Motorola DSP56001RC33, DSP56001RC20, DSP56001FE33, DSP56001FE27, DSP56001FE20 Datasheet

...
0 (0)
Ceramic Quad Flat Pack (CQFP)
Available in a 132 pin, small footprint, surface mount package.
Plastic Quad Flat Pack (PQFP)
Available in a 132 pin, small footprint, surface mount package.

MOTOROLA

Order this document by DSP56001/D

 

 

SEMICONDUCTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSP56001

 

 

 

TECHNICAL DATA

 

 

 

 

 

 

 

 

 

 

 

 

24-Bit General Purpose

Pin Grid Array (PGA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Available in an 88 pin ceramic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital Signal Processor

through-hole package.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DSP56001 is a member of Motorola’s family of

HCMOS, low-power, general purpose Digital Signal Processors. The DSP56001 features 512 words of full speed, on-chip program RAM (PRAM) memory, two

256 word data RAMs, two preprogrammed data

ROMs, and special on-chip bootstrap hardware to permit convenient loading of user programs into the program RAM. It is an off-the-shelf part since the program

memory is user programmable. The core of the processor consists of three execution units operating in parallel — the data ALU, the address generation unit, and the program controller. The DSP56001 has MCU-style on-chip peripherals, program and data memory, as well as a memory expansion port. The MPU-style programming model and instruction set make writing efficient, compact code, straightforward.

The high throughput of the DSP56001 makes it well-suited for communication, high-speed control, numeric processing, computer and audio applications. The key features which facilitate this throughput are:

Speed

At 16.5 million instructions per second (MIPS) with a 33 MHz clock, the DSP56001 can execute

 

 

a 1024 point complex Fast Fourier Transform in1.98 milliseconds (66,240 clock cycles).

Precision

The data paths are 24 bits wide thereby providing 144 dB of dynamic range; intermediate results

 

 

held in the 56-bit accumulators can range over 336 dB.

Parallelism

The data ALU, address arithmetic units, and program controller operate in parallel so that an in-

 

 

struction prefetch, a 24x24-bit multiplication, a 56-bit addition, two data moves, and two address

 

 

pointer updates using one of three types of arithmetic (linear, modulo, or reverse carry) can be

 

 

executed in a single instruction cycle. This parallelism allows a four coefficient Infinite Impulse Re-

 

 

sponse (IIR) filter section to be executed in only four cycles, the theoretical minimum for a single

 

 

multiplier architecture.

Integration

In addition to the three independent execution units, the DSP56001 has six on-chip memories,

 

 

three on-chip MCU style peripherals (Serial Communication Interface, Synchronous Serial Inter-

 

 

face, and Host Interface), a clock generator and seven buses (three address and four data), mak-

 

 

ing the overall system functionally complete and powerful, but also very low cost, low power, and

 

 

compact.

Invisible Pipeline

The three-stage instruction pipeline is essentially invisible to the programmer thus allowing

 

 

straightforward program development in either assembly language or a high-level language such

 

 

as ANSI C.

Instruction Set

The 62 instruction mnemonics are MCU-like making the transition from programming micropro-

 

 

cessors to programming the DSP56001 digital signal processor as easy as possible. The orthog-

 

 

onal syntax supports control of the parallel execution units. This syntax provides 12,808,830 dif-

 

 

ferent instruction variations using the 62 instruction mnemonics. The no-overhead DO instruction

 

 

and the REPEAT (REP) instruction make writing straight-line code obsolete.

DSP56000/DSP56001 Compatibility

The DSP56001 is identical to the DSP56000 except that it has 512x24-bits of on-chip program RAM instead of 3.75K of program ROM; a 32x24-bit bootstrap ROM for loading the program RAM from either a byte-wide memory mapped ROM or via the Host Interface; and the on-chip X and Y Data ROMs have been preprogrammed as positive Muand A-Law to linear expansion tables and a full, four quadrant sine wave table, respectively.

Low Power

As a CMOS part, the DSP56001 is inherently very low power; however, three other features can

 

reduce power consumption to an exceptionally low level.

 

— The WAIT instruction shuts off the clock in the central processor portion of the DSP56001.

 

— The STOP instruction halts the internal oscillator.

 

— Power increases linearly (approximately) with frequency; thus, reducing the clock frequency

 

reduces power consumption.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ã MOTOROLA INC., 1992

Rev. 3

 

 

 

 

 

 

 

 

 

May 4, 1998

 

 

 

 

 

 

 

 

 

 

YAB

EXTERNAL ADDRESS

 

 

 

 

 

XAB

 

 

ADDRESS

 

 

ADDRESS

 

 

 

 

 

PAB

 

 

 

GENERATION

 

 

 

BUS

 

 

 

UNIT

 

 

 

SWITCH

 

 

 

 

 

 

X MEMORY

Y MEMORY

 

 

PORT B

 

BOOTSTRAP

PROGRAM

RAM

RAM

 

 

OR HOST

 

ROM

RAM

256X24

256X24

 

 

15

 

32X24

512X24

μ

SINE ROM

 

A

 

ON-CHIP

/A ROM

 

 

 

 

256X24

256X24

 

PORT

 

PERIPHERALS:

 

 

 

 

 

 

 

BUS

7

9

HOST, SSI,

 

 

 

CONTROL

 

 

 

 

SCI, PI/O

 

 

 

 

 

 

 

 

 

 

 

 

PORT C

 

 

 

 

 

 

 

AND/OR

 

 

 

 

 

 

 

SSI, SCI

INTERNAL DATA

 

 

YDB

 

 

 

 

 

 

 

 

 

 

 

 

 

EXTERNAL

 

 

 

BUS SWITCH

 

 

XDB

DATA

 

 

AND BIT

 

 

PDB

DATA BUS

 

 

 

MANIPULATION

 

 

SWITCH

 

 

 

 

 

 

 

 

 

UNIT

 

 

GDB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROGRAM

 

PROGRAM

 

 

 

 

 

 

 

 

 

 

 

DATA ALU

 

 

 

 

 

 

 

 

PROGRAM

 

 

 

 

 

24X24+5656-BIT MAC

 

 

 

 

 

 

ADDRESS

 

DECODE

INTERRUPT

 

 

 

 

 

 

 

CLOCK

 

 

GENERATOR

 

CONTROLLER

CONTROLLER

 

 

 

 

TWO 56-BIT ACCUMULATORS

 

GENERATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODB/IRQB

 

 

 

 

 

 

 

 

 

16 BITS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXTAL XTAL

 

 

 

 

 

 

 

 

 

 

 

 

MODA/IRQA

 

 

 

 

 

 

 

 

 

24 BITS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. DSP56001 Block Diagram

In the USA:

For technical assistance call:

DSP Applications Helpline (512) 891-3230

For availability and literature call your local Motorola Sales Office or Authorized Motorola Distributor.

