC Overshoot Example Waveform

Example Overshoot Waveform

VID + 0.050

 

 

 

VOS

 

 

 

 

 

 

Voltage [V]

 

 

 

 

 

VID - 0.000

 

 

 

 

 

 

 

 

TOS

 

 

0

5

10

15

20

25

Time [us]

TOS: Overshoot time above VID

VOS: Overshoot above VID

NOTES:

1.VOS is measured overshoot voltage.

2.TOS is measured time duration above VID.

2.6.4Die Voltage Validation

Overshoot events on processor must meet the specifications in Table 7 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot must be taken with a bandwidth limited oscilloscope set to a greater than or equal to

100 MHz bandwidth limit.

24

Datasheet

Electrical Specifications

2.7Signaling Specifications

Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling technology. This technology provides improved noise margins and reduced ringing through low voltage swings and controlled edge rates. Platforms implement a termination voltage level for GTL+ signals defined as VTT. Because platforms implement separate power planes for each processor (and chipset), separate VCC and VTT supplies are necessary. This configuration allows for improved noise tolerance as processor frequency increases. Speed enhancements to data and address busses have caused signal integrity considerations and platform design methods to become even more critical than with previous processor families.

The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the motherboard (see Table 14 for GTLREF specifications). Termination resistors (RTT) for GTL+ signals are provided on the processor silicon and are terminated to VTT. Intel chipsets will also provide on-die termination, thus eliminating the need to terminate the bus on the motherboard for most GTL+ signals.

2.7.1FSB Signal Groups

The front side bus signals have been combined into groups by buffer type. GTL+ input signals have differential input buffers, which use GTLREF[1:0] as a reference level. In this document, the term “GTL+ Input” refers to the GTL+ input group as well as the GTL+ I/O group when receiving. Similarly, “GTL+ Output” refers to the GTL+ output group as well as the GTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 8 identifies which signals are common clock, source synchronous, and asynchronous.

Table 8.

FSB Signal Groups (Sheet 1 of 2)

 

 

 

 

 

 

 

 

 

Signal Group

Type

 

 

Signals1

 

GTL+ Common

Synchronous to

 

BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#

 

Clock Input

BCLK[1:0]

 

 

 

 

 

 

 

 

 

 

 

GTL+ Common

Synchronous to

 

ADS#, BNR#, BPM[5:0]#, BR0#, DBSY#, DRDY#,

 

Clock I/O

BCLK[1:0]

 

HIT#, HITM#, LOCK#

 

 

 

 

 

 

 

 

 

 

 

Signals

Associated Strobe

 

 

 

 

REQ[4:0]#, A[16:3]#3 ADSTB0#

 

GTL+ Source

Synchronous to

 

A[35:17]#3

ADSTB1#

 

Synchronous I/O

assoc. strobe

 

D[15:0]#, DBI0#

DSTBP0#, DSTBN0#

 

 

 

 

D[31:16]#, DBI1#

DSTBP1#, DSTBN1#

 

 

 

 

D[47:32]#, DBI2#

DSTBP2#, DSTBN2#

 

 

 

 

D[63:48]#, DBI3#

DSTBP3#, DSTBN3#

 

 

 

 

 

 

 

GTL+ Strobes

Synchronous to

 

ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#

 

BCLK[1:0]

 

 

 

 

 

 

 

 

 

 

 

 

Datasheet

25

Electrical Specifications

Table 8.

FSB Signal Groups (Sheet 2 of 2)

 

 

 

 

 

 

 

Signal Group

Type

 

Signals1

 

 

 

 

A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI,

 

CMOS

 

 

SMI#, STPCLK#, PWRGOOD, TCK, TDI, TMS, TRST#,

 

 

 

 

BSEL[2:0], VID[6:1]

 

 

 

 

 

 

Open Drain Output

 

 

FERR#/PBE#, IERR#, THERMTRIP#, TDO

 

 

 

 

 

 

Open Drain Input/

 

 

PROCHOT#4

 

Output

 

 

 

 

 

 

 

 

 

 

 

 

FSB Clock

Clock

 

BCLK[1:0], ITP_CLK[1:0]2

 

 

 

 

VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA,

 

 

 

 

GTLREF[1:0], COMP[8,3:0], RESERVED, TESTHI[13:0],

 

Power/Other

 

 

VCC_SENSE, VCC_MB_REGULATION, VSS_SENSE,

 

 

 

 

VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT,

 

 

 

 

VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]

 

 

 

 

 

 

NOTES:

 

 

 

1.Refer to Section 4.2 for signal descriptions.

