Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1
your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/
important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference,
and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment
must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from
the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and
requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or
liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or
software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.
Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous
environment, which may lead to personal injury or death, property damage, or economic loss.
available from
) describes some
ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death,
property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the
consequence
SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that
dangerous voltage may be present.
BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that
surfaces may reach dangerous temperatures.
Identifies information that is critical for successful application and understanding of the product.
Allen-Bradley, Micro800, Micro810, Connected Components Workbench, Rockwell Software, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.
Preface
Read this preface to familiarize yourself with the rest of the manual. It provides
information concerning:
• who should use this manual
• the purpose of this manual
• related documentation
Who Should Use this
Manual
Purpose of this Manual
Additional Resources
Use this manual if you are responsible for designing, installing, programming, or
troubleshooting control systems that use Micro800™controllers.
You should have a basic understanding of electrical circuitry and familiarity with
relay logic. If you do not, obtain the proper training before using this product.
This manual is a reference guide for Micro800 controllers, plug-in modules and
accessories. It describes the procedures you use to install, wire, and troubleshoot
your controller. This manual:
• explains how to install and wire your controllers
• gives you an overview of the Micro800 controller system
Refer to the Online Help provided with Connected Components Workbench™
software for more information on programming your Micro800 controller.
These documents contain additional information concerning related Rockwell
Automation products.
ResourceDescription
Micro800 Programmable Controller External AC
Power Supply Installation 2080-IN001
Micro810 USB Adapter Plug-in Module Wirng
Diagrams 2080-WD001
Micro800 1.5" LCD Display and Keypad Module
Wirng Diagrams 2080-WD009
Industrial Automation Wiring and Grounding
Guidelines, publication 1770-4.1
viiiRockwell Automation Publication 2080-UM001D-EN-E - September 2012
Hardware Overview
1
2
3
5
67
45052
4
4
Chapter
1
Hardware Features
The Micro810 12-pt controllers are smart relays with high current relay output
models and can be configured through the embedded LCD display without
programming software. It can also function as a micro PLC with the same
programming capabilities as the other Micro800 controllers.
Micro810 controllers do not support Micro800 plug-in modules, but do support
a USB adapter, and an LCD module, which can be used as a backup memory
module.
24V DC powered controllers accommodate any 24V DC output power supply
that meets minimum specifications such as the optional Micro800 power supply
(2080-LC10-12QWB, 2080-LC10-12QBB only).
Micro810 12-Point Controllers
Controller Description
DescriptionDescription
Rockwell Automation Publication 2080-UM001D-EN-E - September 20121
1Optional power supply5USB port (for use with USB Adapter only)
2Status indicator6DIN rail mounting latch
3Input terminal block7Output terminal block
4Mounting screw hole/ mounting foot
Chapter 1 Hardware Overview
Status Indicator
StateDuring Normal OperationDuring Firmware Update or
OffNo power applied to device,
or in Fault mode
Solid greenDevice operating normallyProgram transfer successful
Flashing green Operating System errorFirmware update in progress
2Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
About Your Controller
Chapter
2
Programming Software for
Micro800 Controllers
Connected Components Workbench is a set of collaborative tools supporting
Micro800 controllers. It is based on Rockwell Automation and Microsoft Visual
Studio technology and offers controller programming, device configuration and
integration with HMI editor. Use this software to program your controllers,
configure your devices and design your operator interface applications.
Connected Components Workbench provides a choice of IEC 61131-3
programming languages (ladder diagram, function block diagram, structured
text) with user defined function block support that optimizes machine control.
To help you program your controller through the Connected Components
Workbench software, you can refer to the Connected Components Workbench
Online Help (it comes with your software).
Agency Certifications
Compliance to European
Union Directives
Rockwell Automation Publication 2080-UM001D-EN-E - September 20123
• UL Listed Industrial Control Equipment, certified for US and Canada.
UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations,
certified for U.S. and Canada.
• CE marked for all applicable directives
• C-Tick marked for all applicable acts
This product has the CE mark and is approved for installation within the
European Union and EEA regions. It has been designed and tested to meet the
following directives.
