Flowserve M-series User Manual

USER INSTRUCTIONS
PolyChem M-series Pumps ISO and ANSI
Installation
Operation
Maintenance
PCN=71569218 07-11 (E) (incorporating P-30-503-E) Original instructions.
These instructions must be read prior to installing,
operating, using and maintaining this equipment.
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 2 of 60
®
CONTENTS
Page
1 INTRODUCTION AND SAFETY .......................... 4
1.1 General ............................................................ 4
1.2 CE marking and approvals .............................. 4
1.3 Disclaimer ........................................................ 4
1.4 Copyright ......................................................... 4
1.5 Duty conditions ................................................ 4
1.6 Safety .............................................................. 5
1.7 Nameplate and safety labels ........................... 8
1.8 Specific machine performance ........................ 8
1.9 Noise level ....................................................... 9
2 TRANSPORT AND STORAGE .......................... 10
2.1 Consignment receipt and unpacking ............. 10
2.2 Handling ........................................................ 10
2.3 Lifting ............................................................. 10
2.4 Storage .......................................................... 11
2.5 Recycling and end of product life .................. 11
3 DESCRIPTION ................................................... 12
3.1 Configurations ............................................... 12
3.2 Nomenclature ................................................ 12
3.3 Design of major parts .................................... 12
3.4 Performance and operation limits .................. 13
4 INSTALLATION .................................................. 15
4.1 Location ......................................................... 15
4.2 Part assemblies ............................................. 15
4.3 Foundation ..................................................... 15
4.4 Grouting ......................................................... 17
4.5 Initial alignment – Long-coupled.................... 18
4.6 Piping ............................................................. 18
4.7 Electrical connections .................................... 25
4.8 Final shaft alignment check – Long-coupled . 25
4.9 Protection systems ........................................ 25
Page
6 MAINTENANCE ................................................. 31
6.1 Maintenance schedule .................................. 32
6.2 Spare parts .................................................... 33
6.3 Recommended spares and consumable items 33
6.4 Tools required ................................................ 33
6.5 Fastener torques ........................................... 35
6.6 Impeller ......................................................... 35
6.7 Pump removal and disassembly ................... 37
6.8 Examination of parts ..................................... 44
6.9 Assembly of pump ........................................ 47
7 FAULTS; CAUSES AND REMEDIES ................ 52
8 PARTS LIST AND DRAWINGS ......................... 55
8.1 PolyChem Group A and 1 Close Coupled ..... 55
8.2 PolyChem Group A and 1 Long Coupled ...... 55
8.3 PolyChem Group B and 2 Close Coupled .... 56
8.4 PolyChem Group B and 2 Long Coupled ..... 56
8.5 PolyChem Group A and 1 ............................. 57
8.6 PolyChem Group B and 2 ............................. 57
9 CERTIFICATION ................................................ 58
10 OTHER RELEVANT DOCUMENTATION AND
MANUALS .......................................................... 58
10.1 Supplementary User Instructions .......... 58
10.2 Change notes ........................................ 58
10.3 Additional sources of information .......... 58
5 COMMISSIONING, STARTUP, OPERATION
AND SHUTDOWN .............................................. 26
5.1 Pre-commissioning procedure ....................... 26
5.2 Pump lubricants ............................................. 26
5.3 Direction of rotation ....................................... 28
5.4 Guarding ........................................................ 28
5.5 Priming and auxiliary supplies ....................... 29
5.6 Starting the pump .......................................... 29
5.7 Running or operation ..................................... 30
5.8 Stopping and shutdown ................................. 31
5.9 Hydraulic, mechanical and electrical duty ..... 31
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 3 of 60
®
INDEX
Page
Additional sources of information (10.3) 58 Assembly of pump (6.9) 47 CE marking and approvals (1.2) 4 Change notes (10.2) 58 Configurations (3.1) 12 Consignment receipt and unpacking (2.1) 10 Copyright (1.4) 4 Design of major parts (3.3) 12 Direction of rotation (5.3) 28 Disclaimer (1.3) 4 Drawing Group A and 1 Close Coupled (8.1) 55 Drawing Group A and 1 Long Coupled (8.2) 55 Drawing Group B and 2 Close Coupled (8.3) 56 Drawing Group B and 2 Long Coupled (8.4) 56 Duty conditions (1.5) 4 Electrical connections (4.7) 25 Examination of parts (6.8) 44 Fastener torques (6.5) 35 Final shaft alignment check (4.8) 25 Foundation (4.3) 15 General (1.1) 4 Grouting (4.4) 17 Guarding (5.4) 28 Handling (2.2) 10 Hydraulic, mechanical and electrical duty (5.9) 31 Impeller (6.6) 35 Initial alignment (4.5) 18
Page
Lifting (2.3) 10 Location (4.1) 15 Maintenance schedule (6.1) 32 Nameplate and safety labels (1.7) 8 Noise level (1.8) 9 Nomenclature (3.2) 12 Part assemblies (4.2) 15 Parts List Group A and 1 (8.5) 57 Parts List Group B and 2 (8.6) 57 Performance and operation limits (3.4) 13 Piping (4.6) 18 Pre-commissioning procedure (5.1) 26 Priming and auxiliary supplies (5.5) 29 Protection systems (4.9) 25 Pump lubricants (5.2) 26 Pump removal and disassembly (6.7) 37 Recommended spares and consumable items (6.3) 33 Recycling and end of product life (2.5) 11 Running or operation (5.7) 30 Safety (1.6) 5 Spare parts (6.2) 33 Starting the pump (5.6) 29 Stopping and shutdown (5.8) 31 Storage (2.4) 11 Supplementary user instructions (10.1) 58 Tools required (6.4) 33
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 4 of 60
®
1 INTRODUCTION AND SAFETY
1.1 General
These instructions must always be kept
close to the product's operating location or directly with the product.
Flowserve products are designed, developed and manufactured with state-of-the-art technologies in modern facilities. The unit is produced with great care and commitment to continuous quality control, utilising sophisticated quality techniques and safety requirements.
Flowserve is committed to continuous quality improvement and being at service for any further information about the product in its installation and operation or about its support products, repair and diagnostic services.
These instructions are intended to facilitate familiarization with the product and its permitted use. Operating the product in compliance with these instructions is important to help ensure reliability in service and avoid risks. The instructions may not take into account local regulations; ensure such regulations are observed by all, including those installing the product. Always coordinate repair activity with operations personnel, and follow all plant safety requirements and applicable safety and health laws and regulations.
