fanuc 0i A Connection Manual

GE Fanuc Automation
Computer Numerical Control Products
Series 0i―Model A
Connection Manual (Hardware)
GFZ-63503EN/01 May 2000
Warnings, Cautions, and Notes as Used in this Publication
Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.
In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.
Caution notices are used where equipment might be damaged if care is not taken.
GFL-001
Caution
Note
Notes merely call attention to information that is especially significant to understanding and operating the equipment.
This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.
GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.
©Copyright 2000 GE Fanuc Automation North America, Inc.
All Rights Reserved.
B–63503EN/01
DEFINITION OF WARNING, CAUTION, AND NOTE
DEFINITION OF WARNING, CAUTION, AND NOTE
This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into W arning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.
WARNING
Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.
CAUTION
Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.
NOTE
The Note is used to indicate supplementary information other than Warning and Caution.
` Read this manual carefully, and store it in a safe place.
s–1
B–63503EN/01

PREFACE

PREFACE
This manual describes the electrical and structural specifications required for connecting the F ANUC Series 0i CNC control unit to a machine tool. The manual outlines the components commonly used for FANUC CNC control units, as shown in the configuration diagram in Chapter 2, and supplies additional information on using these components with the Series 0i. Refer to individual manuals for the detailed specifications of each model.
Applicable models
The models covered by this manual, and their abbreviations are:
Product name Abbreviation
FANUC Series 0i–TA 0i–TA
Series 0i
FANUC Series 0i–MA 0i–MA
p–1
PREFACE
B–63503EN/01
Configuration of the manual
Chapter title Description
Chapter 1 CONFIGURATION
Chapter 2 TOT AL CONNECTION DIAGRAM
Chapter 3 INSTALLATION
Chapter 4 CONNECTING THE POWER SUPPL Y
Chapter 5 CONNECTING PERIPHERAL UNITS
Chapter 6 CONNECTING THE SPINDLE UNIT
This manual consists of Chapters 1 to 15 and Appendixes.
Outlines connections for the Series 0i and guides the reader concerning addi­tional details.
This chapter shows the total connection diagram.
This chapter describes the installation conditions for the Series 0i.
1) Required power supply
2) Heat generated
3) Connector arrangement on the control unit
4) Noise prevention
This chapter describes how to connect the power supply.
This chapter describes how to connect the following peripheral devices:
1) Display devices (CRT and LCD display)
2) MDI units
3) I/O devices (via RS232C)
4) Manual pulse generators
This chapter describes how to connect the spindle servo unit, the spindle mo­tor.
Chapter 7 SERVO INTERF ACE
Chapter 8 CONNECTING THE MACHINE INTER­FACE I/O
Chapter 9 CONNECTION TO F ANUC I/O Link
Chapter 10 EMERGENCY STOP SIGNAL
Chapter 1 1 HIGH–SPEED SERIAL BUS (HSSB)
Appendix A External dimensions of units
This chapter describes how to connect the servo unit and the servo unit.
This chapter describes the addresses and connector pins for signals trans­ferred between the Series 0i and the machine. Describes the built–in I/O board.
This chapter describes the use of FANUC I/O Link to expand the machine interface I/O.
This chapter describes the handling of emergency stop signals. The user must read this chapter before attempting to operate the CNC.
This chapter describes the high–speed serial bus (HSSB) supported by the Series 0i.
B20–pin interface connectors and cables C Connection cables D Optical fiber cable E Attaching a CRT protecting cover F Machine operators panel
p–2
B–63503EN/01
PREFACE
Related manuals
The table below lists manuals related to the Series 0i. In the table, this manual is marked with an asterisk (*).
Manuals Related to the Series 0i
Manual name
DESCRIPTIONS B–62502EN CONNECTION MANUAL (Hardware) B–62503EN CONNECTION MANUAL (Function) B–62503EN–1 OPERATOR’S MANUAL (For Lathe) B–63504EN OPERATOR’S MANUAL (For Machining Center) B–62514EN MAINTENANCE MANUAL B–62505EN P ARAMETER MANUAL B–62510EN PROGRAMMING MANUAL
(Macro Compiler / Macro Executer) FAPT MACRO COMPILER PROGRAMMING MANUAL B–66102E
Specification
number
*
B–61803E–1
Manuals related to control motor a series
Manuals related to control motor a series
Manual name
FANUC AC SER VO MOTORa series DESCRIPTIONS B–65142E FANUC AC SER VO MOTORa series P ARAMETER
MANUAL FANUC AC SPINDLE MOT ORa series DESCRIPTIONS B–65152E FANUC AC SPINDLE MOT ORa series PARAMETER
MANUAL FANUC SER VO AMPLIFIERa series DESCRIPTIONS B–65162E FANUC SER VO MOT ORa series MAINTENANCE
MANUAL
Specification
number
B–65150E
B–65160E
B–65165E
p–3
B–63503EN/01

