Toshiba TB6600HG Schematic [ru]

0 (0)

TB6600HG

TOSHIBA BiCD Integrated Circuit Silicon Monolithic

TB6600HG

PWM Chopper-Type bipolar

Stepping Motor Driver IC

The TB6600HG is a PWM chopper-type single-chip bipolar sinusoidal

 

TB6600HG

micro-step stepping motor driver.

 

Forward and reverse rotation control is available

with 2-phase,

1-2-phase, W1-2-phase, 2W1-2-phase, and 4W1-2-phase excitation

modes.

 

 

2-phase bipolar-type stepping motor can be driven by only clock signal

with low vibration and high efficiency.

 

 

Features

 

Single-chip bipolar sinusoidal micro-step stepping motor driver

HZIP25-P-1.00F

Ron (upper + lower) = 0.4 Ω (typ.)

 

Weight:

 

Forward and reverse rotation control available

HZIP25-P-1.00F: 7.7g (typ.)

Selectable phase drive (1/1, 1/2, 1/4, 1/8, and 1/16 step)

 

Output withstand voltage: Vcc = 50 V

 

Output current: IOUT = 5.0 A (absolute maximum ratings, peak)

 

 

IOUT = 4.5 A (operating range, maximal value)

 

Packages: HZIP25-P-1.00F

 

Built-in input pull-down resistance: 100 kΩ (typ.), (only TQ terminal: 70Ω(typ.))

Output monitor pins (ALERT): Maximum of IALERT = 1 mA

Output monitor pins (MO): Maximum of IMO = 1 mA

Equipped with reset and enable pins

Stand by function

Single power supply

Built-in thermal shutdown (TSD) circuit

Built-in under voltage lock out (UVLO) circuit

Built-in over-current detection (ISD) circuit

1

2014-01-30

 

 

 

 

 

 

 

 

 

 

 

 

TB6600HG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin Functions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin No.

 

 

 

I/O

Symbol

Functional Description

Remark

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

Output

ALERT

TSD / ISD monitor pin

Pull-up by external resistance

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

SGND

Signal ground

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

Input

TQ

Torque (output current) setting input pin

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

Input

Latch/Auto

Select a return type for TSD.

L: Latch, H: Automatic return

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

Input

Vref

Voltage input for 100% current level

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

Input

Vcc

Power supply

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

Input

M1

Excitation mode setting input pin

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

Input

M2

Excitation mode setting input pin

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

Input

M3

Excitation mode setting input pin

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

Output

OUT2B

B channel output 2

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

NFB

B channel output current detection pin

 

 

 

12

 

 

 

 

Output

OUT1B

B channel output 1

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

PGNDB

Power ground

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

Output

OUT2A

A channel output 2

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

NFA

A channel output current detection pin

 

 

 

16

 

 

 

 

Output

OUT1A

A channel output 1

 

 

 

 

 

 

 

 

 

 

 

 

 

17

 

 

 

 

PGNDA

Power ground

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

Input

ENABLE

Enable signal input pin

H: Enable, L: All outputs off

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

Input

RESET

Reset signal input pin

L: Initial mode

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

Input

Vcc

Power supply

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

 

 

 

Input

CLK

CLK pulse input pin

 

 

 

 

 

 

 

 

 

 

 

 

 

22

 

 

 

 

Input

CW/CCW

Forward/reverse control pin

L: CW, H:CCW

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

 

 

OSC

Resistor connection pin for internal oscillation setting

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

 

 

Output

Vreg

Control side connection pin for power capacitor

Connecting capacitor to

 

 

 

 

 

SGND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

Output

MO

Electrical angle monitor pin

Pull-up by external resistance

 

 

 

 

 

 

 

 

 

 

 

 

 

<Terminal circuits>

Input pins

Input pins

(M1, M2, M3,CLK, CW/CCW,

(TQ)

ENABLE, RESET, Latch/Auto)

 

 

VDD

10kΩ

10kΩ

100kΩ

70kΩ

2

2014-01-30

TB6600HG

Pin Assignment

Top View

SGND

Latch/Auto

Vcc

M2

OUT2B

OUT1B

OUT2A

OUT1A

ENABLE

Vcc

CW/CCW

Vreg

2

4

6

8

10

12

14

16

18

20

22

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

3

 