Chapter 2 About Your Controller
EMC Directive
This product is tested to meet Council Directive 2004/108/EC Electromagnetic
Compatibility (EMC) and the following standards, in whole or in part,
documented in a technical construction file:
• EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
• EN 61131-2; Programmable Controllers (Clause 11)
• EN 61000-6-4
EMC - Part 6-4: Generic Standards - Emission Standard for Industrial
Environments
• EN 61000-6-2
EMC - Part 6-2: Generic Standards - Immunity for Industrial
Environments
This product is intended for use in an industrial environment.
Installation Considerations
Low Voltage Directive
This product is tested to meet Council Directive 2006/95/ECLow Voltage, by
applying the safety requirements of EN 61131-2 Programmable Controllers, Part
2 - Equipment Requirements and Tests.
For specific information required by EN 61131-2, see the appropriate sections in
this publication, as well as the following Allen-Bradley publications:
• Industrial Automation Wiring and Grounding Guidelines for Noise
Immunity, publication 1770-4.1
Most applications require installation in an industrial enclosure (Pollution
Degree 2
Category II
possible from power lines, load lines, and other sources of electrical noise such as
hard-contact switches, relays, and AC motor drives. For more information on
proper grounding guidelines, see the Industrial Automation Wiring and
Grounding Guidelines publication 1770-4.1
(1)
) to reduce the effects of electrical interference (Over Voltage
(2)
) and environmental exposure. Locate your controller as far as
.
(1) Pollution Degree 2 is an environment where normally only non-conductive pollution occurs except that
occasionally temporary conductivity caused by condensation shall be expected.
(2) Overvoltage Category II is the load level section of the electrical distribution system. At this level, transient
voltages are controlled and do not exceed the impulse voltage capability of the products insulation.
4Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
About Your Controller Chapter 2
WARNING: If you insert or remove the module while power is on, an electrical arc can occur. This could
cause an explosion in hazardous location installations.
Be sure that power is removed or the area is nonhazardous before proceeding.
WARNING: The local programming terminal port is intended for temporary use only and must not be
connected or disconnected unless the area is assured to be nonhazardous.
WARNING: When used in a Class I, Division 2, hazardous location, this equipment must be mounted in a
suitable enclosure with proper wiring method that complies with the governing electrical codes.
WARNING: If you connect or disconnect wiring while the field-side power is on, an electrical arc can
occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or
the area is nonhazardous before proceeding.
WARNING: The USB port is intended for temporary local programming purposes only and not intended for
permanent connection. If you connect or disconnect the USB cable with power applied to this module or
any device on the USB network, an electrical arc can occur. This could cause an explosion in hazardous
location installations.
Be sure that power is removed or the area is nonhazardous before proceeding.
The USB port is a nonincendive field wiring connection for Class I, Division2 Groups A, B, C and D.
WARNING: Exposure to some chemicals may degrade the sealing properties of materials used in the
Relays. It is recommended that the User periodically inspect these devices for any degradation of
properties and replace the module if degradation is found.
WARNING: To comply with the CE Low Voltage Directive (LVD), this equipment must be powered from a
source compliant with the following:
Safety Extra Low Voltage (SELV) or Protected Extra Low Voltage (PELV).
WARNING: To comply with UL restrictions, this equipment must be powered from a source compliant with
the following:
Class 2 or Limited Voltage/Current.
WARNING: Do not wire more than 2 conductors on any single terminal.
WARNING: Be careful when stripping wires. Wire fragments that fall into the controller could cause
damage. Once wiring is complete, make sure the controller is free of all metal fragments.
ATTENTION: Do not remove the protective debris strips until after the controller and all other equipment
in the panel near the module are mounted and wired. Remove strips before operating the controller. Failure
to remove strips before operating can cause overheating.
ATTENTION: Electrostatic discharge can damage semiconductor devices inside the module. Do not touch
the connector pins or other sensitive areas.
ATTENTION: This product is intended to be mounted to a well-grounded mounting surface such as a metal
panel. Additional grounding connections from the power supply's mounting tabs or DIN rail (if used) are not
required unless the mounting surface cannot be grounded. Refer to Industrial Automation Wiring and
Grounding Guidelines, Allen-Bradley publication 1770-4.1
, for additional information.
