Datasheet CXA3086Q Datasheet (Sony)

Page 1
6-bit 140MSPS Flash A/D Converter
Description
The CXA3086Q is an 6-bit high-speed flash A/D converter capable of digitizing analog signals at the maximum rate of 140MSPS. ECL, PECL or TTL can be selected as the digital input level in accordance with the application. The TTL digital output level allows 1:2 demultiplexed output.
Features
Differential linearity error: ±0.2LSB or less
Integral linearity error: ±0.2LSB or less
High-speed operation with a maximum conversion
rate of 140MSPS
Low input capacitance: 7pF
Wide analog input bandwidth: 200MHz
Low power consumption: 358mW
Low error rate
Excellent temperature characteristics
1:2 demultiplexed output
1/2 frequency divided clock output
(with reset function)
Compatible with ECL, PECL and TTL digital input levels
Single +5V power supply operation available
Surface mounting package
CXA3086Q
48 pin QFP (Plastic)
Structure
Bipolar silicon monolithic IC
Applications
Magnetic recording (PRML)
Communications (QPSK, QAM)
LCDs
Digital oscilloscopes
RESETN/T
RESET/E
9
10
27
28
CLK/T
2
CC
DV
29
2
CC
DV
DGND2
8
7
30
DGND2
P2D3
P2D4
P2D5 (MSB)
6
5
33
32
31
P1D2
P1D1
P1D0 (LSB)
P2D2
4
P1D3
3
34
P2D1
35
P1D4
DGND2
P2D0 (LSB)
2
48 47 46 45 44 43 42 41
40 39 38 37
36
DGND2
P1D5 (MSB)
DVCC2 DV
CC1
DGND1 N.C.
PS
CLKOUT INV SELECT N.C. DGND1
DVCC1
DV
CC2
Pin Configuration (Top View)
RESETN/E
12 1
11
13
DV
EE3
14
AGND
15
VRBS
16
V
RB
17
AVCC
18
N.C.
19
IN
V
20
AVCC
21
VRT
VRTS
22
23
AGND
DGND3
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
24
25
CLK/E
26
CLKN/E
– 1 –
E95619C77
Page 2
CXA3086Q
Absolute Maximum Ratings (Ta = 25°C)
Unit
Supply voltage AVCC, DVCC1, DVCC2 –0.5 to +7.0 V DGND3 –0.5 to +7.0 V DVEE3 –7.0 to +0.5 V DGND3 – DVEE3 –0.5 to +7.0 V
Analog input voltage VIN VRT – 2.7 to AVCC V
Reference input voltage VRT 2.7 to AVCC V
VRB VIN – 2.7 to AVCC V |VRT – VRB| 2.5 V
Digital input voltage ECL (∗∗∗/E
1
)DVEE3 to +0.5 V PECL (∗∗∗/E) –0.5 to DGND3 V TTL (∗∗∗/T, INV, PS) –0.5 to DVCC1V other (SELECT) –0.5 to DVCC1V VID∗2(|∗∗∗/E – ∗∗∗N/E|) 2.7 V
Storage temperature Tstg –65 to +150 °C
Allowable power dissipationPD 1.2 W
(when mounted on a glass fabric base epoxy board with 76mm x 114mm, 1.6mm thick)
Recommended Operating Conditions
With a single power supply With dual power supplies Unit
Min. Typ. Max. Min. Typ. Max.
Supply voltage DVCC1, DVCC2, AVCC +4.75 +5.0 +5.25 +4.75 +5.0 +5.25 V DGND1, DGND2, AGND –0.05 0 +0.05 –0.05 0 +0.05 V DGND3 +4.75 +5.0 +5.25 –0.05 0 +0.05 V DVEE3 –0.05 0 +0.05 –5.5 –5.0 –4.75 V
Analog input voltage VIN VRB VRT VRB VRT V
Reference input voltage VRT +2.9 +4.1 +2.9 +4.1 V
VRB +1.4 +2.6 +1.4 +2.6 V |VRT – VRB| 1.5 2.1 1.5 2.1 V
Digital input voltage ECL (∗∗∗/E) : VIH DGND3 – 1.05 DGND3 – 0.5 V
: VIL DGND3 – 3.2 DGND3 – 1.4 V
PECL (∗∗∗/E) : VIH DGND3 – 1.05 DGND3 – 0.5 V
: VIL DGND3 – 3.2 DGND3 – 1.4 V
TTL (∗∗∗/T, INV, PS): VIH 2.0 2.0 V
: VIL 0.8 0.8 V
other (SELECT) : VIH DVCC1DVCC1V
: VIL DGND1 DGND1 V
VID∗2(|∗∗∗/E – ∗∗∗N/E|) 0.4 0.8 0.4 0.8 V
Maximum conversion rate Fc (Straight mode) 100 100 MSPS
(DMUX mode) 140 140 MSPS
Ambient temperature Ta –20 +75 –20 +75 °C
1
∗∗∗/E and ∗∗∗/T indicate CLK/E and CLK/T, etc. for the pin name.
2
VID: Input Voltage Differential
ECL and PECL switching level
VID
– 2 –
DGND3
VIH (max.)
IL
V
VTH (DGND3 – 1.2V) V
IH
V
IL (min.)
Page 3
Block Diagram
CXA3086Q
VRTS
V
RT
VIN
VRB
VRBS
19
16 15
22
21
AVCC DVCC2
17
20
INV DGND3 42
DVCC1
38
47
37
9
28
48
24
r1
(MSB)
r
1
r
2
r
30
r
31
r
32
r
33
r
6bit
ENCODER
6bit
6bit LATCH
LATCHA
6bit
TTLOUT
6bit
62
r
r2
63
r
LATCHB
TTLOUT
35 34 33 32 31 30
7 6 5 4 3 2
P1D5 P1D4
P1D3 P1D2 P1D1 P1D0
(LSB)
(MSB)
P2D5 P2D4 P2D3 P2D2 P2D1 P2D0
(LSB)
CLK/T CLK/E
CLKN/E
RESETN/T RESETN/E
RESET/E
10 12
27 25 26
11
14
AGND
23
Delay
DQ
44
Q
Select
46
41
SELECTPS DVEE3
39
DGND1
1
DGND2
8
29
36
13
18
40
45
43
N.C.
CLKOUT
– 3 –
Page 4
Pin Description and I/O Pin Equivalent Circuit
CXA3086Q
Pin No.