These instructions must be read prior to installing, operating, using and maintaining the equipment in any region worldwide. The equipment must not be put into service until all the conditions relating to safety, noted in the instructions, have been met. Failure to follow and apply the present user instructions is considered to be misuse. Personal injury, product damage, delay or failure caused by misuse are not covered by the Flowserve warranty.
1.2 CE marking and approvals
It is a legal requirement that machinery and equipment put into service within certain regions of the world shall conform with the applicable CE Marking Directives covering Machinery and, where applicable, Low Voltage Equipment, Electromagnetic Compatibility (EMC), Pressure Equipment Directive (PED) and Equipment for Potentially Explosive Atmospheres (ATEX).
Where applicable, the Directives and any additional Approvals, cover important safety aspects relating to machinery and equipment and the satisfactory provision
of technical documents and safety instructions. Where applicable this document incorporates information relevant to these Directives and Approvals.
To confirm the Approvals applying and if the product is CE marked, check the serial number plate markings and the Certification. (See section 9, Certification.)
1.3 Disclaimer
Flowserve manufactures products to exacting International Quality Management System Standards as certified and audited by external Quality Assurance organisations. Genuine parts and accessories have been designed, tested and incorporated into the products to help ensure their continued product quality and performance in use. As Flowserve cannot test parts and accessories sourced from other vendors the incorrect incorporation of such parts and accessories may adversely affect the performance and safety features of the products. The failure to properly select, install or use authorised Flowserve parts and accessories is considered to be misuse. Damage or failure caused by misuse is not covered by the Flowserve warranty. In addition, any modification of Flowserve products or removal of original components may impair the safety of these products in their use.
1.4 Copyright
All rights reserved. No part of these instructions may be reproduced, stored in a retrieval system or transmitted in any form or by any means without prior permission of Flowserve Pump Division.
1.5 Duty conditions
This product has been selected to meet the specifications of your purchase order. The acknowledgement of these conditions has been sent separately to the Purchaser. A copy should be kept with these instructions.
The product must not be operated beyond
the parameters specified for the application. If there is any doubt as to the suitability of the product for the application intended, contact Flowserve for advice, quoting the serial number.
If the conditions of service on your purchase order are going to be changed (for example liquid pumped, temperature or duty) it is requested that the user seeks the written agreement of Flowserve before start up.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 5 of 60
®
1.6 Safety
1.6.1 Summary of safety markings
These User Instructions contain specific safety markings where non-observance of an instruction would cause hazards. The specific safety markings are:
This symbol indicates electrical safety instructions where non-compliance will involve a high risk to personal safety or the loss of life.
This symbol indicates safety instructions where non-compliance would affect personal safety and could result in loss of life.
This symbol indicates “hazardous and toxic fluid” safety instructions where non-compliance would affect personal safety and could result in loss of life.
This symbol indicates safety instructions where non-compliance will involve some risk to safe operation and personal safety and would damage the equipment or property.
This symbol indicates "strong magnetic field" safety instructions where non-compliance would affect personal safety, pacemakers, instruments or stored data sensitive to magnetic fields.
Always coordinate repair activity with operations and health and safety personnel, and follow all plant safety requirements and applicable safety and health laws and regulations.
1.6.3 Safety action
This is a summary of conditions and actions to help prevent injury to personnel and damage to the environment and to equipment. For products used in potentially explosive atmospheres section 1.6.4 also applies.
MAGNETIC FIELD PRESENT: This equipment may affect electronic equipment or other devices that are influenced by magnetic fields. Because magnetic drive pumps contain powerful magnets, anyone with a heart pacemaker MUST NOT disassemble these pumps. Also, keep all credit cards, bank cards, watches, computer disks and anything else which can be damaged by magnetic fields away from these pumps when disassembled.
NEVER DO MAINTENANCE WORK WHEN THE UNIT IS CONNECTED TO POWER (Lock out.)
GUARDS MUST NOT BE REMOVED WHILE
THE PUMP IS OPERATIONAL
This symbol indicates explosive atmosphere zone marking according to ATEX. It is used in safety instructions where non-compliance in the hazardous area would cause the risk of an explosion.
This symbol is used in safety instructions to remind not to rub non-metallic surfaces with a dry cloth; ensure the cloth is damp. It is used in safety instructions where non-compliance in the hazardous area would cause the risk of an explosion.
This sign is not a safety symbol but indicates
an important instruction in the assembly process.
1.6.2 Personnel qualification and training
All personnel involved in the operation, installation, inspection and maintenance of the unit must be qualified to carry out the work involved. If the personnel in question do not already possess the necessary knowledge and skill, appropriate training and instruction must be provided. If required the operator may commission the manufacturer/supplier to provide applicable training.
DRAIN THE PUMP AND ISOLATE PIPEWORK BEFORE DISMANTLING THE PUMP The appropriate safety precautions should be taken where the pumped liquids are hazardous.
FLUORO-ELASTOMERS (When fitted.) When a pump has experienced temperatures over 250 ºC (482 ºF), partial decomposition of fluoro­elastomers (example: Viton) will occur. In this condition these are extremely dangerous and skin contact must be avoided.
HANDLING COMPONENTS Many precision parts have sharp corners and the wearing of appropriate safety gloves and equipment is required when handling these components. To lift heavy pieces above 25 kg (55 lb) use a crane appropriate for the mass and in accordance with current local regulations.
THERMAL SHOCK Rapid changes in the temperature of the liquid within the pump can cause thermal shock, which can result in damage or breakage of components and should be avoided.
NEVER APPLY HEAT TO REMOVE IMPELLER Trapped lubricant or vapour could cause an explosion.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 6 of 60
®
HOT (and cold) PARTS If hot or freezing components or auxiliary heating supplies can present a danger to operators and persons entering the immediate area action must be taken to avoid accidental contact. If complete protection is not possible, the machine access must be limited to maintenance staff only, with clear visual warnings and indicators to those entering the immediate area. Note: bearing housings must not be insulated and drive motors and bearings may be hot.
If the temperature is greater than 80 ºC (175 ºF) or below -5 ºC (23 ºF) in a restricted zone, or exceeds local regulations, action as above shall be taken.
HAZARDOUS LIQUIDS When the pump is handling hazardous liquids care must be taken to avoid exposure to the liquid by appropriate siting of the pump, limiting personnel access and by operator training. If the liquid is flammable and or explosive, strict safety procedures must be applied.
