HP HPMX-5001-STR, HPMX-5001-TR1, HPMX-5001-TY1 Datasheet

0 (0)
HP HPMX-5001-STR, HPMX-5001-TR1, HPMX-5001-TY1 Datasheet

1.5–2.5 GHz Upconverter/

Downconverter

Technical Data

HPMX-5001

Features

2.7 V Single Supply Voltage

Low Power Consumption (60Ê mA in Transmit Mode, 39 mA in Receive Mode Typical)

2 dBm Typical Transmit Power at 1900 MHz

Half-Frequency VCO with Frequency Doubler

32/33 Dual-Modulus Prescaler

Flexible Chip Biasing, Including Standby Mode

TQFP-32 Surface Mount Package

Operation to 2.5 GHz

Use with Companion HPMX-5002 IF chip

Applications

DECT, UPCS and ISM Band Handsets and Basestations

Plastic TQFP-32 Package

H

-5001 HPMX

YYWW

ZZZ XXXX

Pin Configuration

32

25

1

 

 

 

 

24

 

 

 

 

 

H

 

 

 

 

 

 

HPMX-5001

 

 

 

YYWW

 

 

 

 

 

XXXX

ZZZ

8

 

 

 

17

9

16

Functional Block Diagram

RX IF OUT

POWER DOWN

CONTROL

RX RF IN

 

 

X2

 

EXT.

 

VCO

 

 

TANK

TX RF OUT

 

 

 

32/33

RATIO

 

SELECT

 

 

TX IF IN

PRESCALER

 

 

OUT

 

5965-9105E

 

7-90

General Description

The HPMX-5001 Upconverter/ Downconverter provides RF system designers with all of the necessary features to perform an RF-to-IF downconversion for a receive path, as well as an IF-to- RF upconversion for transmit mode.

Designed to meet the unique needs of portable applications, the HPMX-5001 combines the qualities of flexible chip biasing, low power consumption, and true 2.7 V minimum supply voltage operation to provide superior performance and battery life. By incorporating the active elements of the VCO on-chip, as well as a 32/33 dual-modulus prescaler, overall system component count and costs are decreased. The 32-TQFP package insures that this high level of integration occupies a small amount of printed circuit board space.

The HPMX-5001 can be used in either dual-conversion systems (with the HPMX-5002 IF Demodulator/Modulator) or single-conversion systems. The HPMX-5001 is manufactured

using Hewlett-Packard’s HP-25

Silicon Bipolar Process with

25Ê GHz f and 30 GHz f .

T

Max

HPMX-5001 Absolute Maximum Ratings[1]

Parameter

Min.

Max.

 

 

 

VCC Supply Voltage

-0.2V

8 V

Voltage at Any Pin[4]

-0.2V

V + 0.2 V

 

 

CC

Power Dissipation[2,3]

 

600mW

RF Input Power

 

15 dBm

 

 

 

Junction Temperature

 

+150°C

Storage Temperature

-55°C

+125°C

Thermal Resistance[2]:

θjc = 100°C/W

Notes:

1.Operation of this device in excess of any of these parameters may cause permanent damage.

2.TCASE = 25°C.

3.Derate at 10 mW/°C for TCASE > 90°C.

4.Except CMOS logic inputs – see Summary Characterization Information table.

HPMX-5001 Guaranteed Electrical Specifications

Unless otherwise noted, all parameters are guaranteed under the following conditions: VCC = 3.0 V. Test results are based upon use of networks shown in test board schematic diagram (see Figure 28). Typical values are for VCC = 3.0 V, TA = 25°C.

Symbol

Parameters and Test Conditions

Units

Min.

Typ.

Max.

 

 

 

 

 

 

 

GC

Receive Conversion Gain[1]

 

dB

12

14

 

Pout

Transmitter Power Output

Input[2]

 

 

 

 

 

 

2:1 output VSWR

dBm

0

2

 

 

 

 

 

 

 

 

ICC

Device Supply Current

Transmit Mode

mA

 

64

80

 

 

Receive Mode

mA

 

43

54

 

 

 

 

 

 

 

 

 

Synth Mode

mA

 

15

19

 

 

 

 

 

 

 

Standby Mode (with DIVMC Set High)

μA

 

1

50

V

DIV Single-Ended Swing[3]

 

V

0.7

1

 

DIV

 

 

PP

 

 

 

Notes:

1.50 Ω RF source, 100 MHz < IF < 300 MHz, 1.89 GHz RF. There is a 750 Ω resistor on chip between RXIF and RXIFB (pins 3 and 4). A matching network from 750 Ω to 50 Ω is used for this measurement. Insertion loss of the matching network is included in the net

conversion gain figure. See Figure 28.