14, 23
17, 20
1, 8, 29, 36, 39, 46
9, 28, 37, 38, 47, 48
24
Symbol
AGND
AVCC
DGND1 DGND2
DVCC1 DVCC2
DGND3
Standard
I/O
voltage level
GND
+5V (typ.)
GND
+5V (typ.)
+5V (typ.) (With a single power supply)
GND (With dual power supplies)
Equivalent circuit Description
Analog ground. Separated from the digital ground.
Analog power supply. Separated from the digital power supply.
Digital ground.
Digital power supply.
Digital power supply. Ground for ECL input. +5V for PECL and TTL input.
13
18, 40, 45
25
26
12
11
DVEE3
N.C.
CLK/E
CLKN/E
RESETN/E
RESET/E
GND (With a single power supply)
–5V (typ.) (With dual power supplies)
I
I
ECL/ PECL
I
I
DGND3
12 11
DV
EE3
25 26
1.2V
r
r r
Digital power supply. –5V for ECL input. Ground for PECL and TTL input.
No connected pin. Not connected with the internal circuits.
Clock input. CLK/E complementary input.
When left open, this pin goes to the threshold potential. Only CLK/E can be used for
r
operation, but complementary input is recommended to attain fast and stable operation.
Reset input. When the input is set to low level, the built-in CLK frequency divider circuit can be reset.
RESETN/E complementary input. When left open, this pin goes to the threshold voltage. Only RESETN/E can be used for operation.
– 4 –
Page 5
CXA3086Q
Pin No.
Symbol I/O
27 CLK/T
10
RESETN/T
INV
42
44
PS
Standard
voltage level
I
TTL
I
I
TTL
I
Equivalent circuit Description
DVCC1
27
10
DGND1
DVEE3
r/2
1.5V
r
Clock input.
Reset input. When left open, this input goes to high level. When the input is set to low level, the built-in CLK frequency divider circuit can be reset.
Data output polarity inversion input.
DVCC1
When left open, this input goes to high level. (See Table 1. I/O Correspondence Table.)
Power saving input.
42
44
When the input is set to low level, the power saving mode is set. In this time the all TTL outputs go
DGND1
DVEE3
into the high-impedance state. Normally, set to high level or left open.
SELECT
41
VRTS
22
21 VRT
VRB
16
15
VRBS
O
I
I
O
Vcc
or
GND
+4.0V
(typ.)
VRTS
+r1 x Iref
VRBS
–r2 x Iref
+2.0V
(typ.)
DVCC1
41
DGND1
DVEE3
22
21
16 15
Data output mode selection. (See Table 2. Operating Mode Table.)
Reference voltage sense.
1
r
r
Comparator 1
r r
Comparator 2
r
r
Comparator 62
r r
Comparator 63
r
2
r
By-pass to AGND with a 0.1µF chip capacitor.
Top reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor.
Bottom reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor.
Reference voltage sense. By-pass to AGND with a 0.1µF chip capacitor.
– 5 –
Page 6
CXA3086Q
Pin No.
Symbol I/O
19 VIN
P1D0
30
to
35
2
to
7
to
P1D5
P2D0
to
P2D5
43 CLKOUT
Standard
voltage level
I
O
O
O
VRT
to
VRB
TTL
AVCC
19
DVEE3
DVCC1
DGND1
Equivalent circuit Description
Comparator
AVCC
Analog input.
Vref
AGND
Port 1 side data output.
DVCC2
7
to
100k
2
30
43 DGND2 DVEE3
Port 2 side data output.
to
35
Clock output. (See Table 2. Operating Mode Table.)
– 6 –
Page 7
Electrical Characteristics
(DVCC1, 2, AVCC, DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V, Ta = 25°C) Item Symbol Min. Typ. Max. UnitConditions
CXA3086Q
Resolution DC characteristics
Integral linearity error Differential linearity error
Analog input
Analog input capacitance Analog input resistance Analog input current
Reference input
Reference resistance Reference current Residual resistance r1
Digital input (ECL, PECL)
Digital input voltage: High
: Low Threshold voltage Digital input current: High
: Low Digital input capacitance
Digital input (TTL)
Digital input voltage: High
: Low Threshold voltage Digital input current: High
: Low Digital input capacitance
6
EIL EDL
CIN RIN IIN
3
Rref
4
Iref r1
r2
r2
VIH VIL VTH IIH IIL
VIN = 2Vp-p, Fc = 5MSPS
VIN = +3.0V + 0.07Vrms
VIH = DGND3 – 0.8V VIL = DGND3 – 1.6V
16
0
160
6.5
3.0
3.0
DGND3 – 1.05
DGND3 – 3.2
DGND3 – 1.2
–50 –75
7
225
9.0
4.2
4.2
±0.2 ±0.2
150 125
308
12.5
5.7
5.7
DGND3 – 0.5 DGND3 – 1.4
+50
0 5
VIH VIL VTH IIH IIL
VIH = 3.5V VIL = 0.2V
2.0
–50
–500
0.8
1.5 0 0 5
bits
LSB LSB
pF k µA
mA
Ω Ω
V V
V µA µA pF
V
V
V µA µA pF
Digital output (TTL)
Digital output voltage Leak current during output off
: High : Low
VOH VOL IOZ
IOH = –2mA IOL = 1mA Power saving mode
Switching characteristics
Maximum conversion rate Aperture jitter Sampling delay Clock high pulse width Clock low pulse width RESET Signal setup time RESET Signal hold time CLKOUT output delay Data output delay
Output rise time Output fall time
These characteristics are for PECL input, unless otherwise specified.