5

 

7

 

9

 

11

13

15

17

19

21

23

25

ALERT

 

TQ

 

Vref

 

M1

 

M3

 

NFB

 

PGNDB

 

NFA

 

PGNDA

 

RESET

 

CLK

 

OSC

 

MO

3

2014-01-30

TB6600HG

Block Diagram

 

 

 

Vreg

MO

ALERT

 

Vcc

 

 

 

 

24

25

1

 

6, 20

 

M1

7

 

Reg(5V)

 

 

 

 

OUT1A

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre

H-Bridge

 

M2

8

 

 

 

 

-drive

driver A

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

14

 

M3

 

 

 

 

 

 

OUT2A

 

 

 

 

 

 

 

 

CW/CCW

22

 

TSD / ISD / UVLO

 

 

15

NFA

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

21

circuit

 

 

 

 

 

 

 

 

Current selector

 

 

 

 

 

 

 

 

circuit A

 

 

 

RESET

19

 

 

 

 

 

 

 

ENABLE

18

 

 

 

 

 

12

OUT1B

 

 

 

 

 

 

 

 

 

 

 

 

Pre

H-Bridge

 

Latch/Auto

4

 

 

 

 

-drive

driver B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

OUT2B

 

 

 

 

 

 

 

 

OSC

23

OSC

 

 

 

 

 

NFB

 

 

 

 

Current selector

 

11

 

 

 

 

 

circuit B

 

 

 

 

1/3

100%/30%

 

 

 

 

Vref

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

2

17

13

 

 

 

 

TQ

 

 

 

 

 

 

 

 

 

 

SGND

PGNDA

PGNDB

 

Setting of Vref

Input

Voltage ratio

TQ

 

 

 

L

30%

 

 

H

100%

 

 

4

2014-01-30

TB6600HG

Description of Functions

1. Excitation Settings

The excitation mode can be selected from the following eight modes using the M1, M2 and M3 inputs. New excitation mode starts from the initial mode when M1, M2, or M3 inputs are shifted during motor operation. In this case, output current waveform may not continue.

 

Input

 

Mode

M1

M2

M3

(Excitation)

 

 

 

 

L

L

L

Standby mode

(Operation of the internal circuit is almost turned off.)

 

 

 

 

 

 

 

L

L

H

1/1 (2-phase excitation, full-step)

 

 

 

 

L

H

L

1/2A type (1-2 phase excitation A type)

( 0%, 71%, 100% )

 

 

 

 

 

 

 

L

H

H

1/2B type (1-2 phase excitation B type)

( 0%, 100% )

 

 

 

 

 

 

 

H

L

L

1/4 (W1-2 phase excitation)

 

 

 

 

H

L

H

1/8 (2W1-2 phase excitation)

 

 

 

 

H

H

L

1/16 (4W1-2 phase excitation)

 

 

 

 

H

H

H

Standby mode

(Operation of the internal circuit is almost turned off.)

 

 

 

 

 

 

 

Note: To change the exciting mode by changing M1, M2, and M3, make sure not to set M1 = M2 = M3 = L or M1 = M2 = M3 = H.

Standby mode

The operation mode moves to the standby mode under the condition M1 = M2 = M3 = L or M1 = M2 = M3 = H.

The power consumption is minimized by turning off all the operations except protecting operation. In standby mode, output terminal MO is HZ.

Standby mode is released by changing the state of M1=M2=M3=L and M1=M2=M3=H to other state. Input signal is not accepted for about 200 μs after releasing the standby mode.

5

2014-01-30

TB6600HG

2. Function

(1)To turn on the output, configure the ENABLE pin high. To turn off the output, configure the ENABLE pin low.

(2)The output changes to the Initial mode shown in the table below when the ENABLE signal goes High level and the RESET signal goes Low level. (In this mode, the status of the CLK and CW/CCW pins are irrelevant.)

(3)As shown in the below figure of Example 1, when the ENABLE signal goes Low level, it sets an OFF on the output. In this mode, the output changes to the initial mode when the RESET signal goes Low level. Under this condition, the initial mode is output by setting the ENABLE signal High level. And the motor operates from the initial mode by setting the RESET signal High level.

