Vishay 40CTQ150, 40CTQ150S, 40CTQ150-1 Data Sheet

0 (0)

Bulletin PD-20694 rev. B 07/03

40CTQ150

40CTQ150S 40CTQ150-1

SCHOTTKY RECTIFIER

40 Amp

Major Ratings and Characteristics

Characteristics

40CTQ...

Units

 

 

 

 

IF(AV)

Rectangular

40

A

 

waveform

 

 

VRRM

 

150

V

IFSM

@ tp = 5 µs sine

1500

A

VF

@20 Apk, TJ=125°C

0.71

V

 

(per leg)

 

 

 

 

 

 

TJ

 

- 55 to 175

°C

 

 

 

 

Description/ Features

The 40CTQ... center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

175° C TJ operation

Center tap TO-220 package

High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

Very low forward voltage drop

High frequency operation

Guard ring for enhanced ruggedness and long term reliability

Case Styles

40CTQ150

 

Base

 

 

Common

 

 

Cathode

 

 

2

 

 

2

 

1

Common

3

Anode

Cathode

Anode

TO-220AB

40CTQ150S

 

Base

 

 

Common

 

 

Cathode

 

 

2

 

 

2

 

1

Common

3

Anode

Cathode

Anode

D2PAK

40CTQ150-1

 

Base

 

 

Common

 

 

Cathode

 

 

2

 

 

2

 

1

Common

3

Anode

Cathode

Anode

TO-262

www.irf.com

1

40CTQ150, 40CTQ150S, 40CTQ150-1

Bulletin PD-20694 rev. B 07/03

Voltage Ratings

Part number

Value

VR Max. DC Reverse Voltage (V)

150

VRWM Max. Working Peak Reverse Voltage (V)

 

Absolute Maximum Ratings

 

Parameters

 

40CTQ..

Units

Conditions

 

 

 

 

 

 

 

 

IF(AV)

Max. Average Forward

(Per Leg)

20

A

50% duty cycle @ TC = 140 °C, rectangular wave form

 

Current * See Fig. 5

(Per Device)

40

 

 

 

I

Max. Peak One Cycle Non-Repetitive

1500

 

5µs Sine or 3µs Rect. pulse

Following any rated

FSM

 

 

 

A

 

load condition and with

Surge Current (Per Leg) * See Fig. 7

250

10msSineor6msRect.pulse

 

 

rated VRRM applied

EAS

Non-Repetitive Avalanche Energy

1.0

mJ

TJ = 25 °C, IAS = 1.5 Amps, L = 0.9 mH

 

(Per Leg)

 

 

 

 

 

IAR

Repetitive Avalanche Current

1.5

A

Current decaying linearly to zero in 1 µsec

 

(Per Leg)

 

 

 

Frequency limited by TJ max. VA = 1.5 x VR typical

Electrical Specifications

 

Parameters

 

40CTQ..

Units

Conditions

 

 

 

 

 

 

 

VFM

Max. Forward Voltage Drop

0.93

V

@ 20A

TJ

= 25 °C

 

(Per Leg) * See Fig. 1

(1)

1.16

V

@ 40A

 

 

 

 

 

 

0.71

V

@ 20A

TJ

= 125 °C

 

 

 

0.85

V

@ 40A

IRM

Max. Reverse Leakage Current

50

µA

TJ = 25 °C

VR

= rated VR

 

(Per Leg) * See Fig. 2

(1)

15

mA

TJ = 125 °C

 

 

 

CT

Max. Junction Capacitance(Per Leg)

450

pF

VR = 5VDC (test signal range 100Khz to 1Mhz) 25°C

LS

Typical Series Inductance

(Per Leg)

8.0

nH

Measured lead to lead 5mm from package body

dv/dt

Max. Voltage Rate of Change

10000

V/ µs

 

 

 

 

(Rated VR)

 

 

 

 

 

 

(1) Pulse Width < 300µs, Duty Cycle <2%

 

 

 

 

 

Thermal-Mechanical Specifications

 

 

Parameters

 

 

40CTQ..