Fc Taj Tds Tpw1 Tpw0 T_rs T_rh Td_clk Tdo1 Tdo2 Tr Tf
DMUX mode
CLK CLK RESETN – CLK RESETN – CLK
(CL = 5pF)
DMUX mode (CL = 5pF)
(CL = 5pF)
0.8 to 2.0V (CL = 5pF)
0.8 to 2.0V (CL = 5pF)
2.4
–15
140
3
2.9
2.9
3.5 0
4.5
5
T
6.5
10
4.5
7
T + 1
8 2 2
0.5 70
6
8
T + 2
10
V V
µA
MSPS
ps ns ns ns ns ns ns ns ns ns ns
– 7 –
Page 8
Item Symbol Min. Typ. Max. UnitConditions
Dynamic characteristics
Input bandwidth S/N ratio
Error rate
VIN = 2Vp-p, –3dB
Fc = 140MSPS, fin = 1kHz Fs
{
DMUX mode Fc = 140MSPS, fin = 34.999MHz Fs
{
DMUX mode Fc = 140MSPS, fin = 1kHz Fs DMUX mode
{
Error > 4LSB Fc = 140MSPS, fin = 34.999MHz Fs DMUX mode
{
Error > 4LSB Fc = 100MSPS, fin = 24.999MHz Fs straight mode
{
Error > 4LSB
200
37.0
34.5
10
10
10
–12
–9
–9
CXA3086Q
MHz
dB
dB
6
TPS
TPS
TSP
Power supply
Supply current Supply current Power consumption Supply current Power consumption
3
Rref: Resistance value between VRT and VRB
4
5
6
7
VIN
VRTS
VRBS
VRT – VRB
Iref =
T =
TPS: Times Per Sample
Pd = (ICC + IEE) · VCC +
Rref
1
Fc
Step
D5 D0 D5 D0
63
1 1 1 1 1 1
62
1 1 1 1 1 0
:
32
1 0 0 0 0 0
31
0 1 1 1 1 1
:
1
0 0 0 0 0 1
0
0 0 0 0 0 0
Table 1. I/O Correspondence Table
1
:
:
ICC IEE
7
Pd ICC + IEE Pd
(VRT – VRB)
Rref
INV
0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 1
Power saving mode Power saving mode
2
0
:
:
Step
63 62 61 60 59 58
·
·
·
·
·
·
·
5 4 3 2 1 0
54.0
0.4
290
2.0 28
1LSB
r1 × Iref
V
RTSVRT VRBS VRB
67.5
VIN
0.6
360
90
0.8
470
8.0 58
mW mW
r
2 × Iref
mA mA
mA
– 8 –
Page 9
Electrical Characteristics Measurement Circuit
Current Consumption Measurement Circuit
CXA3086Q
Sampling Delay Measurement Circuit Aperture Jitter Measurement Circuit
5V 5V
A A
4V
1.95V
2V
VRT
VIN
VRB
Icc
AVCC DVCC1 DVCC2
DGND2 DGND1 AGND
DGND3
CLK/E
EE3
DV
I
EE
5MHz PECL
Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit
+V
S2
S1: ON when A < B
S1
S2: ON when A > B
100MHz
Amp
OSC1
φ: Variable
V
fr
OSC2
100MHz
IN
CXA3086Q
CLK
ECL Buffer
6
Aperture Jitter Measurement Method
VIN
CLK
Logic
Analizer
1024
samples
VRT
VRB
–V
A < B A > B
Comparator
IN
DVM
V
CXA3086Q
6 6
A6
to
A1 A0
Controller
Error Rate Measurement Circuit
Signal
Source
C
F
– 1kHz
4
2Vp-p Sin Wave
VIN
CXA3086Q
CLK CLK
B6 B1 B0
∆υ ∆ t
IN
V
“1”“0”
Latch
Buffer
4LSB
00···0
to
11···0
CLK
Where σ (LSB) is the deviation of the output codes when the largest slew rate point is sampled at the clock which has exactly the same frequency as the analog input signal, the aperture jitter Taj is:
Taj = σ/ = σ/ ( )
+
Latch
υ
t
A B
Comparator
A > B
to
6
33 32 31
30 29
Sampling timing fluctuation (= aperture jitter)
64
× 2πf
2
σ (LSB)
Pulse
Counter
Signal
Source
F
C
1/8
– 9 –
Page 10
Description of Operating Modes
The CXA3086Q has two types of operating modes which are selected with Pin 41 (SELECT).
CXA3086Q
Operating mode
DMUX mode
Straight mode
SELECT
VCC
GND
Maximum conversion rate
140MSPS
100MSPS
Data output Clock output
Demultiplexed output
70Mbps
Straight output
The input clock is 1/2 frequency divided and output. 70MHz
The input clock is inverted and output.
100Mbps
100MHz
Table 2. Operating Mode Table
1. DMUX mode (See Application Circuits (1), (2) and (3).)
Set the SELECT pin to Vcc for this mode. In this mode, the clock frequency is divided by 2 in the IC, and the data is output after being demultiplexed by this 1/2 frequency divided clock. The 1/2 frequency divided clock, which has adequate setup time and hold time for the output data, is output from the CLKOUT pin. When resetting this 1/2 frequency divided clock, the low level of the RESET signal should be input to the RESETN pin (Pin 10 or 12). The RESET signal requires the setup time (T_rs 3.5ns) and hold time (T_rh 0ns) to the clock rising edge because it is synchronized with and taken in the clock. Therefore, set the RESET signal to low for T_rs (min.) + T_rh (min.) = 3.5ns or longer to the clock rising edge. The reset period can be extended by making the low level period of the RESET signal longer because the clock output pin is fixed to low (reset) during the low level period at the clock rising edge. If the reset start timing is regarded as not important, the timing where the RESET signal is set from high to low is not so consequence. However, when the reset is released this timing must become significant because the timing is used to commence the 1/2 frequency divided clock. In this case, the setup time (T_rs) is also necessary. See the timing chart for detail. (This chart shows the example of reset for 2T.) The A/D converter can operate at FC (min.) = 140MSPS in this mode.
– 10 –
Page 11
A
A
A
When the RESET signal is not used.
CXA3086Q
CLK
CXA3086Q
CLK
CLK
A
AA
RESETN
CXA3086Q
B
CLK RESETN
When the RESET signal is used.
CXA3086Q
A
CLK
RESET signal
CLK RESETN
A
CXA3086Q
CLK
A
RESETN
B
CLKOUT
A
B
6bit
6bit
6bit
6bit
DATA
CLKOUT
DATA
CLK
RESET signal
CLKOUT
DATA
CLKOUT
DATA
(Reset period)
(Reset period)
2. Straight mode (See Application Circuits (4), (5) and (6).) Set the SELECT pin to GND for this mode. In this mode, data output can be obtained in accordance with the clock frequency applied to the A/D converter for applications which use the clock applied to the A/D converter as the system clock. The A/D converter can operate at Fc (min.) = 100MSPS in this mode.
Digital input level and supply voltage settings
The logic input level for the CXA3086Q supports ECL, PECL and TTL levels. The power supplies (DVEE3, DGND3) for the logic input block must be set to match the logic input (CLK and RESET signals) level.