(Example 1)

1

CLK

RESET

ENABLE

Internal current set

Output current(*)(phase A ) (A )

Z

(*: Output current starts rising at the timing of PWM frequency just after ENABLE pin outputs high.)

 

 

 

 

 

 

 

 

Command of the standby has a higher priority

 

 

 

 

Input

 

 

 

 

 

 

 

Output mode

than ENABLE. Standby mode can be turned on

 

CLK

CW/CCW

RESET

ENABLE

 

 

and off regardless of the state of ENABLE.

 

 

 

 

 

 

 

 

 

 

 

 

L

H

H

CW

X:

Don’t Care

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

H

H

CCW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

X

L

H

Initial mode

 

 

 

 

 

 

 

 

 

 

 

 

 

X

X

X

L

Z

 

 

 

 

 

 

 

 

 

 

 

 

6

2014-01-30

 

 

TB6600HG

3. Initial Mode

 

 

When RESET is used, the phase currents are as follows.

 

 

Excitation Mode

Phase A Current

Phase B Current

1/1 (2-phase excitation, full-step)

100%

-100%

1/2A type (1-2 phase excitation A type) (0%, 71%, 100%)

100%

0%

1/2B type (1-2 phase excitation B type) (0%, 100%)

100%

0%

1/4 (W1-2 phase excitation)

100%

0%

1/8 (2W1-2 phase excitation)

100%

0%

1/16 (4W1-2 phase excitation)

100%

0%

current direction is defined as follows. OUT1A → OUT2A: Forward direction OUT1B → OUT2B: Forward direction

4. 100% current settings (Current value)

100% current value is determined by Vref inputted from external part and the external resistance for detecting output current. Vref is doubled 1/3 inside IC.

Io (100%) = (1/3 × Vref) ÷ RNF

The average current is lower than the calculated value because this IC has the method of peak current detection.

Pleas use the IC under the conditions as follows; 0.11Ω RNF 0.5Ω, 0.3V Vref 1.95V

5.OSC

Triangle wave is generated internally by CR oscillation by connecting external resistor to OSC terminal. Rosc should be from 30kΩ to 120kΩ. The relation of Rosc and fchop is shown in below table and figure. The values of fchop of the below table are design guarantee values. They are not tested for pre-shipment.

Rosc(kΩ)

 

fchop(kHz)

 

 

Min

Typ.

Max

30

-

60

-

51

-

40

-

120

-

20

-

7

2014-01-30

TB6600HG

6. Decay Mode

It takes approximately five OSCM cycles for charging-discharging a current in PWM mode. The 40% fast decay mode is created by inducing decay during the last two cycles in Fast Decay mode.

The ratio 40% of the fast decay mode is always fixed.

The relation between the master clock frequency (fMCLK), the OSCM frequency (fOSCM) and the PWM frequency (fchop) is shown as follows:

fOSCM = 1/20 ×fMCLK fchop = 1/100 ×fMCLK

When Rosc=51kΩ, the master clock=4MHz, OSCM=200kHz, the frequency of PWM(fchop)=40kHz.

6-1. Current Waveform and Mixed Decay Mode settings

The period of PWM operation is equal to five periods of OSCM. The ratio 40% of the fast decay mode is always fixed.

The “NF” refers to the point at which the output current reaches its predefined current level.

MDT means the point of MDT (MIXED DECAY TIMMING) in the below diagram.

fchop

OSCM

Internal Waveform

 

Predefined Current Level

40%

NF

 

fast

 

Decay

MDT

Mode

Charge mode → NF: Predefined current level → Slow mode → MDT(Mixed decay timing) → Fast mode → Current monitoring → (When predefined current level Output current) Charge mode

8

2014-01-30

TB6600HG

6-2. Effect of Decay Mode

Increasing the current (sine wave)

Predefined

Slow

Slow

Current Level

Fast

Fast

 

 

 

Charge

Predefined

Slow

Slow

Charge

Current Level

 

 

Fast

 

Fast

 

 

 

Charge

Charge

 

Decreasing the current (In case the current is decreased to the predefined value in a short time because it decays quickly.)