ALWAYS USE THE JACKBOLTS TO SEPARATE THE POWER END FROM THE WET END ASSEMBLIES.
PREVENT EXCESSIVE EXTERNAL PIPE LOAD Do not use pump as a support for piping. Do not mount expansion joints, unless allowed by Flowserve in writing, so that their force, due to internal pressure, acts on the pump flange.
NEVER RUN THE PUMP DRY
Operating the magnetic coupling dry may cause immediate damage to the bearings, magnets, etc..
NEVER OPERATE THE PUMP WITH THE SUCTION VALVE CLOSED It should be fully opened when the pump is running.
NEVER OPERATE THE PUMP AT ZERO FLOW OR FOR EXTENDED PERIODS BELOW THE MINIMUM CONTINUOUS FLOW
DO NOT RUN THE PUMP AT ABNORMALLY HIGH OR LOW FLOW RATES Operating at a flow rate higher than normal or at a flow rate with no back pressure on the pump may overload the motor and cause cavitation. Low flow rates may cause a reduction in pump/bearing life, overheating of the pump, instability and cavitation/vibration.
THE PUMP SHAFT MUST TURN CLOCKWISE WHEN VIEWED FROM THE MOTOR END It is absolutely essential that the rotation of the motor be checked before installation of the coupling spacer and starting the pump.
PolyChem M-series pumps are sized based on a specific application. In the event the user elects to operate this pump in a service other than what it was originally sized for, a Flowserve sales engineer should be contacted to evaluate the new application.
1.6.4 Products used in potentially explosive
atmospheres
ENSURE CORRECT LUBRICATION (See section 5, Commissioning, startup, operation and shutdown.)
NEVER EXCEED THE MAXIMUM DESIGN PRESSURE (MDP) AT THE TEMPERATURE SHOWN ON THE PUMP NAMEPLATE See section 3 for pressure versus temperature ratings based on the material of construction.
NEVER OPERATE THE PUMP WITH THE DISCHARGE VALVE CLOSED (Unless otherwise instructed at a specific point in the User Instructions.) (See section 5, Commissioning start-up, operation and shutdown.)
Measures are required to:
Avoid excess temperature  Prevent build up of explosive mixtures  Prevent the generation of sparks  Prevent leakages  Maintain the pump to avoid hazard
The following instructions for pumps and pump units when installed in potentially explosive atmospheres must be followed to help ensure explosion protection. For ATEX, both electrical and non-electrical equipment must meet the requirements of European Directive 94/9/EC. Always observe the regional legal Ex requirements eg Ex electrical items outside the EU may be required certified to other than ATEX eg IECEx, UL.
1.6.4.1 Scope of compliance
NEVER RUN THE PUMP DRY OR WITHOUT PROPER PRIME (Pump flooded).
Use equipment only in the zone for which it is appropriate. Always check that the driver, drive coupling assembly and pump equipment are suitably
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 7 of 60
®
Temperature class
to EN13463-1
Maximum surface
temperature permitted
Temperature limit of
liquid handled
T6 T5 T4 T3 T2 T1
85 °C (185 °F) 100 °C (212 °F) 135 °C (275 °F) 200 °C (392 °F) 300 °C (572 °F) 450 °C (842 °F)
Consult Flowserve Consult Flowserve
115 °C (239 °F) * 180 °C (356 °F) * 275 °C (527 °F) * 400 °C (752 °F) *
rated and/or certified for the classification of the specific atmosphere in which they are to be installed.
Where Flowserve has supplied only the bare shaft pump, the Ex rating applies only to the pump. The party responsible for assembling the ATEX pump set shall select the coupling, driver and any additional equipment, with the necessary CE Certificate/ Declaration of Conformity establishing it is suitable for the area in which it is to be installed.
The output from a variable frequency drive (VFD) can cause additional heating effects in the motor and so, for pumps sets with a VFD, the ATEX Certification for the motor must state that it is covers the situation where electrical supply is from the VFD. This particular requirement still applies even if the VFD is in a safe area.
1.6.4.2 Marking
An example of ATEX equipment marking is shown below. The actual classification of the pump will be engraved on the nameplate.
II 2 GD c IIC 135 ºC (T4)
Equipment Group I = Mining II = Non-mining
Category 2 or M2 = high level protection 3 = normal level of protection
Gas and/or dust G = Gas D = Dust
c = Constructional safety
(in accordance with EN13463-5)
Gas Group IIA – Propane (typical) IIB – Ethylene (typical) IIC – Hydrogen (typical)
Maximum surface temperature (Temperature Class) (see section 1.6.4.3.)
1.6.4.3 Avoiding excessive surface temperatures
ENSURE THE EQUIPMENT TEMPERATURE
CLASS IS SUITABLE FOR THE HAZARD ZONE Pumps have a temperature class as stated in the
ATEX Ex rating on the nameplate. These are based on a maximum ambient of 40 ºC (104 ºF); refer to Flowserve for higher ambient temperatures.
The surface temperature on the pump is influenced by the temperature of the liquid handled. The maximum permissible liquid temperature depends on the ATEX temperature class and must not exceed the values in the table that follows.
* The table only takes the ATEX temperature class into consideration. Pump
design or material, as well as component design or material, may further limit the maximum working temperature of the liquid.
The temperature rise at the seals and bearings and due to the minimum permitted flow rate is taken into account in the temperatures stated.
The responsibility for compliance with the specified maximum liquid temperature is with the plant operator.
Temperature classification “Tx” is used when the liquid
temperature varies and when the pump is required to be used in differently classified potentially explosive atmospheres. In this case the user is responsible for ensuring that the pump surface temperature does not exceed that permitted in its actual installed location.
Avoid mechanical, hydraulic or electrical overload by using motor overload trips, temperature monitors or a power monitor and make routine vibration monitoring checks.
In dirty or dusty environments, make regular checks and remove dirt from areas around close clearances, bearing housings and motors.
Where there is any risk of the pump being run against a closed valve generating high liquid and casing external surface temperatures fit an external surface temperature protection device.
1.6.4.4 Preventing the build up of explosive mixtures
ENSURE THE PUMP IS PROPERLY FILLED
AND VENTED AND DOES NOT RUN DRY Ensure the pump and relevant suction and discharge
pipeline system is totally filled with liquid at all times during the pump operation, so that an explosive atmosphere is prevented.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 8 of 60
®
If the operation of the system cannot avoid this condition, fit an appropriate dry run protection device (for example liquid detection or a power monitor).