For free application software and information call the Dr. BuB electronic bulletin board: 9600/4800/2400/1200/300 baud

(512) 891-3771

(8 data bits, no parity, 1 stop)

In Europe, Japan and Asia Pacific

Contact your regional sales office or Motorola distributor.

MOTOROLA

DSP56001

2

 

SIGNAL DESCRIPTION

The DSP56001 is available in 132 pin surface mount (CQFP and PQFP) or an 88-pin pin-grid array packaging. Its input and output signals are organized into seven functional groups which are listed below and shown in Figure 1.

Port A Address and Data Buses

Port A Bus Control

Interrupt and Mode Control

Power and Clock

Host Interface or Port B I/O

Serial Communications Interface or Port C I/O

Synchronous Serial Interface or Port C I/O

PORT A ADDRESS AND DATA BUS

Address Bus (A0-A15)

These three-state output pins specify the address for external program and data memory accesses. To minimize power dissipation, A0-A15 do not change state when external memory spaces are not being accessed.

Data Bus (D0-D23)

These pins provide the bidirectional data bus for external program and data memory accesses. D0-D23 are in the high-impedance state when the bus grant signal is asserted.

Read Enable (RD)

This three-state output is asserted to read external memory on the data bus D0-D23. This pin is three-stated during RESET.

Write Enable (WR)

This three-state output is asserted to write external memory on the data bus D0-D23. This pin is three-stated during RESET.

Bus Request (BR/WT)

The bus request input BR allows another device such as a processor or DMA controller to become the master of external data bus D0-D23 and external address bus A0-A15. When operating mode register (OMR) bit 7 is clear and BR is asserted, the DSP56001 will always release the external data bus D0-D23, address bus A0-A15, and bus control pins PS, DS, X/Y, RD, and WR (i. e., Port A), by placing these pins in the high-impedance state after execution of the current instruc-

tion has been completed. The BR pin should be pulled up when not in use.

If OMR bit 7 is set, this pin is an input that allows an external device to force wait states during an external Port A operation for as long as WT is asserted.

Bus Grant (BG/BS)

If OMR bit 7 is clear, this output is asserted to acknowledge an external bus request after Port A has been released. If OMR bit 7 is set, this pin is bus strobe and is asserted when the DSP accesses Port A. This pin is three-stated during RESET.

PORT A BUS CONTROL

Program Memory Select (PS)

This three-state output is asserted only when external program memory is referenced. This pin is three-stated during RESET.

Data Memory Select (DS)

This three-state output is asserted only when external data memory is referenced. This pin is three-stated during RESET.

X/Y Select (X/Y)

This three-state output selects which external data memory space (X or Y) is referenced by data memory select (DS). This pin is three-stat- ed during RESET.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HOST CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HOST DATA

H0-H7

HA0

 

HA1

 

HA2

 

 

HR/W

 

 

HEN

 

 

 

HREQ

 

HACK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RXD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDRESS A0-A15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA

D0-D23

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TXD

SCI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS

 

 

PORT A

 

 

 

 

 

 

 

 

 

PORT C

 

 

 

 

SC0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS

 

 

 

 

RD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSP56001

 

 

 

 

 

 

 

 

 

 

 

 

SCK

SSI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X/Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BR/WT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BG/BS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

VDD

XTAL

EXTAL

 

RESET

 

 

MODB/

 

IRQB

MODA/

 

IRQA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERRUPT AND MODE CONTROL

Mode Select A/External Interrupt Request A (MODA/IRQA),

Mode Select B/External Interrupt Request B (MODB/IRQB)

These two inputs have dual functions: 1) to select the initial chip operating mode and 2) to receive an interrupt request from an external source. MODA and MODB are read and internally latched in the DSP when the processor exits the RESET state. Therefore these two pins should be forced into the proper state during reset. After leaving the RESET state, the MODA and MODB pins automatically change to external interrupt requests IRQA and IRQB. After leaving the reset state the chip operating mode can be changed by software. IRQA and IRQB may be programmed to be level sensitive or negative edge triggered. When edge triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal, however, the probability of noise on IRQA or IRQB generating multiple interrupts increases with increasing fall time of the interrupt signal. These pins are inputs during RESET.

Reset (RESET)

This Schmitt trigger input pin is used to reset the DSP56001. When RESET is asserted, the DSP56001 is initialized and placed in the reset

state. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA and MODB pins. When coming out of reset, deassertion occurs at a voltage level and is not directly related to the rise time of the reset signal; however, the probability of noise on

RESET generating multiple resets increases with increasing rise time of the reset signal.

POWER AND CLOCK

Power (Vcc), Ground (GND)

There are five sets of power and ground pins used for the four groups of logic on the chip, two pairs for internal logic, one power and two ground for Port A address and control pins, one power and two ground for Port A data pins, and one pair for peripherals. Refer to the pin assignments in the LAYOUT PRACTICES section.

Figure 2. Functional Signal Groups

 

DSP56001

MOTOROLA

 

3

External Clock/Crystal Input (EXTAL)

EXTAL may be used to interface the crystal oscillator input to an external crystal or an external clock.

Crystal Output (XTAL)

This output connects the internal crystal oscillator output to an external crystal. If an external clock is used, XTAL should not be connected.

HOST INTERFACE

Host Data Bus (H0-H7)

This bidirectional data bus is used to transfer data between the host processor and the DSP56001. This bus is an input unless enabled by a host processor read. H0-H7 may be programmed as general purpose parallel I/O pins called PB0-PB7 when the Host Interface is not being used. These pins are configured as a GPIO input pins during hardware reset.

Host Address (HA0-HA2)

These inputs provide the address selection for each Host Interface register. HA0-HA2 may be programmed as general purpose parallel I/O pins called PB8-PB10 when the Host Interface is not being used. These pins are configured as a GPIO input pins during hardware reset.

Host Read/Write (HR/W)

This input selects the direction of data transfer for each host processor access. HR/W may be programmed as a general purpose I/O pin called PB11 when the Host Interface is not being used. This pin is configured as a GPIO input pins during hardware reset.