ATTENTION: The USB cable is not to exceed 3.0 m (9.84 ft).
Rockwell Automation Publication 2080-UM001D-EN-E - September 20125
Chapter 2 About Your Controller
Environment and Enclosure
This equipment is intended for use in a Pollution Degree 2 industrial environment, in
overvoltage Category II applications (as defined in IEC 60664-1), at altitudes up to
2000 m (6562 ft) without derating.
This equipment is considered Group 1, Class A industrial equipment according to
IEC/CISPR 11. Without appropriate precautions, there may be difficulties with
electromagnetic compatibility in residential and other environments due to
conducted and radiated disturbances.
This equipment is supplied as open-type equipment. It must be mounted within an
enclosure that is suitably designed for those specific environmental conditions that
will be present and appropriately designed to prevent personal injury resulting from
accessibility to live parts. The enclosure must have suitable flame-retardant
properties to prevent or minimize the spread of flame, complying with a flame
spread rating of 5VA, V2, V1, V0 (or equivalent) if non-metallic. The interior of the
enclosure must be accessible only by the use of a tool. Subsequent sections of this
publication may contain additional information regarding specific enclosure type
ratings that are required to comply with certain product safety certifications.
• NEMA Standard 250 and IEC 60529, as applicable, for explanations of the degrees of
protection provided by different types of enclosure.
, for additional installation requirements.
Preventing Electrostatic Discharge
This equipment is sensitive to electrostatic discharge, which can cause
internal damage and affect normal operation. Follow these guidelines
when you handle this equipment:
• Touch a grounded object to discharge potential static.
• Wear an approved grounding wriststrap.
• Do not touch connectors or pins on component boards.
• Do not touch circuit components inside the equipment.
• Use a static-safe workstation, if available.
• Store the equipment in appropriate static-safe packaging when not in use.
Safety Considerations
Safety considerations are an important element of proper system installation.
Actively thinking about the safety of yourself and others, as well as the condition
of your equipment, is of primary importance. We recommend reviewing the
following safety considerations.
6Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
About Your Controller Chapter 2
North American Hazardous Location Approval
The following information applies when operating this equipment
in hazardous locations:
Products marked "CL I, DIV 2, GP A, B, C, D" are suitable for use in Class I
Division 2 Groups A, B, C, D, Hazardous Locations and nonhazardous
locations only. Each product is supplied with markings on the rating
nameplate indicating the hazardous location temperature code. When
combining products within a system, the most adverse temperature code
(lowest "T" number) may be used to help determine the overall
temperature code of the system. Combinations of equipment in your
system are subject to investigation by the local Authority Having
Jurisdiction at the time of installation.
EXPLOSION HAZARD
• Do not disconnect equipment unless power has been
removed or the area is known to be nonhazardous.
• Do not disconnect connections to this equipment unless
power has been removed or the area is known to be
nonhazardous. Secure any external connections that mate to
this equipment by using screws, sliding latches, threaded
connectors, or other means provided with this product.
• Substitution of any component may impair suitability for
Class I, Division 2.
• If this product contains batteries, they must only be changed
in an area known to be nonhazardous.
Informations sur l’utilisation de cet équipement en environnements
dangereux:
Les produits marqués "CL I, DIV 2, GP A, B, C, D" ne conviennent qu'à une
utilisation en environnements de Classe I Division 2 Groupes A, B, C, D
dangereux et non dangereux. Chaque produit est livré avec des marquages
sur sa plaque d'identification qui indiquent le code de température pour les
environnements dangereux. Lorsque plusieurs produits sont combinés dans
un système, le code de température le plus défavorable (code de
température le plus faible) peut être utilisé pour déterminer le code de
température global du système. Les combinaisons d'équipements dans le
système sont sujettes à inspection par les autorités locales qualifiées au
moment de l'installation.
RISQUE D’EXPLOSION
• Couper le courant ou s'assurer que l'environnement est classé
non dangereux avant de débrancher l'équipement.
• Couper le courant ou s'assurer que l'environnement est classé
non dangereux avant de débrancher les connecteurs. Fixer tous
les connecteurs externes reliés à cet équipement à l'aide de vis,
loquets coulissants, connecteurs filetés ou autres moyens
fournis avec ce produit.