To avoid potential hazards from fugitive emissions of vapour or gas to atmosphere the surrounding area must be well ventilated.
1.6.4.5 Preventing sparks
To prevent a potential hazard from mechanical
contact, the coupling guard must be non-sparking. To avoid the potential hazard from random induced
current generating a spark, the baseplate must be properly grounded.
Avoid electrostatic charge: do not rub non-metallic
surfaces with a dry cloth; ensure cloth is damp. For ATEX the coupling must be selected to comply
with 94/9/EC. Correct coupling alignment must be maintained.
Additional requirement for metallic pumps on non-metallic baseplates
When metallic components are fitted on a non­metallic baseplate they must be individually earthed.
1.6.4.6 Preventing leakage
To avoid potential explosion hazards during maintenance, the tools, cleaning and painting materials used must not give rise to sparking or adversely affect the ambient conditions. Where there is a risk from such tools or materials, maintenance must be conducted in a safe area.
It is recommended that a maintenance plan and schedule is adopted. (See section 6, Maintenance.)
1.7 Nameplate and safety labels
1.7.1 Nameplate
For details of nameplate, see the Declaration of Conformity and section 3.
1.7.2 Safety labels
The pump must only be used to handle liquids for which it has been approved to have the correct corrosion resistance.
Avoid entrapment of liquid in the pump and associated piping due to closing of suction and discharge valves, which could cause dangerous excessive pressures to occur if there is heat input to the liquid. This can occur if the pump is stationary or running.
Bursting of liquid containing parts due to freezing must be avoided by draining or protecting the pump and ancillary systems.
If leakage of liquid to atmosphere can result in a hazard, install a liquid detection .
1.6.4.7 Maintenance to avoid the hazard
CORRECT MAINTENANCE IS REQUIRED TO AVOID POTENTIAL HAZARDS WHICH GIVE A RISK OF EXPLOSION
The responsibility for compliance with maintenance instructions is with the plant operator.
Oil lubricated units only:
1.8 Specific machine performance
For performance parameters see section 1.5, Duty conditions. Where performance data has been supplied
separately to the purchaser these should be obtained and retained with these User Instructions.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 9 of 60
®
Motor size and speed
kW (hp)
Typical sound pressure level LpA at 1 m reference 20 μPa, dBA
3 550 r/min
2 900 r/min
1 750 r/min
1 450 r/min
Pump
only
Pump and
motor
Pump
only
Pump and
motor
Pump
only
Pump and
motor
Pump
only
Pump and
motor
<0.55(<0.75)
72
72
64
65
62
64
62
64
0.75 (1)
72
72
64
66
62
64
62
64
1.1 (1.5)
74
74
66
67
64
64
62
63
1.5 (2)
74
74
66
71
64
64
62
63
2.2 (3)
75
76
68
72
65
66
63
64
3 (4)
75
76
70
73
65
66
63
64
4 (5)
75
76
71
73
65
66
63
64
5.5 (7.5)
76
77
72
75
66
67
64
65
7.5 (10)
76
77
72
75
66
67
64
65
11(15)
80
81
76
78
70
71
68
69
15 (20)
80
81
76
78
70
71
68
69
18.5 (25)
81
81
77
78
71
71
69
71
22 (30)
81
81
77
79
71
71
69
71
30 (40)
83
83
79
81
73
73
71
73
37 (50)
83
83
79
81
73
73
71
73
45 (60)
86
86
82
84
76
76
74
76
55 (75)
86
86
82
84
76
76
74
76
75 (100)
87
87
83
85
77
77
75
77
1.9 Noise level
Attention must be given to the exposure of personnel to the noise, and local legislation will define when guidance to personnel on noise limitation is required, and when noise exposure reduction is mandatory. This is typically 80 to 85 dBA.
The usual approach is to control the exposure time to the noise or to enclose the machine to reduce emitted sound. You may have already specified a limiting noise level when the equipment was ordered, however if no noise requirements were defined, then attention is drawn to the following table to give an indication of equipment noise level so that you can take the appropriate action in your plant.
Pump noise level is dependent on a number of factors ­the type of motor fitted, the operating capacity, pipework design and acoustic characteristics of the building.
Typical sound pressure levels measured in dB, and A-weighted are shown in the table below. The figures are indicative only, they are subject to a +3 dB tolerance, and cannot be guaranteed.
The motor noise assumed in the “pump and motor”
noise is that typically expected from standard and high
efficiency motors when on load directly driving the pump.
If a pump unit only has been purchased, for fitting with your own driver, then the "pump only" noise levels from the table should be combined with the level for the driver obtained from the supplier.
If the motor is driven by an inverter it may show an increase in noise level at some speeds. Consult a Noise Specialist for the combined calculation. It is recommended that where exposure approaches the prescribed limit, then site noise measurements should be made.
The values are in sound pressure level LpA at 1 m
(3.3 ft) from the machine, for “free field conditions over a reflecting plane”.
For estimating sound power level LWA (re 1 pW) then add 14 dBA to the sound pressure value.
For units driven by equipment other than
electric motors or units contained within enclosures, see the accompanying information sheets and manuals.
Note: for 1 180 and 960 r/min reduce 1 450 r/min values by 2 dBA. For 880 and 720 r/min reduce 1 450 r/min values by 3 dBA.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 10 of 60
®
2 TRANSPORT AND STORAGE
2.1 Consignment receipt and unpacking
Immediately after receipt of the equipment it must be checked against the delivery/shipping documents for its completeness and that there has been no damage in transportation. Any shortage and/or damage must be reported immediately to Flowserve Pump Division and must be received in writing within ten days of receipt of the equipment. Later claims cannot be accepted.
Check any crate, boxes or wrappings for any accessories or spare parts that may be packed separately with the equipment or attached to side walls of the box or equipment.
Each product has a unique serial number. Check that this number corresponds with that advised and always quote this number in correspondence as well as when ordering spare parts or further accessories.
2.2 Handling
Boxes, crates, pallets or cartons may be unloaded using fork lift vehicles or slings dependent on their size and construction.
2.3 Lifting
2.3.1.2 Bearing holder [3830]
Group B and 2: Insert an eye hook in the drilled and tapped hole located on the outside diameter of the bearing holder. Use either a sling or hook through the eye bolt.
2.3.1.3 Bearing housing [3200]
Group B and 2: insert either a sling or hook through the lifting lug located on the top of the housing.
2.3.1.4 Power end
Same as bearing housing.