Host Enable (HEN)

This input enables a data transfer on the host data bus. When HEN is asserted and HR/W is high, H0-H7 become outputs, and DSP56001 data may be read by the host processor, When HEN is asserted and HR/W is low, H0-H7 become inputs and host data is latched inside the DSP when HEN is deasserted. Normally a chip select signal, derived from host address decoding and an enable clock, is used to generate HEN. HEN may be programmed as a general purpose I/O pin called PB12 when the Host Interface is not being used. This pin is configured as a GPIO input pins during hardware reset.

Host Request (HREQ)

This open-drain output signal is used by the DSP56001 Host Interface to request service from the host processor, DMA controller, or simple external controller. HREQ may be programmed as a general purpose I/O pin (not open-drain) called PB13 when the Host interface is not being used. HREQ should be pulled high when not in use. This pin is configured as a GPIO input pins during hardware reset.

Host Acknowledge (HACK)

This input has two functions: 1) to receive a Host Acknowledge handshake signal for DMA transfers and, 2) to receive a Host Interrupt Acknowledge compatible with MC68000 Family processors. HACK may be programmed as a general purpose I/O pin called PB14 when the Host Interface is not being used. This pin is configured as a GPIO input pins during hardware reset. HACK should be pulled high when not in use.

SERIAL COMMUNICATIONS INTERFACE (SCI)

Receive Data (RXD)

This input receives byte-oriented data into the SCI Receive Shift Register. Input data is sampled on the positive edge of the Receive Clock. RXD may be programmed as a general purpose I/O pin called PC0 when the SCI is not being used. This pin is configured as a GPIO input pins during hardware reset.

Transmit Data (TXD)

This output transmits serial data from the SCI Transmit Shift Register. Data changes on the negative edge of the transmit clock. This output is stable on the positive edge of the transmit clock. TXD may be programmed as a general purpose I/O pin called PC1 when the SCI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SCI Serial Clock (SCLK)

This bidirectional pin provides an input or output clock from which the transmit and/or receive baud rate is derived in the asynchronous mode and from which data is transferred in the synchronous mode. SCLK may be programmed as a general purpose I/O pin called PC2 when the SCI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SYNCHRONOUS SERIAL INTERFACE (SSI)

Serial Control Zero (SC0)

This bidirectional pin is used for control by the SSI. SC0 may be programmed as a general purpose I/O pin called PC3 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

Serial Control One (SC1)

This bidirectional pin is used for control by the SSI. SC1 may be programmed as a general purpose I/O pin called PC4 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

Serial Control Two (SC2)

This bidirectional pin is used for control by the SSI. SC2 may be programmed as a general purpose I/O pin called PC5 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SSI Serial Clock (SCK)

This bidirectional pin provides the serial bit rate clock for the SSI when only one clock is used. SCK may be programmed as a general purpose I/O pin called PC6 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SSI Receive Data (SRD)

This input pin receives serial data into the SSI Receive Shift Register. SRD may be programmed as a general purpose I/O pin called PC7 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SSI Transmit Data (STD)

This output pin transmits serial data from the SSI Transmit Shift Register. STD may be programmed as a general purpose I/O pin called PC8 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

MOTOROLA

DSP56001

4

 

DSP56001 Electrical Characteristics

Electrical Specifications

The DSP is fabricated in high density CMOS with TTL compatible inputs and outputs.

Maximum Ratings (VSS = 0 Vdc)

Rating

Symbol

Value

Unit

 

 

 

 

Supply Voltage

Vcc

-0.3 to +7.0

V

 

 

 

 

All Input Voltages

Vin

VSS- 0.5 to Vcc + 0.5

V

 

 

 

 

Current Drain per Pin

I

10

mA

excluding Vcc and VSS

 

 

 

Operating Temperature Range

TJ

-40 to +105

°C

 

 

 

 

Storage Temperature

Tstg

-55 to +150

°C

 

 

 

 

Maximum Electrical Ratings

Thermal Characteristics - PGA Package

 

Characteristics

Symbol

Value

Rating

 

Thermal Resistance - Ceramic

 

 

 

 

 

 

 

 

 

Junction to Ambient

ΘJA

27

°C/W

 

Junction to Case (estimated)

ΘJC

6.5

°C/W

Thermal Characteristics - CQFP Package

 

 

 

 

Characteristics

Symbol

Value

Rating

 

Thermal Resistance - Ceramic

 

 

 

 

 

 

 

 

 

Junction to Ambient

ΘJA

40

°C/W

 

Junction to Case (estimated)

ΘJC

7.0

°C/W

 

 

 

 

 

Thermal Characteristics - PQFP Package

 

 

 

 

Characteristics

Symbol

Value

Rating

 

Thermal Resistance - Plastic

 

 

 

 

 

 

 

 

 

Junction to Ambient

ΘJA

38

°C/W

 

Junction to Case (estimated)

ΘJC

13.0

°C/W

 

 

 

 

 

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either Gnd or Vcc).

DSP56001

MOTOROLA

 

5

DSP56001 Electrical Characteristics

Power Considerations

 

The average chip-junction temperature, TJ, in °C can be obtained from:

 

TJ = TA + (PD × ΘJA)

(1)

Where:

TA = Ambient Temperature, °C

ΘJA = Package Thermal Resistance, Junction-to-Ambient, °C/W

PD = PINT + PI/O

PINT = ICC × Vcc, Watts - Chip Internal Power

PI/O = Power Dissipation on Input and Output Pins - User Determined

For most applications PI/O << PINT and can be neglected; however, PI/O + PINT must not exceed Pd. An appropriate relationship

between PD and TJ (if PI/O is neglected) is:

 

PD = K/(TJ + 273° C)

 

 

 

(2)

Solving equations (1) and (2) for K gives:

 

K = P × (T

A

+ 273° C) + Θ

JA

× P

2

(3)

D

 

 

D

 

Where K is a constant pertaining to the particular part. K can be determined from equation (2) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. The total thermal resistance of a package (ΘJA) can be separated into two components, ΘJC and CA, representing the barrier to heat flow from the semiconductor junction to the package (case) surface (ΘJC) and from the case to the outside ambient (CA). These terms are related by the equation:

ΘJA = ΘJC + CA

(4)

ΘJC is device related and cannot be influenced by the user. However, CA is user dependent and can be minimized by such thermal management techniques as heat sinks, ambient air cooling, and thermal convection. Thus, good thermal management on the part of the user can significantly reduce CA so that ΘJA approximately equals ΘJC. Substitution of ΘJC for ΘJA in equation (1) will result in a lower semiconductor junction temperature. Values for thermal resistance presented in this document, unless estimated, were derived using the procedure described in Motorola Reliability Report 7843, “Thermal Resistance Measurement Method for MC68XX Microcomponent Devices”, and are provided for design purposes only. Thermal measurements are complex and dependent on procedure and setup. User-derived values for thermal resistance may differ.