Table of Contents

DEFINITION OF WARNING, CAUTION, AND NOTE s–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PREFACE p–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. CONFIGURATION 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 NAME OF EACH PART OF CONTROL UNIT 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 GENERAL OF HARDWARE 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. TOTAL CONNECTION DIAGRAM 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. INSTALLATION 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 ENVIRONMENT FOR INSTALLATION 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Environmental Requirements Outside the Cabinet 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Installation Requirements of CNC and Servo Unit 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 POWER SUPPLY 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Power Supply for CNC Control Units 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 DESIGN AND INSTALLATION CONDITIONS OF THE MACHINE TOOL
MAGNETIC CABINET 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 THERMAL DESIGN OF THE CABINET 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Temperature Rise Within the Cabinet 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.2 Cooling by Heat Exchanger 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.3 Heat Loss of Each Unit 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 ACTION AGAINST NOISE 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Separating Signal Lines 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2 Ground 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3 Connecting the Signal Ground (SG) of the Control Unit 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.4 Noise Suppressor 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.5 Cable Clamp and Shield Processing 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 CONTROL UNIT 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1 Installation of the Control Unit 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 CABLE LEAD–IN DIAGRAM 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 CONNECTOR LAYOUT DIAGRAM 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. POWER SUPPLY CONNECTION 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 GENERAL 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 TURNING ON AND OFF THE POWER TO THE CONTROL UNIT 30. . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Power Supply for the Control Unit 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 +24 V Input Power Specifications 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3 Procedure for Turning On the Power 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4 Procedure for Turning Off the Power 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 CABLE FOR POWER SUPPLY TO CONTROL UNIT 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 BATTERY 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Battery for Memory Backup (3VDC) 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 Battery for Separate Absolute Pulse Coders (6VDC) 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. CONNECTION TO CNC PERIPHERALS 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 CONNECTION TO THE DISPLAY UNIT 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c–1
TABLE OF CONTENTS
5.1.1 Outline 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 Connection to Display Unit 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3 9 CRT Display Unit Interface 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.4 8.4 LCD Units Interface 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.5 Adjusting the TFT Color LCD 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 CONNECTION OF MDI UNIT 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 General 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2 Connection to the MDI Unit 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Connection to the Standard MDI Unit 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4 Varied MDI Key Switch 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 CONNECTING I/O DEVICES 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1 General 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2 Connecting I/O Devices 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3 RS–232–C Serial Port 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.4 RS–232–C Interface Specification 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.5 FANUC Handy File Connection 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 CONNECTING THE MANUAL PULSE GENERATOR 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1 General 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2 Connection to Manual Pulse Generators 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3 Cable Length When Only One Manual Pulse Generator is Used 62. . . . . . . . . . . . . . . . . . . . . . .
B–63503EN/01
6. SPINDLE CONNECTION 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 SERIAL SPINDLE INTERFACE 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 ANALOG SPINDLE INTERFACE 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 POSITION CODER INTERFACE 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7. SERVO INTERFACE 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 OUTLINE 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1 Interface to the Servo Amplifier 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2 Separate Type Detector Interface 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.3 Connection of Battery for Separate Type Absolute Detector 71. . . . . . . . . . . . . . . . . . . . . . . . . . .
8. CONNECTING MACHINE INTERFACE I/O 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1 GENERAL 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 CAUTIONS 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.1 DI Signals and Receivers 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.2 DO Signals and Drivers 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 BUILT–IN I/O CARD CONNECTION 81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.1 Connector Pin Arrangement 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.2 Connecting DI/DO 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.3 I/O Signal Requirements and External Power Supply for DO 93. . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 CONNECTION TO THE HIGH–SPEED SKIP (HDI) 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. CONNECTION TO FANUC I/O Link 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1 GENERAL 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 CONNECTION 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c–2
B–63503EN/01
9.3 UNITS THAT CAN BE CONNECTED USING FANUC I/O Link 104. . . . . . . . . . . . . . . . . . . . . . . . .
9.4 Connection to Machine operators panel 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5 CONNECTION OF OPERATORS PANEL I/O MODULE (FOR MATRIX INPUT) 127. . . . . . . . . .
9.6 CONNECTION TO THE OPERATORS PANEL I/O MODULE 144. . . . . . . . . . . . . . . . . . . . . . . . . .
TABLE OF CONTENTS
9.2.1 Connection of FANUC I/O Link by Electric Cable 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.1 Overview 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.2 Total Connection Diagram 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3 Connections 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.1 Pin assignment 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.2 Power supply connection 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.3 I/O link connection 109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.4 Emergency stop signal connection 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.5 Power ON/OFF control signal connection 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.6 DI (input signal) connection 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.7 DO (output signal) connection 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3.8 Connector (on the cable side) specifications 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.4 DI/DO Address 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.4.1 Keyboard of main panel 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.4.2 Override signals 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.5 DI/DO Mapping 117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.6 Connector Locations of Main Panel B 117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7 Specifications 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.1 Environmental requirement 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.2 Order specification 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.3 Main panel A/B specification 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.4 Sub panel B1 specification 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.5 Power supply specification 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.6 General–purpose DI signal definition 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.7.7 General–purpose DO signal definition 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.8 Key Symbol Indication on Machine Operators Panel 121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.8.1 Meaning of key symbols 121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.8.2 Detachable key top 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.9 Others 124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.1 Overall Connection Diagram 127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.2 Power Connection 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.3 DI/DO Connector Pin Arrangement 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.4 DI (General–purpose Input Signal) Connection 130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.5 DI (Matrix Input Signal) Connection 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.6 DO (Output Signal) Connection 133. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.7 External View 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.8 Specifications 138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.9 Other Notes 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.1 Overall Connection Diagram 144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.2 Power Connection 145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.3 DI/DO Connector Pin Arrangement 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.4 DI (General–purpose Input Signal) Connection 147. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.5 DO (Output Signal) Connection 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c–3
TABLE OF CONTENTS
9.6.6 External View 153. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.7 Specifications 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.8 Other Notes 156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7 CONNECTING THE FANUC SERVO UNIT β SERIES WITH I/O Link 160. . . . . . . . . . . . . . . . . . .
9.7.1 Overview 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.2 Connection 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.3 Maximum Number of Units that can be Connected 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.4 Address Assignment by Ladder 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–63503EN/01
10. EMERGENCY STOP SIGNAL 163. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1. HIGH–SPEED SERIAL BUS (HSSB) 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 OVERVIEW 166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 CAUTIONS 167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 CONNECTION DIAGRAM 168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 PERSONAL COMPUTER SPECIFICATION 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5 INSTALLATION ENVIRONMENT 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.6 HANDLING PRECAUTIONS 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.7 PROCEDURE FOR INSTALLING PERSONAL COMPUTER INTERFACE BOARDS 171. . . . . . . .
11.8 RECOMMENDED CABLES 175. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APPENDIX
A. EXTERNAL DIMENSIONS OF EACH UNIT 179. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B. 20–PIN INTERFACE CONNECT ORS AND CABLES 214. . . . . . . . . . . . . . . . . . . . . . . . . . .
B.1 OVERVIEW 215. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B.2 BOARD–MOUNTED CONNECTORS 215. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B.3 CABLE CONNECTORS 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B.4 RECOMMENDED CONNECTORS, APPLICABLE HOUSINGS, AND CABLES 218. . . . . . . . . . . .
C. CONNECTION CABLE (SUPPLIED FROM US) 229. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D. OPTICAL FIBER CABLE 232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E. ATTACHING A CRT PROTECTIVE COVER 243. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c–4
B–63503EN/01
1