2.In processor systems where no debug port is implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.

3.The value of these signals during the active-to-inactive edge of RESET# defines the processor configuration options. See Section 6.1 for details.

4.PROCHOT# signal type is open drain output and CMOS input.

.

Table 9.

Signal Characteristics

 

 

 

 

 

 

 

 

Signals with RTT

 

 

Signals with No RTT

 

A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,

 

A20M#, BCLK[1:0], BSEL[2:0],

 

 

COMP[8,3:0], IGNNE#, INIT#, ITP_CLK[1:0],

 

D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,

 

 

 

LINT0/INTR, LINT1/NMI, PWRGOOD,

 

DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,

 

 

 

RESET#, SMI#, STPCLK#, TESTHI[13:0],

 

HITM#, LOCK#, PROCHOT#, REQ[4:0]#,

 

 

 

VID[6:1], GTLREF[1:0], TCK, TDI, TMS,

 

RS[2:0]#, TRDY#

 

 

 

TRST#, VTT_SEL, MSID[1:0]

 

 

 

 

 

 

 

 

 

Open Drain Signals1

 

 

 

 

THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#,

 

 

 

 

BR0#, TDO, FCx

 

 

 

 

 

 

 

 

 

NOTES:

 

 

 

1. Signals that do not have RTT, nor are actively driven to their high-voltage level.

.

 

 

 

 

Table 10.

Signal Reference Voltages

 

 

 

 

 

 

 

GTLREF

 

VTT/2

 

BPM[5:0]#, RESET#, BNR#, HIT#, HITM#, BR0#,

 

A20M#, LINT0/INTR, LINT1/NMI,

 

A[35:0]#, ADS#, ADSTB[1:0]#, BPRI#, D[63:0]#,

 

IGNNE#, INIT#, PROCHOT#,

 

DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#,

 

PWRGOOD1, SMI#, STPCLK#, TCK1,

 

DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,

 

 

 

TDI1, TMS1, TRST#1

 

TRDY#

 

 

 

 

 

 

 

 

 

NOTES:

1.These signals also have hysteresis added to the reference voltage. See Table 12 for more information.

26

Datasheet

Electrical Specifications

2.7.2CMOS and Open Drain Signals

Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS input buffers. All of the CMOS and Open Drain signals are required to be asserted/deasserted for at least four BCLKs in order for the processor to recognize the proper signal state. See Section 2.7.3 for the DC. See Section 6.2 for additional timing requirements for entering and leaving the low power states.

2.7.3Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless otherwise stated. All specifications apply to all frequencies and cache sizes unless otherwise stated.

Table 11.

GTL+ Signal Group DC Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min

Max

Unit

Notes1

 

VIL

Input Low Voltage

-0.10

GTLREF – 0.10

V

2,

3

 

 

 

 

 

 

 

VIH

Input High Voltage

GTLREF + 0.10

VTT + 0.10

V

4,

5,

3

 

 

 

 

 

 

VOH

Output High Voltage

VTT – 0.10

VTT

V

5, 3

 

 

 

 

 

 

 

IOL

Output Low Current

N/A

VTT_MAX/

A

 

-

 

 

 

[(RTT_MIN)+(2*RON_MIN)]

 

 

 

 

 

 

 

 

 

 

 

 

 

ILI

Input Leakage Current

N/A

± 100

µA

 

6

 

 

 

 

 

 

 

 

ILO

Output Leakage

N/A

± 100

µA

 

7

 

 

 

Current

 

 

 

 

 

RON

Buffer On Resistance

10

13

Ω

 

 

 

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.

3.The VTT referred to in these specifications is the instantaneous VTT.

4.VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.

5.VIH and VOH may experience excursions above VTT.

6.Leakage to VSS with land held at VTT.

7.Leakage to VTT with land held at 300 mV.

.