Layout Practices

Each Vcc pin on the DSP56001 should be provided with a low-impedance path to + 5 volts. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive four distinct groups of logic on chip. They are:

Vcc

GND

Function

 

 

 

G12,C6

G11,B7

Internal Logic supply pins

L8

L6,L9

Address bus output buffer supply pins

G3

D3,J3

Data bus output buffer supply pins

C9

E11

Port B and C output buffer supply pins

 

 

 

 

Power and Ground Connections for PGA

 

 

 

Vcc

GND

Function

 

 

 

35, 36, 128, 129

33, 34, 130, 131

Internal Logic supply pins

63, 64

55, 56, 73, 74

Address bus output buffer supply pins

100, 101

90, 91, 111, 112

Data bus output buffer supply pins

12, 13

23, 24

Port B and C output buffer supply pins

 

 

 

 

Power and Ground Connections for CQFP and PQFP

MOTOROLA

DSP56001

6

 

DSP56001 Electrical Characteristics

Power and Ground Connections

The Vcc power supply should be bypassed to ground using at least four 0.1 uF bypass capacitors located either underneath the chip or as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip Vcc and Gnd should be kept to less than 1/2" per capacitor lead. A four-layer board is recommended, employing two inner layers as Vcc and Gnd planes. All output pins on the DSP56001 have fast rise and fall times — typically less than 3 ns. with a 10 pf. loa d. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses as well as the RD, WR, IRQA, IRQB, and HEN pins. Maximum PC trace lengths on the order of 6" are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the Vcc and GND circuits. Pull up/down all unused inputs or signals that will be inputs during reset.

Signal Stability

When designing hardware to interface with the Host Interface, it is important to ensure that all signals be clean and free from noise. Particular attention should be given to the quality of the Host Enable (HEN). All inputs to the port should be stable when HEN is asserted and should remain stable until HEN has fully returned to the deasserted state. It is important to note that such phenomena as ground-bounce and cross-talk can inadvertently cause HEN to temporarily rise above Vil max. Should this occur without completing the full logic transition to Vih min, the DSP56001 Host Port may not correctly update the port status information which can result in storing two or more copies of a single down loaded data word. Of course, if a full logic transition occurs, the part will complete a normal data transfer operation.

DSP56001

MOTOROLA

 

7

DSP56001 Electrical Characteristics

DC Electrical Characteristics (Vcc = 5.0 Vdc + 10%; TJ = -40 to +105° C at 20.5 MHz and 27 MHz) (Vcc = 5.0 Vdc + 5%; TJ = -40 to +105° C at 33 MHz)

 

 

 

 

 

 

 

Characteristic

 

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

Supply Voltage

20, 27 MH z

 

Vcc

4.5

5.0

5.5

V

 

 

 

 

 

 

 

 

 

 

33 MHz

 

 

4.75

 

5.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input High Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIH

2.0

Vcc

V

Except EXTAL,

RESET,

 

MODA/IRQA,

 

MODB/IRQB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Low Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

-0.5

0.8

V

Except EXTAL, MODA/IRQA,

 

MODB/IRQB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input High Voltage

 

 

 

 

 

 

 

 

EXTAL

 

VIHC

4.0

Vcc

V

Input Low Voltage

 

 

 

 

 

 

 

 

EXTAL

 

VILC

-0.5

0.6

V

Input High Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHR

2.5

Vcc

V

 

 

 

 

 

 

 

 

RESET

Input High Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHM

3.5

Vcc

V

 

MODA/IRQA

and MODB/IRQB

Input Low Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VILM

-0.5

2.0

V

 

MODA/IRQA

and MODB/IRQB

Input Leakage Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iin

-1

1

uA

EXTAL,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET,

MODA/IRQA,

MODB/IRQB,

BR

 

 

 

 

 

 

 

 

 

 

 

 

 

Three-State (Off-State) Input Current

 

ITSI

-10

10

uA

(@2.4 V/0.4 V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output High Voltage

 

 

(IOH = -0.4 mA)

 

VOH

2.4

V

Output Low Voltage

 

 

(IOL = 1.6 mA;

 

VOL

0.4

V

 

RD,

 

WR

IOL = 1.6 mA; Open Drain

 

 

 

 

 

 

 

HREQ

IOL = 6.7 mA, TXD IOL = 6.7 mA)

 

 

 

 

 

 

Total Supply Current

 

 

 

5.25 V, 33 MHz

 

IDD33

160

185

mA

 

 

 

 

 

 

 

 

 

 

5 . 5 V, 27 MHz

 

IDD27

130

155

mA

 

 

 

 

 

 

 

 

 

 

5 . 5 V, 20 MHz

 

IDD20

100

115

mA

 

 

 

 

 

 

 

 

in WAIT Mode (see Note 1)

 

IDDW

10

25

mA

 

 

 

 

 

 

 

 

in STOP Mode (see Note 1)

 

IDDS

100

2000

μA

Input Capacitance

 

 

 

 

(see Note 2)

 

Cin

10

pf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

1.In order to obtain these results all inputs must be terminated (i.e., not allowed to float).

2.Periodically sampled and not 100% tested.

MOTOROLA

DSP56001

8

 

DSP56001 Electrical Characteristics

AC Electrical Characteristics

The timing waveforms in the AC Electrical Characteristics are tested with a VIL maximum of 0.5 V and a VIH minimum of 2.4 V for

all pins, except EXTAL, RESET, MODA, and MODB. These four pins are tested using the input levels set forth in the DC Electrical Characteristics. AC timing specifications which are referenced to a device input signal are measured in production with respect to the 50% point of the respective input signal’s transition. DSP56001 output levels are measured with the production test machine VOL and VOH reference levels set at 0.8 V and 2.0 V respectively.

AC Electrical Characteristics - Clock Operation

The DSP56001 system clock may be derived from the on-chip crystal oscillator as shown in Clock Figure 1, or it may be externally supplied. An externally supplied square wave voltage source should be connected to EXTAL, leaving XTAL physically unconnected (see Clock Figure 2) to the board or socket. The rise and fall time of this external clock should be 5 ns maximum.