1. CONFIGURATION

CONFIGURATION
1
1. CONFIGURATION
B–63503EN/01
1.1

NAME OF EACH P ART OF CONTROL UNIT

slot
Memory back up battery
(4.4)
I/O Link connecter
(9)
The following figure shows the configuration of F ANUC Series 0i control unit. This manual describes how to connect the units illustrated in this diagram. The numbers in parentheses shown in the diagram are section references for this manual.
LED for display of status/alarm
FuseMemory card
II/O device I/F connector
(5.3)
Power supply pilot lamp
Power supply connector
(4.3)
Machine I/F connector
(8.3)
Serial spindle or position coder connector
(6.1,6.3)
Serial spindle or analog spindle connector
(6.2)
Servo amp connector
(7.1.1)
Separate type detector I/F connector
(7.1.2)
Separate type ABS pulse coder battery connector
(7.1.3)
Series 0i control unit (2–slot)
Display unit connector
(5.1)
MDI connector
(5.2)
Manual pulse generator connector
(5.4)
Machine I/F connector
(8.3)
Mini slot High–speed serial
bus (*)
(11)
2
B–63503EN/01
1.2

GENERAL OF HARDWARE

1. CONFIGURATION
Main board
S Main CPU S Memory
System software, Macro program, Ladder program, Parameter , and etc.
S PMC control S I/O Link control S Servo control S Spindle control S Memory card I/F S LED display
I/O board
S Power PCB (built–in)
DC–DC converter
S DI/DO S Reader/puncher I/F S MDI control S Display control S Manual pulse generator
control
Main I/O
3
Mini slot
S HSSB board
2–slot

