
PD -97693
IRFB812PbF
Applications
• Zero Voltage Switching SMPS
• Uninterruptible Power Supplies
• Motor Control applications
V
DSSRDS(on)
500V
HEXFET® Power MOSFET
Trr
typ.
I
75ns 3.6A
1.75Ω
typ.
Features and Benefits
• Fast body diode eliminates the need for external
diodes in ZVS applications.
• Lower Gate charge results in simpler drive requirements.
• Higher Gate voltage threshold offers improved noise
immunity
.
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
I
@ TC = 25°C Continuous Drain Current, V
D
I
@ TC = 100°C Continuous Drain Current, VGS @ 10V 2.3 A
D
I
DM
P
@TC = 25°C Power Dissipation 78 W
D
V
GS
dv/dt
T
J
T
STG
Pulsed Drain Current
Linear Derating Factor 0.63 W/°C
Gate-to-Source Voltage ± 20 V
Peak Diode Recovery dv/dt
Operating Junction and -55 to + 150
Storage Temperature Range °C
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torque, 6-32 or M3 screw
c
@ 10V 3.6
GS
e
10lbxin (1.1Nxm)
14.4
32 V/ns
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units Conditions
I
I
V
t
Q
I
t
S
SM
SD
rr
rr
RRM
on
Continuous Source Current ––– ––– 3.6 MOSFET symbol
(Body Diode) A showing the
Pulsed Source Current ––– ––– 14.4 integral reverse
(Body Diode)
Diode Forward Voltage ––– ––– 1.2 V TJ = 25°C, IS = 3.6A, VGS = 0V
Reverse Recovery Time ––– 75 110 ns TJ = 25°C, IF = 3.6A
Reverse Recovery Charge ––– 135 200 nC
Reverse Recovery Current ––– 3.2 4.8 A
Forward Turn-On Time
c
p-n junction diode.
––– 94 140 T
––– 220 330 TJ = 125°C, di/dt = 100A/μs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
= 125°C, di/dt = 100A/μs
J
= 25°C, IS = 3.6A, VGS = 0V
T
J
= 25°C
T
J
G
f
f
f
f
Notes through are on page 2
www.irf.com 1
D
D
S
6/23/11

IRFB812PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
Δ
V
R
DS(on)
V
GS(th)
I
DSS
I
GSS
(BR)DSS
Drain-to-Source Breakdown Voltage 500 ––– ––– V
/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.37 ––– V/°C
Static Drain-to-Source On-Resistance ––– 1.75 2.2
Ω
Gate Threshold Voltage 3.0 ––– 5.0 V
Drain-to-Source Leakage Current ––– ––– 25 μA
––– ––– 2.0 mA
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
VGS = 0V, ID = 250μA
Reference to 25°C, I
V
GS
V
DS
V
DS
V
DS
VGS = 20V
V
GS
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 7.6 ––– ––– S
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 5.9 –––
oss
eff. (ER) Effective Output Capacitance ––– 37 –––
C
oss
Total Gate Charge ––– ––– 20
Gate-to-Source Charge ––– ––– 7.3 nC
Gate-to-Drain ("Miller") Charge ––– ––– 7.1
Turn-On Delay Time ––– 14 –––
Rise Time –––22–––ns
Turn-Off Delay Time ––– 24 –––
Fall Time –––17–––
Input Capacitance ––– 810 –––
Output Capacitance ––– 47 –––
Reverse Transfer Capacitance ––– 7.3 –––
Output Capacitance ––– 610 ––– pF VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 16 ––– VGS = 0V, VDS = 400V, ƒ = 1.0MH
(Energy Related)
VDS = 50V, ID = 2.2A
= 3.6A
I
D
V
DS
V
GS
VDD = 250V
= 3.6A
I
D
R
G
V
GS
VGS = 0V
V
DS
ƒ = 1.0MHz, See Fig. 5
V
GS
Avalanche Characteristics
E
AS
I
AR
E
AR
Symbol
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Parameter Typ. Units
d
c
c
––– mJ
––– A
––– mJ
Thermal Resistance
Symbol Parameter Typ. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface 0.5 °C/W
Junction-to-Ambient
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See Fig. 11)
Starting T
I
AS
I
SD
TJ ≤ 150°C.
= 25°C, L = 93mH, RG = 25Ω,
J
= 1.8A. (See Figure 13).
= 3.6A, di/dt ≤ 520A/μs, VDDV
h
(BR)DSS
–––
h
–––
Pulse width ≤ 300μs; duty cycle ≤ 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C
,
R
while V
oss
C
eff.(ER) is a fixed capacitance that stores the same energy
oss
as C
while VDS is rising from 0 to 80% V
oss
is measured at TJ approximately 90°C
θ
is rising from 0 to 80% V
DS
2 www.irf.com
Conditions
= 250μA
D
= 10V, ID = 2.2A
f
= VGS, ID = 250μA
= 500V, VGS = 0V
= 400V, VGS = 0V, TJ = 125°C
= -20V
Conditions
= 400V
= 10V, See Fig.14a &14b
= 17Ω
= 10V, See Fig. 15a & 15b
= 25V
= 0V,VDS = 0V to 400V
Max.
150
1.8
7.8
Max.
1.6
–––
62
.
DSS
.
DSS
f
f
g