Num

Characteristics

20.5 MHz

27 MHz

33 MHz

Unit

 

 

 

Min

 

Max

Min

 

Max

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency of Operation (EXTAL Pin)

4.0

 

20.5

4.0

 

27.0

4.0

 

33.0

MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

External Clock Input High (tch) —

22

 

150

17

 

150

13.5

 

150

ns

 

 

 

 

 

 

 

 

 

 

 

 

EXTAL Pin

(see Note 1 and 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

External Clock Input Low (tcl) —

22

 

150

17

 

150

13.5

 

150

ns

 

 

 

 

 

 

 

 

 

 

 

 

EXTAL Pin

(see Note 1 and 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Clock Cycle Time = cyc = 2T

48.75

 

250

37

 

250

30.33

 

250

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Instruction Cycle Time = Icyc = 4T

97.5

 

500

74

 

500

60

 

500

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

1.External Clock Input High and External Clock Input Low are measured at 50% of the input transition. tch and tcl are dependent on the duty cycle.

2.T = Icyc / 4 is used in the electrical characteristics. T represents an average which is independent of the duty cycle.

DSP56001

MOTOROLA

 

9

DSP56001 Electrical Characteristics

XTAL EXTAL

 

R

C

C

 

XTAL1

Fundamental Frequency

Crystal Oscillator

Suggested Component Values

For fosc = 4 MHz:

R = 680 KΩ + 10% C = 20 pf + 20%

For fosc = 30 MHz:

R = 680 KΩ + 10%

C = 20 pf + 20%

Notes:

(1) The suggested crystal source is ICM,

# 433163 - 4.00 (4MHz fundamental, 20 pf load) or # 436163 - 30.00 (30 MHz fundamental, 20 pf load).

 

 

 

 

 

EXTAL

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C2

XTAL1*

 

 

 

 

C3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3rd Overtone

Crystal Oscillator

Suggested Component Values R1 = 470 KΩ + 10%

R2 = 330 Ω + 10%

C1 = 0.1 μf + 20%

C2 = 26 pf + 20%

C3 = 20 pf + 10%

L1 = 2.37 μH + 10%

XTAL =33 MHz, AT cut, 20 pf load, 5 0Ω max series resistance

Notes:

(1)*3rd overtone crystal.

(2)The suggested crystal source is ICM, # 471163 - 33.00 (33 MHz 3rd overtone, 20 pf load).

(3)R2 limits crystal current

(4)Reference Benjamin Parzen, The Design of Crystal and Other Harmonic Oscillators, John Wiley& Sons, 1983

Clock Figure 1. Crystal Oscillator Circuits

 

VIHC

EXTAL

Midpoint

 

VILC

2

1

 

3

 

4

Note: The midpoint is VILC + 0.5 (VIHC - VILC).

Clock Figure 2. External Clock Timing

MOTOROLA

DSP56001

10

 

DSP56001 Electrical Characteristics

AC Electrical Characteristics - Reset, Stop, Mode Select and Interrupt Timing

(Vcc = 5.0 Vdc +10%, TJ = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz)

(Vcc = 5.0 Vdc + 5%, TJ = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz) (See Control Figure 1 through 8)

cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles

WS = Number of wait states (1 WS = 1 cyc = 2T) programmed into external bus access using BCR (WS = 0 - 15)

tch = Clock high period tcl = Clock low period

Num

 

 

Characteristics

20.5 MHz

27 MHz

33 MHz

 

Unit

 

 

 

 

 

 

 

 

Min

 

Max

Min

 

Max

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

Delay from

 

Assertion to

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

Address High Impedance (periodically

 

50

 

38

 

31

 

ns

 

 

sampled and not 100% tested)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

Minimum Stabilization Duration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Osc. (see Note 1)

75000 cyc

 

75000*cyc

 

75000*cyc

 

 

ns

 

 

 

 

 

 

 

 

*

 

25 cyc

 

25 cyc

 

 

ns

 

 

 

External Clock (see Note 2)

25 cyc

 

 

 

 

 

 

 

*

 

 

*

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

Delay from Asynchronous

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

Deassertion to First External Address

8 cyc

 

9 cyc+40

8*cyc

 

9*cyc+31

8*cyc

 

9*cyc+25

 

ns

 

 

Output (Internal Reset Negation)

*

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

Synchronous Reset Setup Time from

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deassertion to Falling Edge of

20

 

cyc-10

15

 

cyc-8

13

 

cyc-7

 

ns

 

 

RESET

 

 

External Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

Synchronous Reset Delay Time from

 

 

 

 

 

 

 

 

 

 

 

 

 

the Synchronous Falling Edge of Exter-

8 cyc+5

 

8 cyc+30

8*cyc+5

 

8*cyc+23

8*cyc+5

 

8*cyc+19

 

ns

 

 

nal Clock to the First External Address

*

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

Mode Select Setup Time

100

 

77

 

62

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

15

Mode Select Hold Time

0

 

0

 

 

0

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

Edge-Triggered Interrupt Request

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

assertion

25

 

17

 

16

 

 

ns

16a

 

 

 

 

 

15

 

10

 

10

 

 

ns

 

 

 

 

deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHR

RESET

 

10

11

9

 

A0-A15

First Fetch

Control Figure 1. Reset Timing

 

DSP56001

MOTOROLA

 

11

DSP56001 Electrical Characteristics

AC Electrical Characteristics - Reset, Stop, Mode Select, and Interrupt Timing

(Continued)

NOTE

When using fast interrupts and IRQA and IRQB are defined as level-sensitive, then timings 19 through 22 apply to prevent multiple interrupt service. To avoid these timing restrictions, the negative edge-triggered mode is rec-

ommended when using fast interrupt. Long interrupts are recommended when using level-sensitive mode.