• La substitution de tout composant peut rendre cet équipement
inadapté à une utilisation en environnement de Classe I,
Division 2.
• S'assurer que l'environnement est classé non dangereux avant
de changer les piles.
Disconnecting Main Power
WARNING: Explosion Hazard
Do not replace components, connect equipment, or disconnect equipment
unless power has been switched off.
The main power disconnect switch should be located where operators and
maintenance personnel have quick and easy access to it. In addition to
disconnecting electrical power, all other sources of power (pneumatic and
hydraulic) should be de-energized before working on a machine or process
controlled by a controller.
Rockwell Automation Publication 2080-UM001D-EN-E - September 20127
Chapter 2 About Your Controller
Safety Circuits
WARNING: Explosion Hazard
Do not connect or disconnect connectors while circuit is live.
Circuits installed on the machine for safety reasons, like overtravel limit switches,
stop push buttons, and interlocks, should always be hard-wired directly to the
master control relay. These devices must be wired in series so that when any one
device opens, the master control relay is de-energized, thereby removing power to
the machine. Never alter these circuits to defeat their function. Serious injury or
machine damage could result.
Power Distribution
There are some points about power distribution that you should know:
• The master control relay must be able to inhibit all machine motion by
removing power to the machine I/O devices when the relay is deenergized. It is recommended that the controller remain powered even
when the master control relay is de-energized.
• If you are using a DC power supply, interrupt the load side rather than the
AC line power. This avoids the additional delay of power supply turn-off.
The DC power supply should be powered directly from the fused
secondary of the transformer. Power to the DC input and output circuits
should be connected through a set of master control relay contacts.
Periodic Tests of Master Control Relay Circuit
Any part can fail, including the switches in a master control relay circuit. The
failure of one of these switches would most likely cause an open circuit, which
would be a safe power-off failure. However, if one of these switches shorts out, it
no longer provides any safety protection. These switches should be tested
periodically to assure they will stop machine motion when needed.
8Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
About Your Controller Chapter 2
Power Considerations
The following explains power considerations for the micro controllers.
Isolation Transformers
You may want to use an isolation transformer in the AC line to the controller.
This type of transformer provides isolation from your power distribution system
to reduce the electrical noise that enters the controller and is often used as a stepdown transformer to reduce line voltage. Any transformer used with the
controller must have a sufficient power rating for its load. The power rating is
expressed in volt-amperes (VA).
Power Supply Inrush
During power-up, the Micro800 power supply allows a brief inrush current to
charge internal capacitors. Many power lines and control transformers can supply
inrush current for a brief time. If the power source cannot supply this inrush
current, the source voltage may sag momentarily.
The only effect of limited inrush current and voltage sag on the Micro800 is that
the power supply capacitors charge more slowly. However, the effect of a voltage
sag on other equipment should be considered. For example, a deep voltage sag
may reset a computer connected to the same power source. The following
considerations determine whether the power source must be required to supply
high inrush current:
• The power-up sequence of devices in a system.
• The amount of the power source voltage sag if the inrush current cannot be
supplied.
• The effect of voltage sag on other equipment in the system.
If the entire system is powered-up at the same time, a brief sag in the power source
voltage typically will not affect any equipment.
Loss of Power Source
The optional Micro800 AC power supply is designed to withstand brief power
losses without affecting the operation of the system. The time the system is
operational during power loss is called program scan hold-up time after loss of
power. The duration of the power supply hold-up time depends on power
consumption of controller system, but is typically between 10 milliseconds and 3
seconds.
Rockwell Automation Publication 2080-UM001D-EN-E - September 20129
Chapter 2 About Your Controller
TIP
Input States on Power Down
The power supply hold-up time as described above is generally longer than the
turn-on and turn-off times of the inputs. Because of this, the input state change
from “On” to “Off” that occurs when power is removed may be recorded by the
processor before the power supply shuts down the system. Understanding this
concept is important. The user program should be written to take this effect into
account.
Other Types of Line Conditions
Occasionally the power source to the system can be temporarily interrupted. It is
also possible that the voltage level may drop substantially below the normal line
voltage range for a period of time. Both of these conditions are considered to be a
loss of power for the system.