IRFB812PbF
100
5.3V
VGS
10V
6.2V
5.9V
5.8V
5.6V
5.5V
60μs PULSE WIDTH
≤
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
TOP 15V
10
BOTTOM 5.3V
1
0.1
Tj = 25°C
0.01
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
100
V
= 50V
DS
60μs PULSE WIDTH
10
≤
TJ = 150°C
1
TJ = 25°C
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
0.1
4 5 6 7 8
VGS, Gate-to-Source Voltage (V)
100
TOP 15V
)
A
(
t
n
e
r
10
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
BOTTOM 5.3V
1
0.1
VGS
10V
6.2V
5.9V
5.8V
5.6V
5.5V
5.3V
60μs PULSE WIDTH
≤
Tj = 150°C
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
e
c
n
a
t
s
i
s
e
R
n
O
e
c
r
u
o
S
o
t
n
i
a
r
D
,
)
n
o
(
S
D
R
ID = 3.6A
V
= 10V
GS
2.5
2.0
)
d
e
z
i
l
1.5
a
m
r
o
N
(
1.0
0.5
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com 3

IRFB812PbF
100000
10000
)
F
p
(
e
1000
c
n
a
t
i
c
a
p
100
a
C
,
C
10
1
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
gs
gd
ds
C
C
oss
C
+ Cgd, C
+ C
iss
rss
iss
C
rss
C
oss
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
)
V
(
650
e
SHORTED
ds
gd
g
a
t
l
o
V
n
w
o
d
k
a
e
r
B
e
c
r
u
o
S
o
t
n
i
a
r
D
,
S
S
D
)
R
B
(
V
Id = 250uA
600
550
500
-60 -40 -20 0 20 40 60 80 100 120140 160
TJ , Temperature ( °C )
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
16
)
V
(
e
g
a
t
l
o
V
e
c
r
u
o
S
o
t
e
t
a
G
,
V
ID= 3.6A
VDS= 400V
12
8
4
S
G
0
0 4 8 12 16
VDS= 250V
VDS= 100V
Q
Total Gate Charge (nC)
G
Fig 6. Typ. Breadown Voltage
vs. Temperature
100
)
A
(
t
n
e
r
r
10
u
C
n
i
a
r
D
e
s
r
e
v
1
e
R
,
D
S
I
0.1
0.2 0.4 0.6 0.8 1.0
VSD, Source-to-Drain Voltage (V)
TJ = 150°C
TJ = 25°C
V
GS
= 0V
4 www.irf.com

4
3
)
A
(
t
n
e
r
r
u
C
2
n
i
a
r
D
,
D
I
1
0
25 50 75 100 125 150
TC , CaseTemperature (°C)
IRFB812PbF
)
3.0
Ω
(
e
c
n
a
t
s
i
s
e
R
2.5
n
O
e
c
r
u
o
S
o
t
n
i
2.0
a
r
D
,
)
n
o
(
S
D
R
1.5
01234567
V
= 20V
GS
V
GS
ID , Drain Current (A)
= 10V
Fig 9. Maximum Drain Current Vs.
Fig 9. Typical Rdson Vs. Drain Current
Case Temperature
10
)
C
1
J
h
t
Z
(
e
s
n
o
p
s
e
R
l
a
m
r
e
h
T
0.001
D = 0.50
0.20
0.1
0.01
1E-006 1E-005 0.0001 0.001 0.01 0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
t1 , Rectangular Pulse Duration (sec)
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5

IRFB812PbF
100
)
A
(
t
10
n
e
r
r
u
C
e
c
r
u
1
o
S
o
t
n
i
a
r
D
0.1
,
D
I
Tc = 25°C
Tj = 150°C
Single Pulse
0.01
1 10 100 1000
Fig 12. Maximum Safe Operating Area
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100μsec
1msec
10msec
VDS, Drain-toSource Voltage (V)
15V
DC
700
)
J
m
(
600
y
g
r
e
n
E
500
e
h
c
n
400
a
l
a
v
A
300
e
s
l
u
P
e
200
l
g
n
i
S
,
100
S
A
E
0
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy
vs. Drain Current
V
t
p
I
TOP 0.4A
D
0.7A
BOTTOM 1.8A
(BR)DSS
L
D.U.T
I
AS
Ω
0.01
t
p
R
20V
V
DS
G
Fig 13a. Unclamped Inductive Test Circuit
DRIVER
+
V
DD
-
I
AS
Fig 13b. Unclamped Inductive Waveforms
Vds
L
0
DUT
1K
Fig 14a. Gate Charge Test Circuit
VCC
Vgs(th)
Qgs1
Qgs2 Qgd Qg odr
Fig 14b. Gate Charge Waveform
6 www.irf.com
Id
Vgs

IRFB812PbF
R
D.U.T.
D
+
V
DD
-
V
DS
V
GS
R
G
10V
V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 15a. Switching Time Test Circuit Fig 15b. Switching Time Waveforms
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Reverse
Recovery
Current
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
-
• Low Leakage Inductance
Current Transformer
-
• dv/dt controlled by R
• Driver same type as D.U.T.
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
G
+
V
DD
Re-Applied
Voltage
+
-
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple ≤ 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
www.irf.com 7

IRFB812PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 178 9
ASS EMBL ED ON WW 19, 2000
IN THE AS SEMBLY LINE "C"
Note: "P" in ass embly line position
i ndicat es "L ead - F r ee"
INTE RNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
TO-220AB packages are not recommended for Surface Mount Application.
Note:For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
Visit us at www.irf.com for sales contact information.06/11
8 www.irf.com
PART NUMBER
DATE CODE
YEAR 0 = 2000
WEEK 19
LINE C
TAC Fax: (310) 252-7903