Digital input level
ECL
PECL
TTL
DVEE3 DGND3 Supply voltage Application circuits
–5V
0V 0V
0V +5V +5V
±5V +5V +5V
(1) (4) (2) (5) (3) (6)
Table 3. Logic Input Level and Power Supply Settings
– 11 –
Page 12
Application Circuit 1
(1) DMUX ECL input
CXA3086Q
ECL RESET Signal
(2) DMUX PECL input
PECL RESET Signal
–5V (D)
AG
AG
+5V (A)
AG
+5V (A)
AG
AG DG
ECL-CLK
DG
+5V (A)
+5V (A)
+5V (D)
PECL-CLK
+5V (D)
DG
6
9
12 1
10
11
13
14
15
2V
16 17
18
19
20
4V
21
22 23 24
26
27 28
25
+5V (D)
+5V (D)
9
12 1
10
11
13
AG
AG
AG
AG
AG
14
15
2V
16 17 18 19 20
4V
21 22 23
24
26 27
28
25
+5V (D)
5
8
29
DG
DG
8
29
DG
4
7
31
30
6
7
31
30
2
3
35
32
33
34
5
4
3
35
32
33
34
P2D0 to P2D5
DG
6 bit Digital
Data
48 47 46 45 44 43 42 41 40 39 38 37
+5V (D)
DG
+5V (D)
DG
+5V (D)
P1D0 to P1D5
6 bit Digital
Data
P2D0 to P2D5
6 bit Digital
Data
+5V (D)
DG
+5V (D)
DG
+5V (D)
P1D0 to P1D5
6 bit Digital
Data
48 47 46 45 44
43 42 41 40 39 38
37
36
DG
DG
2
36
DG
Latch
Latch
Latch
Latch
6 bit Digital Data
6 bit Digital Data
6 bit Digital Data
6 bit Digital Data
(3) DMUX TTL input
TTL RESET Signal
+5V (A)
+5V (A)
+5V (D)
TTL-CLK
+5V (D)
DG
6
9
12 1
10
DG AG
AG
AG
AG
AG
11
13 14 15
2V
16
17
18 19 20
4V
21
22 23 24
26
27 28
25
+5V (D)
5
8
29
DG
4
7
31
30
2
3
35
32
33
34
P2D0 to P2D5
DG
6 bit Digital
Data
48 47 46 45 44 43 42 41 40 39 38 37
36
DG
+5V (D)
DG
+5V (D)
DG
+5V (D)
P1D0 to P1D5
6 bit Digital
Data
Latch
Latch
6 bit Digital Data
6 bit Digital Data
– 12 –
Page 13
(4) Straight ECL input
CXA3086Q
(5) Straight PECL input
–5V (D)
AG
AG
+5V (A)
AG
+5V (A)
AG
AG DG
ECL-CLK
DG AG
AG
+5V (A)
AG
+5V (A)
AG
AG
+5V (D)
PECL-CLK
+5V (D)
DG
9
12 1
10
8
+5V (D)
+5V (D)
10
27
+5V (D)
28
29
DG
ECL TTL
DG
9
28
29
DG
7
31
30
8
7
30
11
13 14 15
2V
16 17 18 19 20
4V
21 22
23 24
26 27
25
12 1
11
13 14 15
2V
16 17
18
19
20
4V
21 22 23
24
26
25
DG
6
5
4
2
3
48 47 46 45 44 43 42 41 40 39 38 37
35
32
6
5
32
31
36
33
34
DG
DG
4
2
3
46
35
36
33
34
DG
48 47
45 44 43 42 41 40 39 38 37
+5V (D)
DG
+5V (D)
DG
DG
+5V (D)
P1D0 to P1D5
6 bit Digital
Data
+5V (D)
DG
+5V (D)
DG
DG
+5V (D)
P1D0 to P1D5
6 bit Digital
Data
Latch
Latch
6 bit Digital Data
6 bit Digital Data
(6) Straight TTL input
+5V (A)
+5V (A)
+5V (D)
TTL-CLK
PECL TTL
+5V (D)
DG
6
DG AG
AG
AG
AG
AG
13 14 15
2V
16 17 18 19 20
4V
21
22 23 24
26
27 28
25
+5V (D)
9
12 1
10
11
5
8
7
32
31
30
29
DG
DG
4
2
3
48 47 46 45 44
43
42 41 40 39
37
35
36
33
34
DG
38
+5V (D)
DG
+5V (D)
DG
DG
+5V (D)
P1D0 to P1D5
6 bit Digital
Data
Latch
6 bit Digital Data
– 13 –
Page 14
Application Circuit 2 Straight Mode TTL I/O (When a single power supply is used)
AG
VRTS
4V
DG
1µF
short
Analog
input
AG AG
+5V
(A)
10µF
AG AG
1µF
2V
short
CXA3086Q
VRBS
TTL CLK
(LSB)
(MSB)
P1D0
P1D1
P1D2
P1D3
P1D4
P1D5
25
26
27
28
29
30
31 32
33
34 35
36
CLK/E CLKN/E
CLK/T
DV
CC2
DGND2
P1D0
P1D1
P1D2
P1D3
P1D4
P1D5 DGND2
24
DGND3
2
CC
DV
37
23
AGND
38
1
CC
DV
22
RTS
V
DGND1
39
40
21
RT
V
N.C.
20
CC
AV
SELECT
41
19
42
IN
V
INV
18
N.C.
CLKOUT
43
17
44
CC
AV
PS
16
45
RB
V
N.C.
RBS
V
DGND1
46
1415
AGND
1
CC
DV
47
13
3
EE
DV
RESETN/E
RESET/E
RESETN/T
DV
CC2
DGND2
P2D5
P2D4
P2D3
P2D2
P2D1
P2D0
DGND2
2
CC
DV
48
12
10
11
5
9
8
7 6
P2D5
P2D4
(MSB)
P2D3 4
3
2
P2D2
P2D1
P2D0
(LSB)
1
10µF
DG
+5V
(D)
CLKOUT
Short the analog system and digital system at one point immediately under the A/D converter. See the Notes on Operation.
is the chip capacitor of 0.1µF.
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 14 –
Page 15
DMUX Mode Timing Chart (Select = VCC)
CXA3086Q
Tds
4.5ns (typ.)
V
IN
CLK
P1D0 to D5 N + 1 N + 3
P2D0 to D5 N
CLK OUT
N – 1
N + 3
N
T
Tpw0Tpw1
T_rhT_rsT_rh
N + 1
(Reset period)
T_rs
N + 2
Td_clk; 7ns (typ.)
8ns (max.)
4.5ns (min.)
2.0V
0.8V
4.5ns (min.) 8ns (max.)
Td_clk
N + 4
2.0V
0.8V
N + 5
Tdo2; 8ns (typ.)
6.5ns (min.) 10ns (max.)
Tdo1
T + 1ns (typ.)