Predefined

Slow

Slow

 

 

 

Current Level

Fast

Fast

 

 

 

 

 

 

 

 

Charge

Charge

Slow

 

 

 

 

Predefined

Slow

 

 

 

 

 

 

 

Current Level

Fast

 

Fast

 

 

 

Charge

 

 

 

 

 

Charge

Even if the output current rises above the predefined current at the RNF point, the current control mode is briefly switched to Charge mode for current sensing.

Decreasing the current (In case it takes a long time to decrease the current to the predefined value because the current decays slowly.)

Predefined

Slow

Slow

 

Current Level

Fast

Fast

 

 

Slow

 

Charge

 

 

 

Fast

 

 

 

 

 

 

Slow

 

 

Predefined

Fast

 

 

 

 

 

Current Level

 

Charge Charge

Even if the output current rises above the predefined current at the RNF point, the current control mode is briefly switched to Charge mode for current sensing.

During Mixed Decay and Fast Decay modes, if the predefined current level is less than the output current at the RNF (current monitoring point), the Charge mode in the next chopping cycle will disappear (though the current control mode is briefly switched to Charge mode in actual operations for current sensing) and the current is controlled in Slow and Fast Decay modes (mode switching from Slow Decay mode to Fast Decay mode at the MDT point).

Note: The above figures are rough illustration of the output current. In actual current waveforms, transient response curves can be observed.

9

2014-01-30

Toshiba TB6600HG Schematic

TB6600HG

6-3. Current Waveforms in Mixed Decay Mode

 

fchop

fchop

OSCM

 

 

Internal

 

 

waveform

 

 

IOUT

 

Predefined Current Level

 

NF

 

 

Predefined

 

 

Current Level

NF

 

 

 

40%

 

 

Fast

 

 

DECAY

 

 

MODE

 

 

MDT (MIXED DECAY TIMMING) points

When the NF points come after Mixed Decay Timing points

Switches to Fast mode after Charge mode

 

fchop

fchop

 

 

Predefined

 

 

Current Level

IOUT

 

NF

 

 

MDT (MIXED DECAY TIMMING) points

Predefined

NF

 

 

 

Current Level

 

 

40%

 

 

Fast

 

 

DECAY

 

 

MODE

 

 

CLK signal input

When the output current value > predefined current level in Mixed Decay mode

 

fchop

fchop

fchop

Predefined

 

 

 

Current

NF

 

 

Level

 

 

 

 

 

IOUT

 

 

 

 

 

NF

 

 

 

Predefined Current

 

 

 

Level

 

40%

 

 

 

Fast

 

 

 

DECAY

 

MDT (MIXED DECAY TIMMING) points

 

MODE

 

 

 

CLK signal input

Even if the output current rises above the predefined current at the RNF point, the current control mode is briefly switched to Charge mode for current sensing.

10

2014-01-30

TB6600HG

Output Stage Transistor Operation Mode

 

Vcc

U1

 

ON

Note

OUT1

Load OUT2

OFF

 

L1

 

RNF

 

PGND

Charge Mode

Vcc

U2

U1

 

U2

OFF

OFF

Note

OFF

 

OUT1

Load OUT2

 

ON

ON

 

L2

L2

L1

 

ON

 

RNF

 

 

 

PGND

 

 

 

Slow Mode

 

 

Vcc

 

U1

 

U2

OFF

Note

ON

 

OUT1 Load

OUT2

L1

 

L2

ON

 

OFF

RNF

PGND

Fast Mode

Output Stage Transistor Operation Functions

CLK

U1

U2

L1

L2

 

 

 

 

 

CHARGE

ON

OFF

OFF

ON

 

 

 

 

 

SLOW

OFF

OFF

ON

ON

 

 

 

 

 

FAST

OFF

ON

ON

OFF

 

 

 

 

 

Note: The above chart shows an example of when the current flows as indicated by the arrows in the above figures. If the current flows in the opposite direction, refer to the following chart:

CLK

U1

U2

L1

L2

 

 

 

 

 

CHARGE

OFF

ON

ON

OFF

 

 

 

 

 

SLOW

OFF

OFF

ON

ON

 

 

 

 

 

FAST

ON

OFF

OFF

ON

 

 

 

 

 

Upon transitions of above-mentioned functions, a dead time of about 300 ns (Design guarantee value) is inserted respectively.

11

2014-01-30

Loading...
+ 25 hidden pages