Units

Conditions

 

 

 

 

 

 

 

 

TJ

Max. Junction Temperature Range

-55 to 175

°C

 

 

 

Tstg

Max. Storage Temperature Range

-55 to 175

°C

 

 

 

RthJC

Max.ThermalResistance

Per Leg

1.5

°C/W

DC operation

* See Fig. 4

 

 

JunctiontoCase

 

 

 

 

 

 

 

RthJC

Max.ThermalResistance PerPackage

0.75

°C/W

DC operation

 

 

 

JunctiontoCase

 

 

 

 

 

 

 

RthCS

TypicalThermalResistance,

 

 

0.5

°C/W

Mounting surface , smooth and greased

 

 

CasetoHeatsink

 

 

 

 

 

 

 

wt

Approximate Weight

 

 

2 (0.07)

g (oz.)

 

 

 

T

Mounting Torque

 

Min.

6 (5)

Kg-cm

Non-lubricated threads

 

 

 

Max.

12 (10)

(Ibf-in)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

www.irf.com

Vishay 40CTQ150, 40CTQ150S, 40CTQ150-1 Data Sheet

 

 

 

 

 

40CTQ150, 40CTQ150S, 40CTQ150-1

 

 

 

 

 

 

 

Bulletin

PD-20694

rev. B

07/03

 

100

 

 

 

 

1000

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>(mA)

100

 

Tj = 175˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150˚C

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>R

10

 

125˚C

 

 

 

 

 

 

<![if ! IE]>

<![endif]>I

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>-

 

 

100˚C

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Current

 

 

 

 

 

 

 

 

1

 

 

75˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>(A)

 

 

 

 

<![if ! IE]>

<![endif]>Reverse

0.1

 

 

50˚C

 

 

 

 

 

 

 

 

25˚C

<![if ! IE]>

<![endif]>F

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>I

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>-

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Current

 

 

 

Tj = 175˚C

0.001

 

 

 

 

 

 

 

0

20 40

60 80 100 120 140 160

<![if ! IE]>

<![endif]>Forward

10

 

 

Tj = 125˚C

 

Reverse Voltage - VR (V)

 

 

 

Fig. 2 - Typical Values of Reverse Current

 

 

 

 

 

 

 

Tj =

25˚C

 

Vs. Reverse Voltage

 

<![if ! IE]>

<![endif]>Instantaneous

 

 

 

 

 

 

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>(pF)

 

TJ = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>T

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>- C

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Junction Capacitance

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

10

 

 

 

160

 

0

0.4

0.8

1.2

1.6

0

40

80

120

Forward Voltage Drop - VFM (V)

Reverse Voltage - VR (V)

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3 - Typical Junction Capacitance

 

Vs. Reverse Voltage

 

10

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>(°C/W)

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>thJC

1

D = 0.75

 

 

 

 

 

 

D = 0.50

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Z

 

 

 

 

 

 

 

D = 0.33

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Impedance

 

 

 

 

PDM

 

 

D = 0.25

 

 

 

 

 

 

 

 

 

 

 

 

D = 0.20

 

 

 

 

t1

 

 

 

 

 

 

 

 

 

0.1

 

 

Single Pulse

 

 

 

t 2

 

<![if ! IE]>

<![endif]>Thermal

 

 

 

 

 

Notes:

 

 

 

 

(Thermal Resistance)

 

 

 

 

 

 

 

 

1. Duty factor D =

t1/ t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Peak Tj = Pdmx ZthJC + Tc

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

0.00001

0.0001

0.001

0.01

0.1

1

10

100

t1, Rectangular Pulse Duration (Seconds)

Fig. 4 - Max. Thermal Impedance Z thJC Characteristics

www.irf.com

3

Loading...
+ 4 hidden pages