2.0V
0.8V
2.0V
0.8V
2.0V
0.8V T
N + 6
N + 2
N + 7
T
RESET signal
– 15 –
Page 16
Straight Mode Timing Chart (Select = GND)
CXA3086Q
V
CLK
P1D0 to D5 NN – 2N – 4
P2D0 to D5
(CLK is inverted and output.)
CLK OUT
N – 1
IN
Tds
4.5ns (typ.) T
Tpw1
Tdo2; 8ns (typ.)
6.5ns (min.) 10ns (max.)
Td_clk; 7ns (typ.)
4.5ns (min.) 8ns (max.)
Tpw0
2.0V
0.8V
2.0V
0.8V
2.0V
0.8V
N
N – 3 N – 1
N – 4 N – 2 N – 1N – 3N – 5
N + 1
N + 2
N + 3
RESET signal
– 16 –
Page 17
CXA3086Q
Timing of A/D Converter and Peripheral Circuit
In the maximum clock rate of the DEMUX Mode, the timing of 3 channels of ADC CLK OUT in same phase is described in detail as below.
For example, the CLK OUT from one of the ADC is used as the data latch clock. The clock delay and data delay are showed in the following specification, i.e.
Td_clk 4.5ns (min.) to 8.0ns (max.)
Tdo2 6.5ns (min.) to 10ns (max.) These values are considered in all the temperature change and power supply variation. When the maximum clock rate 140MSPS is used, the set-up time (ts) is seemed to be very small from above specifications. But the 3 channels of ADC are in the same circuit board, so that the DATA OUT delay and CLK OUT delay will be changed in same trend at the same condition of the temperature change and power supply variation. As a result, 0.5ns of the delay will be faster, when the highest temperature and highest power supply is used. Also,
0.5ns of the delay will be later, when the lowest temperature and lowest power supply is used. These delay can be omitted in this case. When Ta = 25°C, VCC = +5V, the clock delay and data delay are
Td_clk 5.0ns (min.) to 7.5ns (max.)
Tdo2 7.0ns (min.) to 9.5ns (max.) The timing of the DATA OUT and CLK OUT with above delay variation is showed in below. Consequently, the set-up time for the data latching can be obtained as ts (min.) = 2.5ns. The output delay change of the DATA OUT and CLK OUT due to the temperature change and the power supply variation should have the same trend of the delay change, the minimum ts = 2.5ns can be guaranteed at any temperature change and power supply variation.
Analog input R
CXA3086Q
Vin CLK RESET
P1D/out P2D/out
CLK OUT
6bit 6bit
Gate Array
Latch
Analog input G
Analog input B
RESET
CLK
RESET signal
CLK OUT
P1D/out P2D/out
CLK
CXA3086Q
Vin CLK RESET
CXA3086Q
Vin CLK RESET
( = 1/140MSPS)
th-reset
P1D/out P2D/out
CLK OUT
P1D/out P2D/out
CLK OUT
7ns
Td_clk (min.)
5.0ns
<4.5ns>
Td_clk (max.)
7.5ns
<8.0ns>
6bit 6bit
6bit 6bit
Tdo2 (min.)
7.0ns
<6.5ns>
Tdo2 (min.)
9.5ns
<10ns>
ts (min.)
2.5ns
th (min.)
6.5ns
14ns
Note: In the timing chart, the values in the brackets < > are included all the temperature change and the
power supply variation.
– 17 –
Page 18
CXA3086Q
Notes on Operation
The CXA3086Q is a high-speed A/D converter which is capable of TTL, ECL and PECL level clock input.
Characteristic impedance should be properly matched to ensure optimum performance during high-speed operation.
The power supply and grounding have a profound influence on converter performance. The power supply and grounding method are particularly important during high-speed operation. General points for caution are as follows. — The ground pattern should be as large as possible. It is recommended to make the power supply and
ground patterns wider at an inner layer using a multi-layer board.
— To prevent interference between AGND and DGND and between AVcc and DVcc, make sure the
respective patterns are separated. To prevent a DC offset in the power supply pattern, connect the AVcc and DVcc lines at one point each via a ferrite-bead filter Shorting the AGND and DGND patterns in one place immediately under the A/D converter improves A/D converter performance.
— Ground the power supply pins (AVcc, DVcc1, DVcc2, DVEE3) as close to each pin as possible with a
0.1µF or larger ceramic chip capacitor. (Connect the AVcc pin to the AGND pattern and the DVcc1, DVcc2 and DVEE3 pins to the DGND pattern.)
— The digital output wiring should be as short as possible. If the digital output wiring is long, the wiring
capacitance will increase, deteriorating the output slew rate and resulting in reflection to the output waveform since the original output slew rate is quite fast.
The analog input pin VIN has an input capacitance of approximately 7pF. To drive the A/D converter with proper frequency response, it is necessary to prevent performance deterioration due to parasitic capacitance or parasitic inductance by using a large capacity drive circuit. keeping wiring as short as possible, and using chip parts for resistors and capacitors, etc.
The VRT and VRB pins must have adequate by-pass to protect them from high-frequency noise. By-pass them to AGND with an approximately 1µF tantal capacitor and 0.1µF chip capacitor as short as possible.
The offset for residual resistance is generated each for the reference voltage pins VRT and VRB. When the offset voltage has no influence on the IC operation, the voltage should be applied to the VRT and VRB pins directly, keeping the VRBS pin open. When the reference voltage is to be supplied to these pins precisely, form the feedback loop circuit with VRT and VRB as a force pin and adjust the offset voltage to be 0V. See the “Application Circuit 2” for details.
If the CLKN/E pin is not used, by-pass this pin to DGND with an approximately 0.1µF capacitor. At this time, approximately DGND3 – 1.2V voltage is generated. However, this is not recommended for use as threshold voltage VBB as it is too weak.
When the digital input level is ECL or PECL level, ∗∗∗/E pins should be used and ∗∗∗/T pins left open. When the digital input level is TTL, ∗∗∗/T pins should be used and ∗∗∗/E pins left open.
– 18 –
Page 19
Example of Representative Characteristics
CXA3086Q
Current consumption vs.
Ambient temperature characteristics
70
65
60
55
Current consumption [mA]
50
–25
Ta – Ambient temperature [°C]
Analog input current vs.
Analog input voltage characteristics
25 75
Current consumption vs.
Conversion rate characteristics
90
80
70
60
Current consumption [mA]
50
0
Fc – Conversion rate [MSPS]
Reference current vs.