2.3.1.5 Bare pump
Horizontal pumps: sling around the pump discharge nozzle and around the outboard end of the bearing housing with separate slings. Choker hitches must be used at both attachment points and pulled tight. Make sure the completion of the choker hitch on the discharge nozzle is toward the coupling end of the pump shaft as shown in Figure 2-1. The sling lengths should be adjusted to balance the load before attaching the lifting hook.
Figure 2-1
A crane must be used for all pump sets in excess of 25 kg (55 lb). Fully trained personnel must carry out lifting, in accordance with local regulations
Pumps and motors often have integral lifting lugs or eye bolts. These are intended for use in only lifting the individual piece of equipment.
Do not use eye bolts or cast-in lifting lugs to lift pump, motor and baseplate assemblies.
To avoid distortion, the pump unit should be lifted as shown.
Care must be taken to lift components or assemblies above the center of gravity to prevent the unit from flipping.
2.3.1 Lifting pump components
2.3.1.1 Casing [1100]
Use a choker hitch pulled tight around the discharge nozzle.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 11 of 60
®
2.3.2 Lifting pump, motor and baseplate
assembly
If the baseplate has lifting holes cut in the sides at the end (Type D and Type E bases) insert lifting S hooks at the four corners and use slings or chains to connect to the lifting eye. Do not use slings through the lifting holes.
For other baseplates, sling around the pump discharge nozzle, and around the outboard end of the motor frame using choker hitches pulled tight. (Figure 2-1)
The sling should be positioned so the weight is not carried through the motor fan housing. Make sure the completion of the choker hitch on the discharge nozzle is toward the coupling end of the pump shaft as shown in Figure 2-1.
2.4 Storage
Store the pump in a clean, dry location away from vibration. Leave flange covers in place to keep dirt and other foreign material out of pump casing. Turn the pump shaft at regular intervals to prevent brinelling of the bearings.
The pump may be stored as above for up to 6 months. Consult Flowserve for preservative actions when a longer storage period is needed.
2.4.1 Short term storage and packaging
Normal packaging is designed to protect the pump and parts during shipment and for dry, indoor storage for up to six months or less. The following is an overview of our normal packaging: All loose unmounted items are packaged in a
water proof plastic bag and placed under the coupling guard
Inner surfaces of the bearing housing, shaft (area
through bearing housing) and bearings are coated with Cortec VCI-329 rust inhibitor, or equal.
2.4.2 Long term storage and packaging
Long term storage is defined as more than six months, but less than 12 months. The procedure Flowserve follows for long term storage of pumps is given below. These procedures are in addition to the short term procedure. Each assembly is hermetically (heat) sealed from
the atmosphere by means of tack wrap sheeting and rubber bushings (mounting holes)
Desiccant bags are placed inside the tack
wrapped packaging
A solid wood box is used to cover the assembly This packaging will provide protection for up to twelve
months from humidity, salt laden air, dust etc. After unpacking, protection will be the responsibility of
the user. Addition of oil to the bearing housing will remove the inhibitor. If units are to be idle for extended periods after addition of lubricants, inhibitor oils and greases should be used. Every three months, the pump shaft should be rotated approximately 10 revolutions.
2.5 Recycling and end of product life
At the end of the service life of the product or its parts, the relevant materials and parts should be recycled or disposed of using an environmentally acceptable method and in accordance with local regulations. If the product contains substances that are harmful to the environment, these should be removed and disposed of in accordance with current local regulations.
Make sure that hazardous substances are disposed of safely and that the correct personal protective equipment is used. The safety specifications must be in accordance with the current local regulations at all times.
shipment
Regreasable bearings are packed with grease  Exposed shafts are taped with Polywrap
Flange covers are secured to both the suction  In some cases with assemblies ordered with
The pump must be stored in a covered, dry
Bearing housings are not filled with oil prior to
(EXXON POLYREX EM)
and discharge flanges external piping, components may be
disassembled for shipment location
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 12 of 60
®
Serial No.
Equipment No.
Purchase Order
Model
Size
MDP
Material
Date DD/MMM/YY
PJ 2 X 1 - 10 / 8.25CL
3 DESCRIPTION
3.1 Configurations
The PolyChem M-series chemical process pumps are fluoropolymer lined, magnetically coupled, horizontal, end suction, single stage, centrifugal pumps. The ISO version of this pump conforms dimensionally to ISO 2858/5199 while the ANSI model agrees dimensionally with ASME B73.1, both have centerline discharge.
3.2 Nomenclature
The pump size will be engraved on the nameplate typically as below:
PB 40 – 200 / 190CL (ISO) PJ 2 X 1 - 10 / 8.25CL (ANSI)
P = PolyChem pump line A = Magnetic coupling (small) Group A/1 B = Magnetic coupling (medium) Group A/1 C = Magnetic coupling (large) Group A/1 J = Magnetic coupling (small) Group B/2 K = Magnetic coupling (medium) Group B/2 L = Magnetic coupling (large) Group B/2
ISO Pump:
“40” = Nominal discharge port size (mm) “200” = Nominal (max.) impeller diameter (mm) “190” =Actual impeller diameter (mm)
ANSI Pump:
“2” = Nominal suction port size (inch) “1” = Nominal discharge port size (inch) “10” = Nominal (max) impeller diameter (inch)
“8.25” – Actual impeller diameter (inch)
Impeller style (ISO or ANSI)
CL = closed vane impeller
Pump design variations
Long-coupled Close-coupled
Pump groups
References to Group A and Group B relate to ISO pumps, whilst references to Group 1 and Group 2 relate to ANSI pumps
An example of the nameplate used on the PolyChem pump is shown in Figure 3-1. This nameplate is mounted on either the lantern or the bearing housing.
Figure 3-1: Nameplate
3.3 Design of major parts
3.3.1 Casing
Removal of the casing is not required when performing maintenance of the rotating element. The rotating element is easily removed (back pull out).
3.3.2 Impeller
The impeller is closed vane.
3.3.3 Wetted bearing system
This system is comprised of silicon carbide bearings. It is made up of a shaft, thrust journals and bushings, as well as radial journals and bushings.
3.3.4 Power end bearings and lubrication –
Long-coupled
Ball bearings are fitted as standard and may be either oil or grease lubricated.
3.3.5 Bearing housing – Long-coupled
Large oil bath reservoir.
3.3.6 Bearing holder
Supports the inboard radial pump bearing.