2.Signal injected into P3 in Figure 28 is -12.5 dBm.

3.DIV output AC coupled into a 2 kΩ || 10 pF load. See test board schematic diagram, Figure 28.

7-91

HPMX-5001 Summary Characterization Information

Typical values measured on test board shown in Figure 28 at VCC = 3.0 V, TA = 25°C, RXIF = 110.592 MHz, TXRF = 1.89 GHz, unless otherwise noted.

Symbol

 

Parameters and Test Conditions

Units

Typical

 

 

 

 

 

 

 

VIH

 

CMOS Input High Voltage (Can Be Pulled

V

³ VCC-0.8

 

 

up as High as V + 7 V)[1]

 

 

 

 

 

 

 

CC

 

 

 

 

 

VIL

 

CMOS Input Low Voltage

V

£ VCC-1.9

 

IIH

 

CMOS Input High Current

mA

<10

 

 

IIL

 

CMOS Input Low Current

mA

>-300

 

 

ts

 

DIVMC Setup Time[2,8]

ns

4

 

 

 

th

 

DIVMC Hold Time[2,8]

ns

0

 

 

 

tpd

 

DIV Propagation Delay[2,8]

ns

<7

 

 

 

 

Mode Switching Time[3]

ms

<1

 

 

Receive Mode

 

 

 

1.89GHz

 

2.45GHz

 

 

 

 

 

 

 

 

 

Gc

 

Receive Conversion Gain[9]

dB

14

 

13.5

 

NF

 

Noise Figure[4]

dB

10

 

10

 

IIP3

 

Input Third Order Intercept Point

dBm

-8

 

-9

 

IP1dB

 

Input 1 dB Gain Compression Point

dBm

-18

 

-18

 

 

 

LO Leakage (2 x fVCO) at IF Port

dBm

-57

 

 

VSWRin

 

Input VSWR[5]

 

1.3:1

 

1.3:1

 

Transmit Mode[6]

 

 

 

 

 

 

PIM3

 

Power Output Level for >35 dB IM3 Suppression[10]

dBm

 

-5

 

OP1dB

 

Output 1 dB Gain Compression Point

dBm

0

 

0

 

VSWRout

 

Output VSWR

 

1.8:1

 

1.8:1

 

 

 

LO Suppression (2 x fVCO)

dBc

25

 

30

 

F3dBIF

 

IF 3 dB Bandwidth

MHz

500

 

500

 

 

 

Transmitter C/N @ 2 x fVCO + 4 MHz[11]

dBc/Hz

+137

 

+134

 

Synth Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1LO Frequency Range[7]

MHz

750-1200

 

 

 

Notes:

1.All CMOS logic inputs are internally pulled up to logic high level.

2.See Figure 2 for detailed timing diagram.

3.Between any two different biasing modes. This switching time does not include PLL lock-up time.

4.Single sideband noise figure.

5.In modes other than receive, the VSWR may be as high as 10:1.

6.Single-ended 50 Ω RF load, 300 Ω series IF terminations (600 Ω differential), 100 MHz < IF < 300 MHz, 1.89 GHz RF.

7.The LO is followed by a frequency doubler which raises the LO range to 1500-2400 MHz.

8.DIV output AC coupled into a 2 kΩ || 10 pF load. See test diagram, Figure 28.

9.50 Ω RF source, 110 MHz < IF < 300 MHz, 1.89 GHz or 2.45 GHz RF. There is a 750 Ω resistor on chip between RXIF and RXIFB (pins 3 and 4). A matching network from 750 Ω to 50ÊΩ is used for this measurement. Insertion loss of the matching network is

included in the net conversion gain figure.

10.PIM3 is the maximum SSB output power for at least 35 dB IM3 spur suppression.

11.Measured at saturated output power for 1.89 GHz. Measured at -5 dBm SSB output power for 2.45Ê GHz.

7-92

Table 1 - HPMX-5001 Pin Description

No.