Preventing Excessive Heat
Master Control Relay
For most applications, normal convective cooling keeps the controller within the
specified operating range. Ensure that the specified temperature range is
maintained. Proper spacing of components within an enclosure is usually
sufficient for heat dissipation.
In some applications, a substantial amount of heat is produced by other
equipment inside or outside the enclosure. In this case, place blower fans inside
the enclosure to assist in air circulation and to reduce “hot spots” near the
controller.
Additional cooling provisions might be necessary when high ambient
temperatures are encountered.
Do not bring in unfiltered outside air. Place the controller in an enclosure
to protect it from a corrosive atmosphere. Harmful contaminants or dirt
could cause improper operation or damage to components. In extreme
cases, you may need to use air conditioning to protect against heat buildup within the enclosure.
A hard-wired master control relay (MCR) provides a reliable means for
emergency machine shutdown. Since the master control relay allows the
placement of several emergency-stop switches in different locations, its
installation is important from a safety standpoint. Overtravel limit switches or
mushroom-head push buttons are wired in series so that when any of them opens,
the master control relay is de-energized. This removes power to input and output
device circuits.Refer to the figures on pages 13 and 14.
10Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
About Your Controller Chapter 2
TIP
TIP
WARNING: Never alter these circuits to defeat their function
since serious injury and/or machine damage could result.
If you are using an external DC power supply, interrupt the DC output
side rather than the AC line side of the supply to avoid the additional
delay of power supply turn-off.
The AC line of the DC output power supply should be fused.
Connect a set of master control relays in series with the DC power
supplying the input and output circuits.
Place the main power disconnect switch where operators and maintenance
personnel have quick and easy access to it. If you mount a disconnect switch
inside the controller enclosure, place the switch operating handle on the outside
of the enclosure, so that you can disconnect power without opening the
enclosure.
Whenever any of the emergency-stop switches are opened, power to input and
output devices should be removed.
When you use the master control relay to remove power from the external I/O
circuits, power continues to be provided to the controller’s power supply so that
diagnostic indicators on the processor can still be observed.
The master control relay is not a substitute for a disconnect to the controller. It is
intended for any situation where the operator must quickly de-energize I/O
devices only. When inspecting or installing terminal connections, replacing
output fuses, or working on equipment within the enclosure, use the disconnect
to shut off power to the rest of the system.
Do not control the master control relay with the controller. Provide the
operator with the safety of a direct connection between an emergencystop switch and the master control relay.
Using Emergency-Stop Switches
When using emergency-stop switches, adhere to the following points:
• Do not program emergency-stop switches in the controller program. Any
emergency-stop switch should turn off all machine power by turning off
the master control relay.
• Observe all applicable local codes concerning the placement and labeling
of emergency-stop switches.
Rockwell Automation Publication 2080-UM001D-EN-E - September 201211
Chapter 2 About Your Controller
TIP
• Install emergency-stop switches and the master control relay in your
system. Make certain that relay contacts have a sufficient rating for your
application. Emergency-stop switches must be easy to reach.
• In the following illustration, input and output circuits are shown with
MCR protection. However, in most applications, only output circuits
require MCR protection.
The following illustrations show the Master Control Relay wired in a grounded
system.
In most applications input circuits do not require MCR protection;
however, if you need to remove power from all field devices, you must
include MCR contacts in series with input power wiring.
12Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
Schematic (Using IEC Symbols)
Disconnect
Isolation
transformer
Emergency-stop
push button
FuseMCR
230V AC
I/O
circuits
Operation of either of these contacts will
remove power from the external I/O
circuits, stopping machine motion.
Fuse
Overtravel
limit switch
MCR
MCR
MCR
StopStart
Line terminals: Connect to terminals of power
supply
115V AC or
230V AC
I/O circuits
L1
L2
230V AC
Master Control Relay (MCR)
Cat. No. 700-PK400A1
Suppressor
Cat. No. 700-N24
MCR
Suppr.
24V DC
I/O
circuits
(Lo)
(Hi)
DC power supply.