Ambient temperature characteristics
11
CLK
f
fin = – 1kHz
4 DMUX mode CL = 5pF
70
140
100
10
VRT = 4V VRB = 2V
9
50
8
Analog input current [µA]
0
234
Analog input voltage [V]
Reference current [mA]
7
–25 25 75
Ta – Ambient temperature [°C]
– 19 –
Page 20
CXA3086Q
40
35
SNR [dB]
30
180
170
SNR vs. Input frequency response
Fc = 140MSPS
1
550
30310
Input frequency [MHz]
Maximum conversion rate vs.
Ambient temperature characteristics
CLK
f
fin = – 1kHz
4
Error > 4LSB Error rate: 10–9TPS
100
Error rate vs. Conversion rate characteristics
–6
10
f
CLK
fin = – 1kHz
–7
10
–8
10
Error rate [TPS]
–9
10
–10
10
4
Error > 4LSB
140 160 200
180
Fc – Conversion rate [MSPS]
160
150
Fc – Maximum conversion rate [MSPS]
140
–25
25 75
Ta – Ambient temperature [°C]
– 20 –
Page 21
CXA3086Q
CXA3086Q Evaluation Board
Description
The CXA3086Q Evaluation Board is a special board designed to maximize and facilitate the evaluation performance of the CXA3086Q. After latching the CXA3086Q output data with a frequency divided clock, the analog signal can be regenerated by a 10-bit high-speed D/A converter. The latched data can also be extracted externally via a 24-pin cable connector.
Features
Resolution: 6 bits
Maximum conversion rate: 140MSPS (min.)
Supply voltage: ±5.0V
Dual analog input pins: DIR.IN: AC coupling input pin
AMP.IN: Operational amplifier input pin
Clock frequency division: 1/1 to 1/16
Absolute Maximum Ratings
Supply voltage VCC –0.5 to +7.0 V
VEE –7.0 to +0.5 V
Recommended Operating Conditions Min. Typ. Max.
Supply voltage VCC +4.75 +5.0 +5.25 V
GND 0 V VEE –5.25 –5.0 –4.75 V
Analog input AMP. IN –0.75 0 +1.05 V DIR. IN 1.5 2.0 2.2 Vp-p
Clock input CLK. IN 0.8 1.0 1.2 Vp-p
– 21 –
Page 22
(–1.0V)
D/A OUT
FULL SCALE. R5
P2 side OUT
CXA3086Q
P1 side OUT
FULL SCALE. R4
D/A
INV
INV
NORM
PS
PS
NORM
A/D
INV
INV
NORM
SELECT
DMUX
Straight
(–1.0V)
D/A OUT
SW4
SW3
SW2
SW1
CON4
6
6
6
AGND
DAC
(ECL)
TTL/ECL
(TTL)
LATCH
(TTL)
P2D0 to D5
RT
V
P1D0 to D5
CXA3086Q
VRB
VIN
CON5
DAC
6
(ECL)
6
(TTL)
LATCH
6
(TTL)
CLK CLKOUT
AGND
TTL/ECL
4
(ECL)
TTL/ECL
(TTL)
S2
(TTL)
PECL/TTL
CON8 CON7
P1 side DATA P2 side DATA
Block Diagram
OFFSET. R3
VRT. R2
VRB. R1
OFFSET
Vrt
Vrb
CON2
DIR IN
51
Vrt
270
AGND
AGND
A
130
CON1
B
× (–2)
82
AMP IN
– 22 –
Vrb S1
AGND
AGND
AGND
(PECL)
VBB
1k 390
CON3
0.1µF
51
CLK IN
1k
DGND
DGND
4
(PECL)
Counter
EE GND VCC
V
CON6
Page 23
Pin Description and I/O Level
CXA3086Q
Pin No.
CON1
CON2
CON3
CON4
CON5
CON6
CON7
Symbol I/O
AMP. IN
DIR. IN
CLK. IN
P2 side OUT
P1 side OUT
VCC GND VEE
P2 side DATA
I
I
I
O
O
I I I
O
Standard
I/O level
0.95Vp-p
2.0Vp-p
1.0Vp-p
0 to –1V
0 to –1V
+5.0V
0V
–5.0V
TTL
Current Description
Doubles the analog input signal amplitude using the operational amplifier. The input impedance is 50.
AC coupling input. Suitable for sine waves and other repeating waveforms. The input impedance is 50.
The CXA3086Q operates at the PECL level clock using the sine wave-to-PECL conversion circuit. The input impedance is 50.
Allows the D/A converted waveform of the CXA3086Q port 2 side data to be observed. The output impedance is 50.
Allows the D/A converted waveform of the CXA3086Q port 1 side data to be observed. The output impedance is 50.
0.8A The inside of the board is divided into analog and digital systems.
–0.6A
The CXA3086Q port 2 side data output is latched at the frequency divided clock and then output.
CON8
P1 side DATA
O
TTL
The CXA3086Q port 1 side data output is latched at the frequency divided clock and then output.
Board Adjustments and Settings
1. VRB.R1: CXA3086Q VRB voltage adjusting volume.
2. VRT.R2: CXA3086Q VRT voltage adjusting volume.
3. OFFSET.R3: Adjusting volume for matching the AMP.IN input and DIR.IN input signal ranges to the CXA3086Q input range.
4. FULL SCALE.R4: Full-scale adjusting volume for the port 2 D/A output. (–1V: Typ.)
5. FULL SCALE.R5: Full-scale adjusting volume for the port 1 D/A output. (–1V: Typ.)
6. S1: Switching junction for the dual analog input pins. Set as follows according to the input pins used.
Junction
Symbol
AMP.IN DIR.IN
AB
OPEN
0.1µF
SHORT
10k
7. S2: Setting junction for the clock frequency division ratio. The operating speed after latching is determined by the frequency division ratio set here. When set to CLK OUT, it operates according to the CXA3086Q clock output.
8. SW1 SELECT: CXA3086Q output mode selector switch.
9. SW2 A/D INV: CXA3086Q output polarity inversion switch.
10. SW3 PS: CXA3086Q PS switch.
11. SW4 D/A INV: D/A converter output polarity inversion switch.
– 23 –
Page 24
Notes on Board Operation
1. The factory settings for the CXA3086Q Evaluation Board are as follows.
CXA3086Q
VRB.R1 = 1.5V VRT.R2 = 3.0V
FULL SCALE.R4 = –1V FULL SCALE.R5 = –1V
S1 A : OPEN, B : SHORT S2 8 : SHORT (1/8 frequency division)
OFFSET.R3 = 2.25V
When using the board in this condition, the input signals should be input at the amplitudes shown below. (The frequency is set as desired.)