Mnemonic

I/O Type

Description

 

 

 

 

1

TXCTRL

CMOS I/P

Controls biasing of transmit mixer, amplifiers, and doubler

 

 

 

 

3

RXIFB

Analog O/P

Inverted single-ended downconverted receiver output,

 

 

 

normally tied to VCC (internal 750 Ω resistor connects to RXIF)

4

RXIF

Analog O/P

Single-ended downconverted receiver output, drives SAW

 

 

 

filter (internal 750 Ω resistor connects to RXIFB)

5

TXIF

Analog I/P

Transmit non-inverting IF input

 

 

 

 

6

TXIFB

Analog I/P

Transmit inverting IF input

 

 

 

 

7

LNAREF

Analog DC I/P

Reference input for receive input amplifier

 

 

 

 

8

RXRF

Analog I/P

Receive RF input

 

 

 

 

10

TXRXVCC

DC Supply

Supply voltage for transmit path, receive front-end and mixer

 

 

 

 

11,15

TXRXGND

Ground

Ground for transmit path, receive front-end and mixer

 

 

 

 

12

TXRFB

Analog O/P

Inverting output of transmit path (see test diagram for

 

 

 

matching network)

 

 

 

 

14

TXRF

Analog O/P

Non-inverting output of transmit path (see test diagram for

 

 

 

matching network)

 

 

 

 

16

DBLVCC

DC Supply

Supply voltage for LO frequency doubler

 

 

 

 

17

DBLGND

Ground

Ground for LO frequency doubler

 

 

 

 

20

VCOTNKS

Analog I/P

Sense line from external tank circuit to on-chip VCO amplifier

 

 

 

 

21

VCOTNKF

Analog O/P

Force line from on-chip VCO amplifier to external tank circuit

 

 

 

 

22

VCOVCC

DC Supply

Supply voltage for on-chip VCO amplifier

 

 

 

 

23

VCOGND

Ground

Ground for on-chip VCO amplifier

 

 

 

 

26

DIVVCC

DC Supply

Supply voltage for 32/33 dual-modulus prescaler

 

 

 

 

27

DIVGND

Ground

Ground for 32/33 dual-modulus prescaler

 

 

 

 

28

DIV

Analog O/P

Output from 32/33 dual-modulus prescaler

 

 

 

 

30

DIVMC

CMOS I/P

Modulus control signal for 32/33 dual-modulus prescaler

 

 

 

 

31

LOCTRL

CMOS I/P

Controls biasing for VCO and 32/33 dual modulus prescaler

 

 

 

 

32

RXCTRL

CMOS I/P

Controls biasing for receive mixer, amplifiers, and doubler

 

 

 

 

2,9,13,

VSUB

Ground

Substrate bias voltage

18,19,24,

 

 

 

25,29

 

 

 

 

 

 

 

Table 2 - HPMX-5001 Mode Control

(CMOS Logic Levels - all pins internally pulled up to high level)

Mode

TXCTRL

RXCTRL

LOCTRL

 

 

 

 

Transmit

0

1

0

 

 

 

 

Receive

1

0

0

 

 

 

 

Synth

1

1

0

 

 

 

 

Standby

1

1

1

 

 

 

 

7-93

31

32

1

2

16

17

18

19

32

33

1

2

VCO

 

 

 

 

 

 

 

 

 

 

 

DIV

 

 

 

 

 

 

 

 

 

 

 

DIVMC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIVIDE BY 33 (DIVMC = 0)

 

 

 

 

 

31

33

1

2

16

17

18

19

32

1

2

3

VCO

 

 

 

 

 

 

 

 

 

 

 

DIV

 

tpd

 

 

 

 

 

 

 

 

 

DIVMC

 

 

 

 

 

 

 

 

 

 

 

 

 

ts

th

DIVIDE BY 32 (DIVMC = 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. HPMX-5001 Prescaler Timing Diagram.

FRONT-END RF FILTER

 

CERAMIC

TX IF INPUT

 

 

 

TX

 

TX PA

FILTER

 

 

 

T/R

 

X2

RX LNA

 

32/33

CERAMIC

HPMX-5001

 

 

IMAGE

 

 

 

FILTER

 

 

 

RX IF FILTER

 

 

RX IF OUTPUT

LO1 REFERENCE OSCILLATOR

TANK

˜ 30 MHz

SYNTHESIZER

Figure 3. HPMX-5001 Block Diagram/Typical Application.

7-94

Loading...
+ 10 hidden pages