Use IEC 950/EN 60950
X1X2
115V AC
or 230V AC
Line terminals: Connect to 24V DC terminals of
power supply
_
+
44564
About Your Controller Chapter 2
Rockwell Automation Publication 2080-UM001D-EN-E - September 201213
Chapter 2 About Your Controller
Emergency-stop
push button
230V AC
Operation of either of these contacts will
remove power from the external I/O
circuits, stopping machine motion.
FuseMCR
Fuse
MCR
MCR
MCR
Stop
Start
Line terminals: Connect to terminals of power supply
Line terminals: Connect to 24V DC terminals of
power supply
230V AC
output
circuits
Disconnect
Isolation
transformer
115V AC or
230V AC
I/O circuits
L1
L2
Master Control Relay (MCR)
Cat. No. 700-PK400A1
Suppressor
Cat. No. 700-N24
(Lo)
(Hi)
DC power supply. Use
NEC Class 2 for UL
Listing
.
X1X2
115V AC or
230V AC
_
+
MCR
24 V DC
I/O
circuits
Suppr.
Overtravel
limit switch
44565
Schematic (Using ANSI/CSA Symbols)
14Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
Install Your Controller
TIP
45054
74.85 mm (2.95 in.)
59 mm (2.32 in.)
91 mm (3.58 in.)
Chapter
3
Controller Mounting
Dimensions
Mounting Dimensions
Mounting dimensions do not include mounting feet or DIN rail latches.
Maintain spacing from objects such as enclosure walls, wireways and adjacent
equipment. Allow 50.8 mm (2 in.) of space on all sides for adequate ventilation.
An exception to this spacing guideline is allowed for the side at which you are
connecting the optional power supply, 2080-PS120-240VAC.
DIN Rail Mounting
Rockwell Automation Publication 2080-UM001D-EN-E - September 201215
The module can be mounted using the following DIN rails: 35 x 7.5 mm x 1 mm
(EN 50 022 - 35 x 7.5).
For environments with greater vibration and shock concerns, use the
panel mounting method, instead of DIN rail mounting.
Before mounting the module on a DIN rail, use a flat-blade screwdriver in the
DIN rail latch and pry it downwards until it is in the unlatched position.
Chapter 3 Install Your Controller
1. Hook the top of the DIN rail mounting area of the controller onto the
DIN rail, and then press the bottom until the controller snaps onto the
DIN rail.
2. Push the DIN rail latch back into the latched position.
Use DIN rail end anchors (Allen-Bradley part number 1492-EAJ35 or
1492-EAHJ35) for vibration or shock environments.
To remove your controller from the DIN rail, pry the DIN rail latch downwards
until it is in the unlatched position.
Panel Mounting
The preferred mounting method is to use four M4 (#8) screws per module. Hole
spacing tolerance: ±0.4 mm (0.016 in.).
Follow these steps to install your controller using mounting screws.
1. Place the controller against the panel where you are mounting it. Make sure
the controller is spaced properly.
2. Mark drilling holes through the mounting screw holes and mounting feet
then remove the controller.
3. Drill the holes at the markings, then replace the controller and mount it.
Leave the protective debris strip in place until you are finished wiring the
controller and any other devices.
16Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
Wiring Requirements
TIP
Wire Your Controller
WARNING: Before you install and wire any device, disconnect power
to the controller system.
WARNING: Calculate the maximum possible current in each power
and common wire. Observe all electrical codes dictating the maximum
current allowable for each wire size. Current above the maximum
ratings may cause wiring to overheat, which can cause damage.
United States Only: If the controller is installed within a potentially
hazardous environment, all wiring must comply with the requirements
stated in the National Electrical Code 501-10 (b).
Chapter
4
• Allow for at least 50 mm. (2 in.) between I/O wiring ducts or terminal
strips and the controller.
• Route incoming power to the controller by a path separate from the device
wiring. Where paths must cross, their intersection should be
perpendicular.
Do not run signal or communications wiring and power wiring in the
same conduit. Wires with different signal characteristics should be
routed by separate paths.
• Separate wiring by signal type. Bundle wiring with similar electrical
characteristics together.
• Separate input wiring from output wiring.
• Label wiring to all devices in the system. Use tape, shrink-tubing, or other
dependable means for labeling purposes. In addition to labeling, use
colored insulation to identify wiring based on signal characteristics. For
example, you may use blue for DC wiring and red for AC wiring.