Table 12. Open Drain and TAP Output Signal Group DC Specifications

Symbol

Parameter

Min

Max

Unit

Notes1

VOL

Output Low Voltage

0

0.20

V

-

VOH

Output High Voltage

VTT – 0.05

VTT + 0.05

V

2

 

IOL

Output Low Current

16

50

mA

3

 

ILO

Output Leakage Current

N/A

± 200

µA

4

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.VOH is determined by the value of the external pull-up resister to VTT.

3.Measured at VTT * 0.2.

4.For Vin between 0 and VOH.

Datasheet

27

Electrical Specifications

.

 

 

 

 

 

 

 

Table 13.

CMOS Signal Group DC Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min

Max

Unit

Notes1

 

VIL

Input Low Voltage

-0.10

VTT * 0.30

V

2,

3

 

 

 

 

VIH

Input High Voltage

VTT * 0.70

VTT + 0.10

V

3, 4, 5

 

 

 

 

VOL

Output Low Voltage

-0.10

VTT * 0.10

V

3

 

 

 

 

 

VOH

Output High Voltage

0.90 * VTT

VTT + 0.10

V

3, 6, 5

 

 

 

 

IOL

Output Low Current

1.70

4.70

mA

3, 7

 

 

 

 

IOH

Output High Current

1.70

4.70

mA

3, 7

 

 

 

 

ILI

Input Leakage Current

N/A

± 100

µA

8

 

 

 

 

 

ILO

Output Leakage Current

N/A

± 100

µA

9

 

 

 

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.

3.The VTT referred to in these specifications refers to instantaneous VTT.

4.VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.

5.VIH and VOH may experience excursions above VTT.

6.All outputs are open drain.

7.IOL is measured at 0.10 * VTT. IOH is measured at 0.90 * VTT.

8.Leakage to VSS with land held at VTT.

9.Leakage to VTT with land held at 300 mV.

2.7.3.1GTL+ Front Side Bus Specifications

In most cases, termination resistors are not required as these are integrated into the processor silicon. See Table 9 for details on which GTL+ signals do not include on-die termination.

Valid high and low levels are determined by the input buffers by comparing with a reference voltage called GTLREF. Table 14 lists the GTLREF specifications. The GTL+ reference voltage (GTLREF) should be generated on the system board using high precision voltage divider circuits.

Table 14.

GTL+ Bus Voltage Definitions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min

Typ

Max

Units

Notes1

 

GTLREF_PU

GTLREF pull up resistor

124 * 0.99

124

124 * 1.01

Ω

2

 

 

 

 

 

 

 

 

 

GTLREF_PD

GTLREF pull down resistor

210 * 0.99

210

210 * 1.01

Ω

2

 

 

 

 

 

 

 

 

 

RTT

Termination Resistance

45

50

55

Ω

3

 

 

 

COMP[3:0]

COMP Resistance

49.40

49.90

50.40

Ω

4

 

 

 

 

 

 

 

 

 

COMP8

COMP Resistance

24.65

24.90

25.15

Ω

4

 

 

 

 

 

 

 

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.GTLREF is to be generated from VTT by a voltage divider of 1% resistors (one divider for each GTLEREF land).

3.RTT is the on-die termination resistance measured at VTT/3 of the GTL+ output driver.

4.COMP resistance must be provided on the system board with 1% resistors. See the applicable platform design guide for implementation details. COMP[3:0] and COMP8 resistors are tied to VSS.

28

Datasheet

Electrical Specifications

2.7.4Clock Specifications

2.7.5Front Side Bus Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the processor’s core frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its default ratio during manufacturing. Refer to Table 15 for the processor supported ratios.

The processor uses a differential clocking implementation. For more information on the processor clocking, contact your Intel Field representative. Platforms using a CK505 Clock Synthesizer/Driver should comply with the specifications in Section 2.7.8. Platforms using a CK410 Clock Synthesizer/Driver should comply with the specifications in Section 2.7.9.

Table 15.