Num

Characteristics

20.5 MHz

 

 

27 MHz

 

 

33 MHz

Unit

 

 

 

 

 

 

 

 

Min

 

Max

 

 

Min

 

Max

 

 

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

Delay from

 

 

 

 

 

Assertion to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRQA,

IRQB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External Memory Access Address Out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valid Caused by First Interrupt

5 cyc+tch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction Fetch

 

5 cyc+tch

 

5 cyc+tch

 

ns

 

 

 

 

 

 

9*cyc+tch

 

 

 

 

 

 

 

Instruction Execution

 

9

*

cyc+tch

 

9

*

cyc+tch

 

ns

 

 

 

 

*

 

*

 

*

 

18

Delay from

IRQA,

 

IRQB

Assertion to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Purpose Transfer Output Valid

11+cyc

 

11 cyc

 

11 cyc

 

ns

 

Caused by First Interrupt Instruction

+tch

 

 

 

 

*

 

 

 

 

*

 

 

 

 

 

 

 

 

+tch

 

 

 

 

+tch

 

 

 

 

Execution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

Delay from Address Output Valid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Caused by First Interrupt Instruction

 

2 cyc+tcl+

 

 

 

2 cyc+tcl+

 

 

 

2 cyc+tcl+

ns

 

Execution to Interrupt Request

 

 

*

 

 

 

 

*

 

 

 

 

*

 

 

 

 

(cyc WS)

 

 

 

 

(cyc WS)

 

 

 

 

(cyc WS)

 

 

Deassertion for Level Sensitive Fast

 

 

*

 

 

 

 

*

 

 

 

 

*

 

 

 

 

-44

 

 

 

 

-34

 

 

 

 

-27

 

 

Interrupts

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

Delay from

 

 

Assertion to Interrupt

 

 

2 cyc+

 

 

 

 

2 cyc+

 

 

 

 

2 cyc+

ns

RD

 

 

 

 

 

 

 

 

Request Deassertion for Level

 

*

 

 

 

*

 

 

 

*

 

 

 

(cyc WS)

 

 

 

(cyc WS)

 

 

 

(cyc WS)

 

 

Sensitive Fast Interrupts

 

 

*

 

 

 

 

*

 

 

 

 

*

 

 

 

 

-40

 

 

 

 

-31

 

 

 

 

-25

 

21

Delay from

 

 

Assertion to WS=0

 

2 cyc-40

 

 

 

2 cyc-31

 

 

 

2 cyc-25

ns

WR

 

 

 

 

 

Interrupt Request Deassertion for

 

*

 

 

 

*

 

 

 

*

ns

 

 

cyc+tcl+

 

 

 

cyc+tcl+

 

 

 

cyc+tcl+

 

WS>0 Level Sensitive Fast Interrupts

 

 

(cyc WS)

 

 

 

 

(cyc WS)

 

 

 

 

(cyc WS)

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

*

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

-40

 

 

 

 

-31

 

 

 

 

-25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Delay from General-Purpose Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valid to Interrupt Request Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for Level Sensitive Fast Interrupts

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- If Second Interrupt Instruction is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two Cycle

 

tcl-60

 

 

 

tcl-46

 

 

 

tcl-37

ns

 

 

 

 

 

 

 

 

 

(2 cyc)+tcl

 

 

 

(2 cyc)+tcl

 

 

 

(2 cyc)+tcl

ns

 

 

 

 

 

 

 

 

 

 

* -60

 

 

 

 

* -46

 

 

 

 

* -37

 

MOTOROLA

DSP56001

12

 

DSP56001 Electrical Characteristics

AC Electrical Characteristics - Reset, Stop, Mode Select, and Interrupt Timing

(Continued)

Num

 

Characteristics

20.5 MHz

27 MHz

33 MHz

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

Min

 

Max

Min

 

Max

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

Synchronous Interrupt Setup Time

 

 

 

 

 

 

 

 

 

 

 

 

from

IRQA,

 

IRQB Assertion to the

25

 

cyc-10

19

 

cyc-8

16

 

cyc-7

 

ns

 

Synchronous Rising Edge of External

 

 

 

 

 

 

 

 

 

 

 

 

Clock

(see Notes 5, 6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

Synchronous Interrupt Delay Time

 

 

 

 

 

 

 

 

 

 

 

 

from the Synchronous Rising Edge of

13 cyc+

 

13 cyc+

13 cyc+

 

13 cyc+

13 cyc+

 

13 cyc+

 

ns

 

External Clock to the First External

*

 

*

*

 

*

*

 

*

 

 

 

tch+8

 

tch+30

tch+6

 

tch+23

tch+5

 

tch+19

 

 

 

Address Output Valid Caused by the

 

 

 

 

 

 

 

 

 

 

 

 

First Instruction Fetch after Coming out

 

 

 

 

 

 

 

 

 

 

 

 

of Wait State (see Notes 3, 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

Duration for

 

 

Assertion to

 

 

 

 

 

 

 

 

 

 

 

IRQA

 

 

 

 

 

 

 

 

 

 

 

 

Recover from Stop State (see Note 4)

25

 

19

 

16

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

Delay from

 

 

Assertion to Fetch of

 

 

 

 

 

 

 

 

 

 

 

IRQA

 

 

 

 

 

 

 

 

 

 

 

 

First Instruction (for Stop) for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Osc / OMR bit 6 = 0

65545 cyc

 

65545 cyc

 

65545 cyc

 

 

ns

 

 

 

External Clock / OMR bit 6 = 1

*

 

*

 

*

 

 

ns

 

 

 

17 cyc

 

17 cyc

 

17 cyc

 

 

 

(see Notes 1, 2, and 7)

*

 

 

*

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

Duration for Level Sensitive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRQA

 

 

 

 

 

 

 

 

 

 

 

 

Assertion to Fetch of First Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

Instruction (for Stop) for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Osc / OMR bit 6 = 0

65533 cyc

 

65533 cyc

 

65533 cyc

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

*

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+tcl

 

 

+tcl

 

 

+tcl

 

 

 

 

 

 

 

External Clock / OMR bit 6 = 1

5 cyc+tcl

 

5 cyc+tcl

 

5 cyc+tcl

 

 

ns

 

(see Notes 1, 2, and 7)

*

 

 

*

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

Delay from Level Sensitive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRQA

 

 

 

 

 

 

 

 

 

 

 

 

Assertion to Fetch of First Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

Instruction (for Stop) for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Osc / OMR bit 6 = 0

65545 cyc

 

65545 cyc

 

65545 cyc

 

 

ns

 

 

 

External Clock / OMR bit 6 = 1

*

 

*

 

*

 

 

ns

 

 

 

17 cyc

 

17 cyc

 

17 cyc

 

 

 

(see Notes 1, 2, and 7)

*

 

 

*

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

1.A clock stabilization delay is required when using the on-chip crystal oscillator in two cases:

1)after power-on reset, and

2)when recovering from Stop mode.