Wire Requirements
Wire Size
Micro810 Controllers0.32... 2.1 mm² (22...14 AWG) solid copper wire or
0.32... 1.3 mm² (22...16 AWG) stranded copper wire
rated at 90 °C (194 °F ) insulation max.
Use Surge Suppressors
Rockwell Automation Publication 2080-UM001D-EN-E - September 201217
Because of the potentially high current surges that occur when switching
inductive load devices, such as motor starters and solenoids, the use of some type
Chapter 4 Wire Your Controller
+DC or L1
Suppression
Device
DC COM or L2
AC or DC
Outputs
Load
VAC/DC
Out 0
Out 1
Out 2
Out 3
Out 4
Out 5
Out
6
Out 7
COM
+24V DC
IN4004 Diode
Relay or Solid
State DC Outputs
24V DC common
VAC/DC
Out 0
Out 1
Out 2
Out 3
Out 4
Out 5
Out 6
Out 7
COM
(A surge suppressor
can also be used.)
of surge suppression to protect and extend the operating life of the controllers
output contacts is required. Switching inductive loads without surge suppression
can significantly reduce the life expectancy of relay contacts. By adding a
suppression device directly across the coil of an inductive device, you prolong the
life of the output or relay contacts. You also reduce the effects of voltage
transients and electrical noise from radiating into adjacent systems.
The following diagram shows a typical PLC's output with a suppression device.
We recommend that you locate the suppression device as close as possible to the
load device.
If the outputs are DC, we recommend that you use an 1N4004 diode for surge
suppression, as shown below. For inductive DC load devices, a diode is suitable. A
1N4004 diode is acceptable for most applications. A surge suppressor can also be
used. See page 19
for recommended suppressors. As shown below with a typical
PLC's output, these surge suppression circuits connect directly across the load
device.
18Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
Suitable surge suppression methods for inductive AC load devices include a
varistor, an RC network, or an Allen-Bradley surge suppressor, all shown below.
These components must be appropriately rated to suppress the switching
Wire Your Controller Chapter 4
Surge Suppression for Inductive AC Load Devices
Output DeviceOutput DeviceOutput Device
Varistor
RC Network
Surge
Suppressor
transient characteristic of the particular inductive device. See Recommended
Surge Suppressors on page 19 for recommended suppressors.
Recommended Surge Suppressors
Use the Allen-Bradley surge suppressors shown in the following table for use with
relays, contactors, and starters.
Recommended Surge Suppressors
DeviceCoil VoltageSuppressor Catalog Number
Ty pe
Bulletin 100/104K 700K24…48V AC100-KFSC50RC
110…280V AC100-KFSC280
380…480V AC100-KFSC480
12…55 V AC, 12…77V DC100-KFSV55MOV
56…136 VAC, 78…180V DC100-KFSV136
137…277V AC, 181…250 V DC100-KFSV277
12…250V DC100-KFSD250Diode
Bulletin 100C, (C09 - C97)24…48V AC
110…280V AC
380…480V AC
12…55V AC, 12…77V DC
56…136V AC, 78…180V DC
137…277V AC, 181…250V DC
278…575V AC
12…250V DC
100-FSC48
100-FSC280
100-FSC480
100-FSV55
100-FSV136
100-FSV277
100-FSV575
100-FSD250
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
RC
MOV
Diode
Bulletin 509 Motor Starter Size 0 - 512…120V AC599-K04MOV
(4)
Rockwell Automation Publication 2080-UM001D-EN-E - September 201219
Miscellaneous electromagnetic devices
limted to 35 sealed VA
(1) Catalog numbers for screwless terminals include the string ’CR’ after ’100-’. For example: Cat. No. 100-FSC48 becomes Cat. No. 100-CRFSC48; Cat. No. 100-FSV55
becomes 100-CRFSV55; and so on.
(2) For use on the interposing relay.
(3) For use on the contactor or starter.
(4) RC Type not to be used with Triac outputs. Varistor is not recommended for use on the relay outputs.