Analog input signal: CON1 (AMP.IN)
Clock input signal: CON3 (CLK.IN)
0V center, 800mVp-p or less
0V center, 1.0Vp-p
2. When the analog signal is input from the CON1 (AMP.IN) pin, IC2:CLC404 limits the input dynamic range of the A/D converter's analog input signal.
3. When the analog input signal is a sine wave or other repeating waveform, the signal can be input from the CON2 (DIR.IN) pin with AC coupling. In these cases, the input dynamic range is not limited, but the VRT level may be limited by IC3: NJM3403A.
4. In the evaluation board of the CXA3086Q, CLC404 (Comlinear) is employed for IC2 to drive the analog input signal. Though, CLC505 (Comlinear) can also be used instead of CLC404, there should be a little change in the peripheral circuit in this case.
– 24 –
Page 25
CXA3086Q Evaluation Board Timing Chart
CXA3086Q
CON2 DIR IN
CON3 CLK IN
CXA3086Q CLK
CXA3086Q P1 side DATA
(PECL)
(TTL)
N
N + 1
2Vp-p
1Vp-p
N – 4 N – 3 N – 2 N – 1
0V
0V
N + 2
N + 3
CON8 P1 side DATA CLK
CON8 P1 side DATA DATA
CON5 P1 side OUT
Operating Conditions CXA3086Q operating mode  Analog input  S2 setting
Approximately 6.0ns
(TTL)
N – 6
(TTL)
N – 6
(Analog regeneration waveform)
0 to –1V
Approximately 9.0ns
N – 2N – 4
N – 4
N – 2
: Straight mode : DIR IN pin input : 1/2 frequency divided clock
– 25 –
Page 26
Circuit Diagram
CXA3086Q
D1
TL431CP
AGND
AVCC
CON6
L1 L2 L3 L4 L5 L6
C1
33µFC233µF
AVEE DVEE AGND DGND AVCC DVCC
AGND AVEE
C5
1µF
R7
510
R1 2k
R8
510
R2 1k
R6
51
R3 10k
AMP IN
R9
7.5k
R10
22k
CON1
AGND
CLK IN
200k
C7
1µF
R11
AGND
AGND
AGND AVCC
CON3
DGND
C14
0.1µF
R13
82
C16
0.1µF
DGND
2 3
R19
1µF
11
1
4
NJM3403A
R14
130
1µF
C13
0.1µF
51
C6
390k
IC3A
C8
R12
AGND AVEE
C15
0.1µF
R15 270
2 3
AGND
C17
0.1µF
AGND AVCC
R201kR21
390
11
IC4D
10H116 (PECL)
AGND
CON2
DIR IN
AGND
R16
270
4
6
IC2
7
CLC404
IC4B
10H116 (PECL)
10
9
R22
1k
C3
33µF
IC3B
NJM3403A
6 5
R17
43
IC3C
NJM3403A 10
9
7 6
R18
VCCGNDVEE
DVCC
EE3
DV AGND
RBS
V VRB AVCC N.C.
IN
V AVCC VRT VRTS AGND DGND3
R25 130 R28 82
R26 130 R29 82
R27 130 R30 82
DGND
DGND
DVCC
12
11
RESETN/E
CLK/E
26 27 28
25
10
RESET/E
RESETN/T
CLK/T
CLKN/E
DVCC
C24
0.1µF
9
CC2
DV
2
CC
DV
C23
0.1µF
SELECT
8
7
DGND2
CXA3086Q
DGND2
30
29
DVCC
SW4
D/A INV
SW3
PS
SW2
A/D INV
SW1
6
P2D5
IC1
P1D0
31
DGND
5
P2D4
P1D1
32
DGND
P2D3
P1D2
33
4
13
12 11
P2D2
P1D3
9 7
6
5
34
3
CLK
S1 S2
D0 D1 D2 D3
P2D1
P1D4
35
2
P2D0
P1D5
DGND
1
DGND2
DVCC2 DV
DGND1
N.C.
CLKOUT
SELECT
N.C.
DGND1
DV DV
DGND2
36
DGND
IC5
10H136 (PECL)
CC1
PS
INV
CC1 CC2
C4
33µF
DGND
AGND
7
C18
C9
0.1µF
DVCC
DGND
1µF
AV
CC
CC
AV
C10 1µF
AGND
10H116 (PECL)
5
4
IC4A
C21
0.1µF
DVCC
3 2
51
A
B
S1
8
R23
82
R24
130
C19
0.1µF
C20
0.1µF
DGND
10H116 (PECL)
13 12
C27
0.1µF
IC4C
13 14 15 16 17
18
19 20 21 22
23
24
15 14
48 47 46 45 44 43 42 41 40 39 38 37
Cout
Q3 Q2 Q1 Q0
C28
0.1µF
0.1µF
C26
0.1µF
C27
0.1µF
C25
15 14
DGND
DGND
4
3 2
DAINV
ADINV
SELECT
P2D5 P2D4 P2D3 P2D2 P2D1 P2D0
DVCC
DGND
CLKOUT
ADINV
SELECT
DGND
DV
P1D5 P1D4 P1D3 P1D2 P1D1 P1D0
1/16
PS
PS
CC
1/8 1/4 1/2
– 26 –
CLK
CLKN
Page 27
DGND
C31
0.1µF
P2D5 P2D4 P2D3 P2D2 P2D1 P2D0
P1D5 P1D4 P1D3 P1D2 P1D1 P1D0
DAINV
CLKOUT
1/16
1/8
1/4
1/2
CLK CLKN
DVCC
DGND
IC14
74ALS541
911
DGND
OC
1
CLK
11
1D 1Q
2
2D 2Q
3
3D 3Q
4
4D 4Q
5
5D 5Q
6
6D 6Q
7
7D 7Q
8
8D 8Q
9
DGND
OC
1
CLK
11
1D 1Q
2
2D 2Q
3
3D 3Q
4
4D 4Q
5
5D 5Q
6
6D 6Q
7
7D 7Q
8
8D 8Q
9
DGND
R51
620
R31 82 R34 130
R32 82 R35 130
R33 82 R36 130
DGND
IC6
74AS574
IC7
74AS574
19
17
24
1 23 22 21 20 16 15 14 13 12 11
OE V
D0 D0N D1 D1N D2 D2N D3 D3N D4 D4N D5 D5N
CXA3086Q
DVccDGND
1
17 16 15 14 13 12
IC9
100324
IC10
100324
IC11
10H124
25
C43
0.1µF
2
26