During this stabilization period, T will not be constant. Since this stabilization period varies, a delay of 150,000T is typically allowed to assure that the oscillator is stabilized before executing programs. While it is possible to set OMR bit 6 = 1 when using

the internal crystal oscillator, it is not recommended and these specifications do not

guarantee timings for that case. See Section 8.5 in the DSP56000/DSP56001 User’s Manual for additional information.

2.Circuit stabilization delay is required during reset when using an external clock in two cases:

1)after power-on reset, and

2)when recovering from Stop mode.

3.For Revision B silicon, the min and max numbers are 12cyc+Tch+8 and 12cyc+Tch+30, respectively.

4.The minimum is specified for the duration of an edge triggered IRQA interrupt required to recover from the STOP state without having the IRQA interrupt accepted.

5.Timing #23 is for all IRQx interrupts while timing #24 is only when exiting WAIT.

6.Timing #23 triggers off T1 in the normal state and off T1/T3 when exiting the WAIT state.

7.The timings in the table are for Rev. C parts. The timings for Rev. C parts are shorter by 1 cyc than

the Rev. B parts when OMR6=0.

DSP56001

MOTOROLA

 

13

DSP56001 Electrical Characteristics

EXTAL

12

RESET

13

11

A0-A15,

DS, PS

X/Y

Control Figure 2. Synchronous Reset Timing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHM

 

 

 

VIH

MODA, MODB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VILM

 

 

 

 

 

IRQA,

IRQB

 

 

 

 

 

 

 

VIL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control Figure 3. Operating Mode Select Timing

IRQA, IRQB

16

 

16a

 

Control Figure 4. External Interrupt Timing (Negative Edge-Triggered)

MOTOROLA

DSP56001

14

 

DSP56001 Electrical Characteristics

A0-A15

First Interrupt Instruction Execution

RD

 

 

20

WR

 

 

21

17

19

IRQA

 

IRQB

 

 

a) First Interrupt Instruction Execution

General

 

Purpose

 

I/O

 

18

22

IRQA

 

IRQB

 

 

b) General Purpose I/O

Control Figure 5. External Level-Sensitive Fast Interrupt Timing

DSP56001

MOTOROLA

 

15

Motorola DSP56001RC33, DSP56001RC20, DSP56001FE33, DSP56001FE27, DSP56001FE20 Datasheet

DSP56001 Electrical Characteristics

EXTAL

T0, T2

T1, T3

 

 

 

23

 

IRQA, IRQB

 

 

 

 

24

A0-A15, DS

 

 

PS, X/Y

 

 

Control Figure 6. Synchronous Interrupt and Synchronous Wait State Timing

IRQA

25

 

 

 

 

26

 

A0-A15, DS,

 

 

First Instruction Fetch

 

 

 

 

 

 

PS,

X/Y

 

 

 

 

 

 

 

Control Figure 7. Recovery from Stop State Using

 

 

 

 

 

 

IRQA

IRQA

27

 

 

28

A0-A15, DS,

First IRQA Interrupt

PS, X/Y

Instruction Fetch

Control Figure 8. Recovery from Stop State Using IRQA Interrupt Service

MOTOROLA

DSP56001

16

 

DSP56001 Electrical Characteristics

HOST PORT USAGE CONSIDERATIONS

Careful synchronization is required when reading multibit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected. The situation exists in the Host port. The considerations for proper operation are discussed below.

Host Programmer Considerations

1.Unsynchronized Reading of Receive Byte Registers

When reading receive byte registers, RXH, RXM, or RXL, the Host programmer should use interrupts or poll the RXDF flag which indicates that data is available. This assures that the data in the receive byte registers will be stable.

2.Overwriting Transmit Byte Registers

The Host programmer should not write to the transmit byte registers, TXH, TXM, or TXL, unless the TXDE bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the HRX register.

3.Synchronization of Status Bits from DSP to Host

HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF (refer to DSP56000/DSP56001 User’s Manual, I/O Interface section, Host/ DMA Interface Programming Model for descriptions of these status bits) status bits are set or cleared from inside the DSP and read by the Host processor. The Host can read these status bits very quickly without regard to the clock rate used by the DSP, but the possibility exists that the state of the bit could be changing during the read operation. This is generally not a system problem, since the bit will be read correctly in the next pass of any Host polling routine.

However, if the Host asserts the HEN for more than timing number 31a (T31a), with a minimum cycle time of timing number 32a (T32a), then the status is guaranteed to be stable.

A potential problem exists when reading status bits HF3 and HF2 as an encoded pair. If the DSP changes HF3 and HF2 from 00 to 11, there is a small probability that the Host could read the bits during the transition and receive 01 or 10 instead of 11. If the combination of HF3 and HF2 has significance, the Host could read the wrong combination.

Solution:

a.Read the bits twice and check for consensus.

b.Assert HEN access for T31a so that status bit transitions are stabilized.

4.Overwriting the Host Vector

The Host programmer should change the Host Vector register only when the Host Command bit (HC) is clear. This change will guarantee that the DSP interrupt control logic will receive a stable vector.

5.Cancelling a Pending Host Command Exception

The Host processor may elect to clear the HC bit to cancel the Host Command Exception request at any time before it is recognized by the DSP. Because the Host does not know exactly when the exception will be recognized (due to exception processing synchronization and pipeline delays), the DSP may execute the Host exception after the HC bit is cleared. For these reasons, the HV bits must not be changed at the same time the HC bit is cleared.

DSP Programmer Considerations

1.Reading HF0 and HF1 as an Encoded Pair

DMA, HF1, HF0, and HCP, HTDE, and HRDF (refer to DSP56000/DSP56001 User’s Manual, I/O Interface section, Host/DMA Interface Programming Model for descriptions of these status bits) status bits are set or cleared by the Host processor side of the interface. These bits are individually synchronized to the DSP clock.

A potential problem exists when reading status bits HF1 and HF2 as an encoded pair, i.e., the four combinations 00, 01, 10, and 11 each have significance. A very small probability exists that the DSP will read the status bits synchronized during transition. The solution to this potential problem is to read the bits twice for consensus.