3.3.7 Magnetic coupling
Comprised of an inner and outer magnet assembly. The outer assembly is supported by the power end (long-coupled) or the motor (close-coupled). The inner assembly is encapsulated and mounted on a silicon carbide shaft.
3.3.8 Containment shell
Nonmetallic construction to avoid eddy currents losses.
3.3.9 Lantern
Used to connect the casing to the power end on a long-coupled pump or to the motor on a closed­coupled pump.
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 13 of 60
®
MCF % of BEP
Pump Size
3500/2900
rpm
1750/1450
rpm
1180/960
rpm
P_3x2-6
20%
10%
10%
P_3x2-10 P_50-250
30%
10%
10%
P_4x3-10 P_65-250
N/A
10%
10%
All other sizes
10%
10%
10%
3.3.10 Driver
The driver is normally an electric motor. Different drive configurations may be fitted such as internal combustion engines, turbines, hydraulic motors etc driving via couplings, belts, gearboxes, drive shafts etc.
3.3.11 Accessories
Accessories may be fitted when specified by the customer.
3.4 Performance and operation limits
This product has been selected to meet the specification of your purchase order. See section 1.5.
The following data is included as additional information to help with your installation. It is typical, and factors such as liquid being pumped, temperature, and material of construction may influence this data. If required, a definitive statement for your application can be obtained from Flowserve.
3.4.1 Material cross reference chart
Figure 3-3 is the material cross-reference chart for all PolyChem M-series pumps.
3.4.2 Pressure-temperature ratings
PN 16 flanges are standard for the ISO model pump while Class 150 flanges are standard for the ANSI model. Refer to Figure 3-4A and 3-4B for each pumps pressure-temperature (P-T) rating.
Figure 3-2: Minimum continuous flow
than or equal to the P-T rating. Discharge pressure may be approximated by adding the suction pressure to the differential pressure developed by the pump.
3.4.3 Suction pressure limits
The suction pressure limits for PolyChem M-series pumps is limited by the P-T rating.
3.4.4 Minimum continuous flow
The minimum continuous flow (MCF) is based on a percentage of the best efficiency point (BEP). Figure 3-2 identifies the MCF for all PolyChem M-series pumps.
The maximum discharge pressure must be less
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 14 of 60
®
Flowserve
Material Code
Designation
Durco Legacy Codes
Equivalent
wrought
Designation
EN / ASTM
specifications
Nozzle load
material
group
Z0L48
PFA lined Ductile iron (cast)
DIPA
None
Note 1
1.0
E2025
Ductile Iron Casting
7043
None
EN1563, Gr. JS 1025
1.0
E3020
Ductile Iron Casting
DCI
None
A395, Gr. 60-40-18
1.0 A0024
Paper P None N/A
D0005
Carbon Steel
SR
None N/A
D2044
Quenched and Tempered Steel
CK45
None
EN 10083-1
N/A
D3013
1018 Carbon Steel
Z
None N/A
D3058
304 Stainless Steel
304
None
A276, Type 304
N/A
D3277
Carbon Steel
BB
1144
UNS G11440
N/A
D4035
304, 305, 316, Stainless steel
18-8
None N/A
E2008
Ductile Iron Casting
7040
None
EN1563, Gr. JS 1030
N/A
E3006
Cast Iron Casting
CI
None
A48, Gr. 25A
N/A
E3007
Cast Iron Casting
GG25
None
EN1561, Gr. JL 1040
N/A
E3035
Ductile Iron Casting
DCI2
None
A536, Gr. 65-45-12
N/A
E4034
Ductile Iron Casting
DCI4
None
Note 2
N/A
I0003
Bronze
BZ
None N/A
J0018
Reaction bonded silicon carbide
SC2
None N/A
J0020
Sintered silicon carbide
SC3
None N/A
L0009
Carbon Filled Teflon
TFEC
None N/A
L1001
Tetrafluoroethylene
TFE
None N/A
L1010
Ethylene Propylene Rubber
EPR
None N/A
L1017
Nitrile Butadiene Rubber
NBR
None N/A
L1103
Polysulphone
PS
None N/A
M1001
ISO 3506 Grade A2 Class 70
A270
None N/A
M1013
ISO 898/1 Class 8.8
88
None N/A
M3026
Carbon steel
SR5
None
A449, Type 1
N/A
Z0067
Protective Plated Carbon Steel
SRCD
None N/A
Z0L50
PFA lined sintered silicon carbide
S3PA
None N/A
Z0L51
Carbon filled PFA
CFPA
None N/A
Z0L52
Carbon filled fluoropolymer
CFTM
None N/A
Z0L54
Fluoropolymer lined fiberglass
EFP3
None N/A
Z0L64
Teflon lined A193, Gr. B7
B7TF
None N/A
Z0L65
Teflon lined A194, Gr. 2H
SRTF
None N/A
Z0L72
Teflon – Silicon Rubber – Carbon Steel
TSSR
None N/A
Z0M22
Viton – Carbon Steel
VSR
None N/A
Z0M35
PFA lined carbon filled fluoropolymer
CFTM
None N/A
Z0M36
Fluoropolymer lined NdFeB magnets
PFA
None N/A
Z0M37
Carbon steel - NdFeB magnets
SR
None N/A
Temperature ˚C
-29
-18
38
93
121
149
BAR
16
16
16
16
16
15.5
Temperature ˚F
-20 0 100
200
250
300
PSI
232
232
232
232
232
225
Temperature ˚C
-29
-18
38
93
149
BAR
17.2
17.2
17.2
16.2
14.8
Temperature ˚F
-20 0 100
200
300
PSI
250
250
250
235
215
Figure 3-3: Material cross-reference chart
1. The casting used for ISO pumps is E2025 and for ANSI pumps is E3020
2. Dual Spec. EN1563 Gr. JS1030 & A536 Gr. 65-45-12
Figure 3-4A: Pressure – Temperature Rating ISO Pump with PN 16 Flanges – Material Group No. 1.0
Figure 3-4B: Pressure – Temperature Rating ANSI Pump with Class 150 Flanges – Material Group No. 1.0
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 15 of 60
®
4 INSTALLATION
4.1 Location
The pump should be located to allow room for access, ventilation, maintenance, and inspection with ample headroom for lifting and should be as close as practicable to the supply of liquid to be pumped.
Refer to the general arrangement drawing for the pump set.
4.2 Part assemblies
The supply of motors and baseplates are optional. As a result, it is the responsibility of the installer to ensure that the motor is assembled to the pump and aligned as detailed in section 4.5 and 4.8.