NQ5
NQ4
NQ3
NQ0
NQ1
NQ2
NQ5
NQ4
NQ3
NQ0
NQ1
NQ2
DVCC
DGND
CON7
P2 side DATA
14
Q5
13
12
Q4
11
9
Q3
10 24
Q0
1 2
Q1
3 5
Q2
4
14
Q5
13
12
Q4
11
9
Q3
10 24
Q0
1 2
Q1
3 5
Q2
4
2
Y1
4 1
Y2
3
Y2
15
Y3
12
Y3
14
Y4
13
Y4
1
DVEE
DVEE
DGND
DVEE
2
25
26
C47
0.1µF
C44
0.1µF
C46
0.1µF
0.1µF
DGND
C45
DVEE
DGND
P1 side DATA
R48 620
R37
R38
R50 620
CON8
R47
620
1
MSB 2 3 4 5
D5 6
D6 7
D7 8
D8 9
D9
10
LSB
11
NC
12
NC
13
R40 130
R39 130
14
10 11 12 13 14
R46
CLKN
CLK
DV
EE
1
MSB 2
D2 3
D3 4
D4 5
D5 6
D6 7
D7 8
D8 9
D9
LSB
NC
NC
CLKN
CLK
620
DVEE
82
82
R49 620
IC12
CX20201-1
IC13
CX20201-1
AGND
VREFD2
AV
NCD4 NC NC NC NC
OUT
NC AGND DGND
INV
DV
AGND
VREF
AV
NC
NC
NC
NC
NC
OUT
NC AGND DGND
INV
DV
C51
28
0.1µF
27 26
EED3
25 24
C52
23
0.1µF
22 21 20 19 18
17
16
0.1µF
15
EE
C54
28
0.1µF
27 26
EE
25 24
0.1µF
23 22 21 20 19 18
17
16 15
EE
C50
0.1µF
R41 620
DVEE
C53
C55
C56
0.1µF
R4
2k
R5
2k
AGND
AGND
DGND
AGND
R421kR43
C11
AVEE
1µF
CON4
P2 side OUT
AGND
DGND
DVEE
AGND
R441kR45
C12 1µF
AVEE
CON5
P1 side OUT
AGND
DGND
DVEE
270
D2
TL431CP
270
D3
TL431CP
C42
0.1µF
IC15
74ALS541
17
3
P2D5 P2D4 P2D3 P2D2 P2D1 P2D0
19 18
P2D5
17
P2D4
16
P2D3
15
P2D2
14
P2D1
13
P2D0
12
19
18
17 16 15
14
13 12
BB
2
Q0
3
Q1
IC8
100390
4
Q2
8
Q3
9
Q4
10
Q5
CLKOUT
1/16
1/8
1/4
1/2
1/1
S2
P1D5 P1D4 P1D3 P1D2 P1D1 P1D0
16
4
15
5 6
14 13
7
12
8
DGND
DVCC
19
E
15
5D
16
4D
17
3D
21
0D
22
1D
23
2D
DVCC
19
E
15
5D
16
4D
17
3D
21
0D
22
1D
23
2D
6
B
5
A1 Y1
7
A2
10
A3
11
A4
IC14
74ALS541
P1D5
3
P1D4
4
P1D3
5
P1D2
6
P1D1
7
P1D0
8
– 27 –
Page 28
Component List
CXA3086Q
No. Product name Function IC1 CXA3086Q 6-bit A/D converter IC2 CLC404AJE OP-AMP IC3 NJM3403AM OP-AMP IC4 MC10H116L ECL Buffer IC5 MC10H136L ECL Countor IC6, 7 74AS574N TTL Latch IC8 100390 PECLTTL conversion IC9, 10 100324PC TTLECL conversion IC11 MC10H124L TTLECL conversion IC12, 13 CXA20201A-1 10-bit D/A converter IC14, 15 74ALS541N TTL Buffer D1 to 3 TL431CP Shunt regulator SW1 to 4 ATE1D-2F3-10 Toggle switch S1, 2 JX-1 Short pin CON1 to 5 01K0315 BNC connector CON6 TJ-563 Power supply connector CON7, 8 (FAP-2601-1202) Flat cable connector L1 to 6 ZBF503D-00 Ferrite-bead filter C1 to 4 Tantal capacitor 33µF C5 to 12 Tantal capacitor 1µF C13 Ceramic capacitor 0.1µF All parts other than those listed above
Chip capacitor 0.1µF
No. Product name Function R2 RJ-5W-1K 1kvolume resistor R1, 4, 5 RJ-5W-2K 2kvolume resistor R3 RJ-5W-10K 10kvolume resistor R47 to 51 RGLD4X621J 620network resistor
R6, 18, 19 FRD-25SR (0.25W) 51 R7.8 FRD-25SR (0.25W) 510 R9 FRD-25SR (0.25W) 7.5k R10 FRD-25SR (0.25W) 22k R11 FRD-25SR (0.25W) 200k R12 FRD-25SR (0.25W) 390k R13, 23, 28 to 33, 37, 38 FRD-25SR (0.25W) 82 R14, 24 to 27, 34 to 36, 39, 40 FRD-25SR (0.25W) 130 R15, 16, 43, 45 FRD-25SR (0.25W) 270 R17 FRD-25SR (0.25W) 43 R20, 22, 42, 44 FRD-25SR (0.25W) 1k R21 FRD-25SR (0.25W) 390 R41, 46 FRD-25SR (0.25W) 620
CON7 and 8 are not mounted when boards are shipped. (Manufacturer: YAMAICHI Electronics Co., Ltd.)
Component side silk diagram
– 28 –
Page 29
CXA3086Q
Component side pattern diagram
Solder side pattern diagram
– 29 –
Page 30
Package Outline Unit: mm
CXA3086Q
48PIN QFP (PLASTIC)
15.3 ± 0.4
37
48
+ 0.4
12.0 – 0.1
2536
24
13
112
0.8 0.3 – 0.1
+ 0.15
± 0.12
M
+ 0.35
2.2 – 0.15
+ 0.1
0.15 – 0.05
0.15
+ 0.2
0.1 – 0.1
13.5
0.9 ± 0.2
PACKAGE STRUCTURE
EPOXY RESIN SOLDER / PALLADIUM
PLATING COPPER / 42 ALLOY
0.7g
SONY CODE EIAJ CODE JEDEC CODE
QFP-48P-L04 QFP048-P-1212-B
PACKAGE MATERIAL LEAD TREATMENT LEAD MATERIAL
PACKAGE WEIGHT
NOTE : PALLADIUM PLATING  This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 30 –
Loading...