DSP56001

MOTOROLA

 

17

DSP56001 Electrical Characteristics

AC Electrical Characteristics - Host I/O Timing

(Vcc = 5.0 Vdc + 10%, TJ = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz) (Vcc = 5.0 Vdc + 5%, TJ = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz)

(see Host Figures 1 through 6)

cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles tHSDL = Host Synchronization Delay Time

Active low lines should be “pulled up” in a manner consistent with the AC and DC specifications

Num

 

 

 

 

 

 

 

Characteristics

20.5 MHz

27 MHz

33 MHz

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min

 

Max

Min

 

Max

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

Host Synchronous Delay (see Note 1)

tcl

 

cyc+tcl

tcl

 

cyc+tcl

tcl

 

cyc+tcl

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HEN/HACK Assertion Width

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(see Note 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

a.CVR, ICR, ISR Read (see Note 4)

cyc+60

 

cyc+46

 

cyc+37

 

ns

 

 

 

b.Read

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

39

 

31

 

ns

 

 

 

c.Write

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

19

 

16

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

19

 

16

 

ns

 

HEN/HACK Deassertion Width

 

 

 

 

 

 

 

 

 

(see Note 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32a

 

 

Minimum Cycle Time Between Two

 

 

 

 

 

 

 

 

 

 

 

 

 

HEN Assertion for Consecutive CVR,

2*cyc+60

 

2 *cyc+46

 

2 *cyc+37

 

ns

 

 

 

ICR, and ISR Reads

(see Note 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

 

 

Host Data Input Setup Time Before

5

 

4

 

4

 

ns

 

 

 

HEN/HACK Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

 

 

Host Data Input Hold Time After

 

 

 

 

 

 

5

 

4

 

4

 

ns

 

HEN/

 

 

 

HACK Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

0

 

ns

HEN/HACK Assertion to Output Data

 

 

 

Active from High Impedance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

39

 

31

ns

HEN/HACK Assertion to Output Data

 

 

 

Valid (periodically sampled, and not

 

 

 

 

 

 

 

 

 

 

 

 

 

100% tested)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

27

 

22

ns

 

HEN/HACK Deassertion to Output

 

 

 

Data High Impedance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

 

 

Output Data Hold Time After

 

 

 

 

 

 

 

 

 

 

 

 

5

 

4

 

4

 

ns

 

HEN/

 

 

 

HACK Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

 

 

 

 

 

 

 

Low Setup Time Before

 

 

 

 

 

 

 

 

 

 

0

 

0

 

0

 

ns

 

HR/W

HEN

 

 

 

Assertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

Low Hold Time After

 

 

 

 

 

 

 

 

 

 

 

5

 

4

 

4

 

ns

 

HR/W

HEN

 

 

 

Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

 

 

 

 

 

 

 

High Setup Time to

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

0

 

ns

 

HR/W

HEN

 

 

 

Assertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

 

 

 

 

 

 

 

High Hold Time After

 

 

 

 

 

 

 

 

 

 

 

5

 

4

 

4

 

ns

 

HR/W

HEN/

 

 

 

HACK Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

 

HA0-HA2 Setup Time Before

 

 

 

 

 

 

 

 

 

 

0

 

0

 

0

 

ns

HEN

 

 

 

Assertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

 

 

HA0-HA2 Hold Time After

 

 

 

 

 

 

 

 

 

5

 

4

 

4

 

ns

 

HEN

 

 

 

Deassertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

 

DMA

 

 

Assertion to

 

 

 

 

 

 

 

 

 

 

 

5

 

60

4

 

46

4

 

49

ns

HACK

HREQ

 

 

 

Deassertion

(see Note 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOTOROLA

DSP56001

18

 

DSP56001 Electrical Characteristics

AC Electrical Characteristics - Host I/O Timing (Continued)

(Vcc = 5.0 Vdc + 10%, TJ = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz (Vcc = 5.0 Vdc + 5%, TJ = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz,

see Host Figures 1 through 6)

cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles tHSDL = Host Synchronization Delay Time

Active low lines should be “pulled up” in a manner consistent with the AC and DC specifications

Num

 

Characteristics

20.5 MHz

27 MHz

 

 

33 MHz

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min

 

Max

Min

 

Max

 

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

DMA

 

 

 

 

Deassertion to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HACK

HREQ

 

 

 

 

 

 

 

 

 

 

 

 

Assertion

(see Note 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for DMA RXL Read

tHSDL+cyc

 

tHSDL+cyc

 

 

tHSDL+cyc

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+tch+5

 

 

+tch+4

 

 

 

+tch+4

 

 

 

 

 

 

 

 

 

 

 

for DMA TXL Write

tHSDL+cyc+5

 

tHSDL+cyc+4

 

 

tHSDL+cyc+4

 

ns

 

 

 

 

 

 

 

 

for All Other Cases

5

 

4

 

 

4

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

Delay from

 

 

 

 

Deassertion to

 

 

 

 

tHSDL+cyc

 

tHSDL+cyc

 

 

tHSDL+cyc

 

ns

HEN

HREQ

 

Assertion for RXL Read

(see Note 3)

+tch+5

 

 

+tch+4

 

 

 

+tch+4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

Delay from

 

 

 

 

 

Deassertion to

 

 

 

 

tHSDL+cyc+5

 

tHSDL+cyc+4

 

 

tHSDL+cyc+4

 

ns

HEN

HREQ

 

Assertion for TXL Write

(see Note 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

Delay from

 

 

 

Assertion to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HEN

HREQ

 

 

 

 

 

 

 

 

 

 

 

 

DeassertionforRXLRead,TXLWrite

5

 

75

4

 

70

 

4

 

65

ns

 

(see Note 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

1. “Host synchronization delay (tHSDL)” is the time period required for the DSP56001 to sample any external asynchronous input signal, determine whether it is high or low, and synchronize it to the DSP56001 internal clock.

2.See HOST PORT USAGE CONSIDERATIONS.

3.HREQ is pulled up by a 1kΩ resistor.

4.This timing must be adhered to only if two consecutive reads from one of these registers are executed.

5.It is recommended that timing #32 be 2cyc+tch+10 minimum for 20.5 MHz, 2cyc+tch+7 minimum for 27 MHz, and 2cyc+tch+6 minimum for 33 MHz if two consecutive writes to TXL are executed without polling TXDE or HREQ.

EXTERNAL

30

30

INTERNAL

Host Figure 1. Host Synchronization Delay

DSP56001

MOTOROLA

 

19

DSP56001 Electrical Characteristics

HREQ

 

 

(OUTPUT)

 

 

 

31

32

HACK

 

 

(INPUT)

 

 

 

41

42

HR/W

 

 

(INPUT)

 

 

 

36

37

 

35

38

H0-H7

Data

Valid

(OUTPUT)

 

 

 

Host Figure 2. Host Interrupt Vector Register (IVR) Read

MOTOROLA

DSP56001

20

 

Loading...
+ 44 hidden pages