4.3 Foundation
4.3.1 Protection of openings and threads
When the pump is shipped, all threads and all openings are covered. This protection/covering should not be removed until installation. If, for any reason, the pump is removed from service, this protection should be reinstalled.
4.3.2 Rigid baseplates - overview
The function of a baseplate is to provide a rigid foundation under a pump and its driver that maintains alignment between the two. Baseplates may be generally classified into two types:
Foundation-mounted, grouted design. (Figure 4-1) Stilt mounted, or free standing. (Figure 4-2.)
Figure 4-1
Figure 4-2
Baseplates intended for grouted installation are designed to use the grout as a stiffening member. Stilt mounted baseplates, on the other hand, are
designed to provide their own rigidity. Therefore the designs of the two baseplates are usually different.
Regardless of the type of baseplate used, it must provide certain functions that ensure a reliable installation. Three of these requirements are:
1. The baseplate must provide sufficient rigidity to
assure the assembly can be transported and
installed, given reasonable care in handling,
without damage. It must also be rigid enough
when properly installed to resist operating loads.
2. The baseplate must provide a reasonably flat
mounting surface for the pump and driver.
Uneven surfaces will result in a soft-foot
condition that may make alignment difficult or
impossible. Experience indicates that a
baseplate with a top surface flatness of 1.25
mm/m (0.015 in./ft) across the diagonal corners
of the baseplate provides such a mounting
surface. Therefore, this is the tolerance to which
we supply our standard baseplate. Some users
may desire an even flatter surface, which can
facilitate installation and alignment. Flowserve
will supply flatter baseplates upon request at
extra cost. For example, mounting surface
flatness of 0.17 mm/m (0.002 in./ft) is offered on
the Flowserve Type E “Ten Point” baseplate
shown in Figure 4-1.
3. The baseplate must be designed to allow the
user to final field align the pump and driver to
within their own particular standards and to
compensate for any pump or driver movement
that occurred during handling. Normal industry
practice is to achieve final alignment by moving
the motor to match the pump. Flowserve
practice is to confirm in our shop that the pump
assembly can be accurately aligned. Before
shipment, the factory verifies that there is
enough horizontal movement capability at the
motor to obtain a “perfect” final alignment when
the installer puts the baseplate assembly into its
original, top leveled, unstressed condition.
4.3.3 Stilt and spring mounted baseplates
Flowserve offers stilt and spring mounted baseplates. (See Figure 4-2 for stilt mounted option.) The low vibration levels of PolyChem pumps allow the use of these baseplates - provided they are of a rigid design. The baseplate is set on a flat surface with no tie down bolts or other means of anchoring it to the floor.
General instructions for assembling these baseplates are given below. For dimensional information, please refer to the appropriate Flowserve “Sales print.”
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 16 of 60
®
4.3.3.1 Stilt mounted baseplate assembly instructions
Refer to Figure 4-3. a) Raise or block up baseplate/pump above the
floor to allow for the assembly of the stilts.
b) Predetermine or measure the approximate
desired height for the baseplate above the floor.
c) Set the bottom nuts [2] above the stilt bolt head
[1] to the desired height. d) Assemble lock washer [3] down over the stilt bolt. e) Assemble the stilt bolt up through hole in the
bottom plate and hold in place. f) Assemble the lock washer [3] and nut [2] on the
stilt bolt. Tighten the nut down on the lock
washer. g) After all four stilts have been assembled,
position the baseplate in place, over the floor
cups [4] under each stilt location, and lower the
baseplate to the floor. h) Level and make final height adjustments to the
suction and discharge pipe by first loosening the
top nuts and turning the bottom nuts to raise or
lower the baseplate. i) Tighten the top and bottom nuts at the lock
washer [3] first then tighten the other nuts. j) It should be noted that the connecting pipelines
must be individually supported, and that the stilt
mounted baseplate is not intended to support
total static pipe load.
Figure 4-3
d) Assemble the stilt bolt/bottom spring up through
hole in the bottom plate and hold in place.
e) Assemble top spring/cup assembly [3] down
over stilt bolt.
f) Assemble flat washer [5], lock washer [6] and
nuts [4] on the stilt bolt.
g) Tighten down top nuts, compressing the top
spring approximately 13 mm (0.5 in.). Additional compression may be required to stabilize the baseplate.
h) After all four stilts have been assembled,
position the baseplate in place, over the floor cups [7] under each stilt location, and lower the baseplate down to the floor.
i) Level and make final height adjustments to the
suction and discharge pipe by first loosening the top nuts, and turning the bottom nuts to raise or lower the baseplate.
j) Recompress the top spring to the compression
established in step g, and lock the nuts in place.
k) It should be noted that the connecting pipelines
must be individually supported, and that the spring mounted baseplate is not intended to support total static pipe loads.
Figure 4-4
4.3.3.2 Stilt/spring mounted baseplate assembly
Refer to Figure 4-4. a) Raise or block up baseplate/pump above the
b) Set the bottom nuts [4] above the stilt bolt head
c) Assemble the lock washer [6] flat washer [5] and
instructions
floor to allow for the assembly of the stilts.
[1]. This allows for 51 mm (2 in.) upward
movement for the final height adjustment of the
suction/discharge flange.
bottom spring/cup assembly [2] down over the
stilt bolt [1].
4.3.3.3 Stilt/spring mounted baseplates - motor alignment
The procedure for motor alignment on stilt or spring mounted baseplates is similar to grouted baseplates. The difference is primarily in the way the baseplate is leveled. a) Level the baseplate by using the stilt adjusters.
(Shims are not needed as with grouted baseplates.)
b) After the base is level, it is locked in place by
locking the stilt adjusters.
c) Next the initial pump alignment must be
checked. The vertical height adjustment provided by the stilts allows the possibility of
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 17 of 60
®
slightly twisting the baseplate. If there has been no transit damage or twisting of the baseplate during stilt height adjustment, the pump and driver should be within 0.38 mm (0.015 in.) parallel, and 0.0025 mm/mm (0.0025 in./in.) angular alignment. If this is not the case, check to see if the driver mounting fasteners are centered in the driver feet holes.
d) If the fasteners are not centered there was likely
shipping damage. Re-center the fasteners and perform a preliminary alignment to the above tolerances by shimming under the motor for vertical alignment, and by moving the pump for horizontal alignment.
e) If the fasteners are centered, then the baseplate
may be twisted. Slightly adjust (one turn of the adjusting nut) the stilts at the driver end of the baseplate and check for alignment to the above tolerances. Repeat as necessary while maintaining a level condition as measured from the pump discharge flange.
f) Lock the stilt adjusters. The remaining steps are as listed for new grouted
baseplates.