Core Frequency to FSB Multiplier Configuration

 

 

 

 

 

 

 

 

 

Multiplication of

Core Frequency

Core Frequency

Core Frequency

 

 

System Core

Notes1, 2

 

(200 MHz BCLK/

(266 MHz BCLK/

(333 MHz BCLK/

 

Frequency to FSB

 

800 MHz FSB)

1066 MHz FSB)

1333 MHz FSB)

 

 

Frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

1/6

1.20 GHz

1.60 GHz

2.00 GHz

-

 

 

 

 

 

 

 

1/7

1.40 GHz

1.87 GHz

2.33 GHz

-

 

 

 

 

 

 

 

1/8

1.60 GHz

2.13 GHz

2.66 GHz

-

 

 

 

 

 

 

 

1/9

1.80 GHz

2.40 GHz

3.00 GHz

-

 

 

 

 

 

 

 

1/10

2 GHz

2.66 GHz

3.33 GHz

-

 

 

 

 

 

 

 

1/11

2.2 GHz

2.93 GHz

3.66 GHz

-

 

 

 

 

 

 

 

1/12

2.4 GHz

3.20 GHz

4.00 GHz

 

 

 

 

 

 

 

NOTES:

1.Individual processors operate only at or below the rated frequency.

2.Listed frequencies are not necessarily committed production frequencies.

2.7.6FSB Frequency Select Signals (BSEL[2:0])

The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). Table 16 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset, and clock synthesizer. All agents must operate at the same frequency.

The Intel Core2 Duo desktop processors E6850, E6750, E6550, and E6540 operate at 1333 MHz (selected by the 333 MHz BCLK[2:0] frequency). The Intel Core2 Duo desktop processors E6700, E6600, E6420, E6400, E6320, and E6300 operate at 1066 MHz (selected by the 266 MHz BCLK[2:0] frequency). The Intel Core2 Extreme processor X6800 operates at a 1066 MHz FSB frequency (selected by a 266 MHz

BCLK[1:0] frequency). The Intel Core2 Duo desktop processors E4700, E4600, E4500, E4400 and E4300 operate at a 800 MHz FSB frequency (selected by a 200 MHz BCLK[1:0] frequency).

Datasheet

29

Electrical Specifications

Table 16. BSEL[2:0] Frequency Table for BCLK[1:0]

BSEL2

BSEL1

BSEL0

FSB Frequency

 

 

 

 

L

L

L

266 MHz

 

 

 

 

L

L

H

RESERVED

 

 

 

 

L

H

H

RESERVED

 

 

 

 

L

H

L

200 MHz

 

 

 

 

H

H

L

RESERVED

 

 

 

 

H

H

H

RESERVED

 

 

 

 

H

L

H

RESERVED

 

 

 

 

H

L

L

333 MHz

 

 

 

 

2.7.7Phase Lock Loop (PLL) and Filter

An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is used for the PLL. Refer to Table 5 for DC specifications.

2.7.8BCLK[1:0] Specifications (CK505 based Platforms)

Table 17. Front Side Bus Differential BCLK Specifications

Symbol

Parameter

Min

Typ

Max

Unit

Figure

Notes1

VL

Input Low Voltage

-0.30

N/A

N/A

V

3

 

2

 

 

 

 

VH

Input High Voltage

N/A

N/A

1.15

V

3

 

2

 

 

 

 

VCROSS(abs)

Absolute Crossing Point

0.300

N/A

0.550

V

3, 4

3,

4,

5

 

 

 

VCROSS

Range of Crossing Points

N/A

N/A

0.140

V

3, 4

 

4

 

 

 

 

VOS

Overshoot

N/A

N/A

1.4

V

3

 

6

 

 

 

 

VUS

Undershoot

-0.300

N/A

N/A

V

3

 

6

 

 

 

 

VSWING

Differential Output Swing

0.300

N/A

N/A

V

5

 

7

 

 

 

 

ILI

Input Leakage Current

-5

N/A

5

μA

 

 

 

 

Cpad

Pad Capacitance

.95

1.2

1.45

pF

 

 

8

 

 

 

 

 

 

 

 

 

 

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2."Steady state" voltage, not including overshoot or undershoot.

3.Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 equals the falling edge of BCLK1.

4.VHavg is the statistical average of the VH measured by the oscilloscope.

5.The crossing point must meet the absolute and relative crossing point specifications simultaneously.

6.Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined as the absolute value of the minimum voltage.

7.Measurement taken from differential waveform.

8.Cpad includes die capacitance only. No package parasitics are included.

30

Datasheet

Loading...
+ 88 hidden pages