6…150V AC/DC700-N24RC
199-FSMA1
199-GSMA1
(2)
(3)
Ty pe
RC
MOV
(4)
Ground the Controller
Wiring Diagrams
This product is intended to be mounted to a well grounded mounting surface
such as a metal panel. Refer to the Industrial Automation Wiring and Grounding
Guidelines, publication 1770-4.1
, for additional information.
The following illustrations show the wiring diagrams for the Micro800
controllers. For controllers with DC inputs, inputs 0…3 can be wired as either
sinking or sourcing inputs, however, inputs 4…7 can only be wired as sinking
inputs. Sinking and sourcing does not apply to AC inputs.
20Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
Micro810 Controllers
45055
Input Terminal Block
Output Terminal Block
45056
Input Terminal Block
(1)
Output Terminal Block
2080-LC10-12AWA
2080-LC10-12QWB
2080-LC10-12DWD
45057
45058
45059
45059
Input Terminal Block
(1)
Output Terminal Block
45059
2080-LC10-12QBB
Input Terminal Block
(1)
Output Terminal Block
45056
1
I-04, I-05, I-06, I-07 apply as both digital inputs 4, 5, 6, 7 and analog inputs 0, 1, 2, 3 for the 2080-LC10-QWB,
2080-LC10-12DWD, and 2080-LC10-12QBB models.
Wire Your Controller Chapter 4
L1 VACL2/N VACNCI-00
I-02
I-04I-06
123456789101112
L2/N VAC
CM0CM1
CM2
I-01
CM3
I-05I-07I-03
12345678
O-03O-01O-00
I-03I-04I-06
+DC24COM0
O-02
I-01
123456789101112
CM0CM1
I-02
CM2
CM3
-DC24I-00-DC24
I-05I-07
12345678
O-03O-01O-00
I-03I-04I-06
O-02
COM0+DC12
I-01
123456789101112
CM3
-DC12I-00-DC12
O-03O-01O-00
I-05I-07
CM0CM1
12345678
I-02
CM2
O-02
Controller I/O Wiring
+DC24COM0
Minimize Electrical Noise
123456789101112
+CM0O-00
12345678
I-01
O-02
I-03I-04I-06
I-02
-DC24I-00-DC24
-CM0
-CM0O-01O-03+CM0
I-05I-07
Because of the variety of applications and environments where controllers are
installed and operating, it is impossible to ensure that all environmental noise will
be removed by input filters. To help reduce the effects of environmental noise,
Rockwell Automation Publication 2080-UM001D-EN-E - September 201221
Chapter 4 Wire Your Controller
install the Micro800 system in a properly rated (for example, NEMA) enclosure.
Make sure that the Micro800 system is properly grounded.
A system may malfunction due to a change in the operating environment after a
period of time. We recommend periodically checking system operation,
particularly when new machinery or other noise sources are installed near the
Micro800 system.
Analog Channel Wiring Guidelines
Consider the following when wiring your analog channels:
• The analog common (COM) is connected to power supply common
inside the module. These terminals are not electrically isolated from the
system.
• Analog channels are not isolated from each other.
• Use Belden 8761, or equivalent, shielded wire.
• Under normal conditions, the drain wire (shield) should be connected to
the metal mounting panel at field side (earth ground). Keep the shield
connection to earth ground as short as possible.
• To ensure optimum accuracy for voltage type inputs, limit overall cable
impedance by keeping all analog cables as short as possible. Locate the I/O
system as close to your voltage type sensors or actuators as possible.
Minimize Electrical Noise on Analog Channels
Inputs on analog channels employ digital high-frequency filters that significantly
reduce the effects of electrical noise on input signals. However, because of the
variety of applications and environments where analog controllers are installed
and operated, it is impossible to ensure that all environmental noise will be
removed by the input filters.
Several specific steps can be taken to help reduce the effects of environmental
noise on analog signals:
• install the Micro800 system in a properly rated enclosure, for example,
NEMA. Make sure that the Micro800 system is properly grounded.
• use Belden cable #8761 for wiring the analog channels, making sure that
the drain wire and foil shield are properly earth grounded.
• route the Belden cable separately from any AC wiring. Additional noise
immunity can be obtained by routing the cables in grounded conduit.
22Rockwell Automation Publication 2080-UM001D-EN-E - September 2012
Loading...
+ 90 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.