4.4 Grouting
a) The pump foundation should be located as close
to the source of the fluid to be pumped as practical.
b) There should be adequate space for workers to
install, operate, and maintain the pump. The foundation should be sufficient to absorb any vibration and should provide a rigid support for the pump and motor.
c) Recommended mass of a concrete foundation
should be three times that of the pump, motor and base. Refer to Figure 4-5.
Foundation bolts are imbedded in the concrete inside a sleeve to allow some movement of the bolt.
Figure 4-5
d) Level the pump baseplate assembly. If the
baseplate has machined coplanar mounting surfaces, these machined surfaces are to be referenced when leveling the baseplate. This may require that the pump and motor be removed from the baseplate in order to reference the machined faces. If the baseplate is without machined coplanar mounting surfaces, the pump and motor are to be left on the baseplate. The proper surfaces to reference when leveling the pump baseplate assembly are the pump suction and discharge flanges. DO NOT stress the baseplate.
e) Do not bolt the suction or discharge flanges of
the pump to the piping until the baseplate foundation is completely installed. If equipped, use leveling jackscrews to level the baseplate. If jackscrews are not provided, shims and wedges should be used. (See Figure 4-5.) Check for levelness in both the longitudinal and lateral directions. Shims should be placed at all base anchor bolt locations, and in the middle edge of the base if the base is more than 1.5 m (5 ft.) long. Do not rely on the bottom of the baseplate to be flat. Standard baseplate bottoms are not machined, and it is not likely that the field mounting surface is flat.
f) After leveling the baseplate, tighten the anchor
bolts. If shims were used, make sure that the baseplate was shimmed near each anchor bolt before tightening. Failure to do this may result in a twist of the baseplate, which could make it impossible to obtain final alignment.
g) Check the level of the baseplate to make sure
that tightening the anchor bolts did not disturb the level of the baseplate. If the anchor bolts did change the level, adjust the jackscrews or shims as needed to level the baseplate.
h) Continue adjusting the jackscrews or shims and
tightening the anchor bolts until the baseplate is level.
i) Check initial alignment. If the pump and motor
were removed from the baseplate proceed with step j) first, then the pump and motor should be
reinstalled onto the baseplate using Flowserve’s
factory preliminary alignment procedure as described in section 4.5, and then continue with the following. As described above, pumps are given a preliminary alignment at the factory. This preliminary alignment is done in a way that ensures that, if the installer duplicates the factory conditions, there will be sufficient clearance between the motor hold down bolts and motor foot holes to move the motor into final alignment. If the pump and motor were properly reinstalled to the baseplate or if they were not removed from the
flowserve.com
USER INSTRUCTIONS PolyChem M-SERIES ENGLISH 71569218 07-11
Page 18 of 60
®
baseplate and there has been no transit damage, and also if the above steps where done properly, the pump and driver should be within 0.38 mm (0.015 in.) FIM (Full Indicator Movement) parallel, and 0.0025 mm/mm (0.0025 in./in.) FIM angular. If this is not the case, first check to see if the driver mounting fasteners are centered in the driver feet holes. If not, re-center the fasteners and perform a preliminary alignment to the above tolerances by shimming under the motor for vertical alignment, and by moving the pump for horizontal alignment.
j) Grout the baseplate. A non-shrinking grout
should be used. Make sure that the grout fills the area under the baseplate. After the grout has cured, check for voids and repair them. Jackscrews, shims and wedges should be removed from under the baseplate at this time. If they were to be left in place, they could rust, swell, and cause distortion in the baseplate.
k) Run piping to the suction and discharge of the
pump. There should be no piping loads transmitted to the pump after connection is made. Recheck the alignment to verify that there are no significant loads.
4.5 Initial alignment – Long-coupled
4.5.1 Horizontal initial alignment procedure
The purpose of factory alignment is to ensure that the user will have full utilization of the clearance in the motor holes for final job-site alignment. To achieve this, the factory alignment procedure specifies that the pump be aligned in the horizontal plane to the motor, with the motor foot bolts centered in the motor holes. This procedure ensures that there is sufficient clearance in the motor holes for the customer to field align the motor to the pump, to zero tolerance. This philosophy requires that the customer be able to place the base in the same condition as the factory. Thus the factory alignment will be done with the base sitting in an unrestrained condition on a flat and level surface. This standard also emphasizes the need to ensure the shaft spacing is adequate to accept the specified coupling spacer.
The factory alignment procedure is summarized below: a) The baseplate is placed on a flat and level
workbench in a free and unstressed position.
b) The baseplate is leveled as necessary. Leveling
is accomplished by placing shims under the rails of the base at the appropriate anchor bolt hole locations. Levelness is checked in both the longitudinal and lateral directions.
c) The motor and appropriate motor mounting
hardware is placed on the baseplate and the motor is checked for any planar soft-foot condition. If any is present it is eliminated by shimming.
d) The motor feet holes are centered on the motor
mounting fasteners. This is done by using a centering nut as shown in Figure 4-6.
Figure 4-6
e) The motor is fastened in place by tightening the
nuts on two diagonal motor mounting studs.
f) The pump is put onto the baseplate and leveled.
The foot piece under the bearing housing is adjustable. It is used to level the pump, if necessary. If an adjustment is necessary, add or remove shims [3126.1] between the foot piece
and the bearing housing. g) The spacer coupling gap is verified. h) The parallel and angular vertical alignment is
made by shimming under the motor. i) The motor feet holes are again centered on the
motor mounting studs using the centering nut.
At this point the centering nut is removed and
replaced with a standard nut. This gives
maximum potential mobility for the motor to be
horizontally moved during final, field alignment.
All four motor feet are tightened down. j) The pump and motor shafts are then aligned
horizontally, both parallel and angular, by
moving the pump to the fixed motor. The pump
feet are tightened down. k) Both horizontal and vertical alignment is again
final checked as is the coupling spacer gap. See section 4.8, Final shaft alignment.
4.6 Piping
Protective covers are fitted to both the suction and discharge flanges of the casing and must be removed prior to connecting the pump to any pipes.
4.6.1 Suction and discharge piping
All piping must be independently supported, accurately aligned and preferably connected to the pump by a
flowserve.com
Loading...
+ 42 hidden pages