2. TOTAL CONNECTION DIAGRAM

TOTAL CONNECTION DIAGRAM
2
Main board
C o n t r o l
u n i t
B–63503EN/01
Power supply 24VDC
Units that can be connected with the I/O Link
Position coder
Analog spindle amplifier
Serial spindle amplifier
Servo amplifier
M–axis servo motor N–axis servo motor 4th axis servo motor
Analog spindle
Position coder
Serial spindle
L–axis servo motor
L–axis scale
M–axis scale
N–axis scale
4th axis scale
ABS BA TTERY for scale
NOTE
Either an analog or serial spindle can be used. For details of spindle and servo motor connection, refer to the relevant manuals.
4
B–63503EN/01
I/O Board D
C o n t r o l
u n i t
I/O Board
Power supply unit
DC–IN (CP1A)
DC–OUT(CP1B)
CRT(JA1)
MDI(JA2)
2. TOTAL CONNECTION DIAGRAM
Power supply 24VDC
Display unit (CN2)DC–IN
(CN1)CRT (JA1)LCD
MDI unit (CK1)MDI
R232C–1(JD5A)
R232C–2(JD5B)
RS–232–C I/O device (channel 1)
RS–232–C I/O device (channel 2)
MPG(JA3)
MPG MPG MPG
DIDO–1(CB104) DIDO–2(CB105) DIDO–3(CB106)
Machine side DI/DO
DIDO–4(CB107)
When the high–speed serial bus (HSSB) is used
C
High–speed serial
o n
bus interface board
t
(installed in a mini–
r
o
slot)
l
u n
i t
COP7
(Two units for 0i–TA)
Personal computer
High–speed serial bus inter­face board
COP7
5

3. INSTALLATION

INSTALLATION
3
B–63503EN/01
6
B–63503EN/01
3.1

ENVIRONMENT FOR INSTALLATION

3. INSTALLATION
3.1.1
Environmental Requirements Outside the Cabinet
The peripheral units, such as the control unit and CRT/MDI, have been designed on the assumption that they are housed in closed cabinets. In this manual “cabinet” refers to the following:
(1) Cabinet manufactured by the machine tool builder for housing the
control unit or peripheral units; (2) Cabinet for hous ing the flexible turnkey sys tem provi ded by FANUC ; (3) Operation pendant, manufactured by the machine tool builder, for
housing the CRT/MDI unit or operators panel. (4)Equivalent to the above. The environmental conditions when installing these cabinets shall
conform to the following table. Section 3.3 describes the installation and design conditions of a cabinet satisfying these conditions.
In operation 0°C to 45°C
Room temperature
In storage or transportation –20°C to 60°C
Change in temperature
Relative humidity
Vibration In operation: 0.5G or less
1.1°C /minute max.
Normal 75% or less T emporary(within 1 month) 95% or less
3.1.2
Installation Requirements of CNC and Servo Unit
Normal machine shop environment
Environment
Room temperature
Relative humidity 95% RH or less (no condensation) Vibration 0.5 G or less
Environment
(The environment must be considered if the cabinets are in a location where the density of dust, coolant, and/ or organic solvent is relatively high.)
In operation 0°C to +55°C In storage or transportation –20°C to +60°C
The unit shall not be exposed direct to cutting oil, lubri­cant or cutting chips.
7
3. INSTALLATION
"
3.2

POWER SUPPLY

B–63503EN/01
3.2.1
Power Supply for CNC Control Units
The following units related to the CNC control unit require input power of 24 VDC "10%.
T able 3.2.1 Power supply
Unit Power supply
0i control unit 9CRT/MDI unit
8.4TFT color unit
24 VDC"10% momentary surges
and ripples.
voltage
3.5A (only control unit)
10% includes
0.8A
0.8A
Power supply
8
B–63503EN/01
3. INSTALLATION
3.3

DESIGN AND INSTALLATION CONDITIONS OF THE MACHINE TOOL MAGNETIC CABINET

When a cabinet is designed, it must satisfy the environmental conditions described in Sec. 3.1. In addition, the magnetic interference on the CR T screen, noise resistance, and maintenance requirements must be considered. The cabinet design must meet the following conditions :
(1)The cabinet must be fully closed.
The cabinet must be designed to prevent the entry of airborne
dust,coolant,and organic solvent.
Cabinets that let in air may be desined for the servo amplifier and servo
transformer provided that they :
D Use an air filter on the air inlet ;
D Place the ventilating fan so that it does not blow air directly toward
the unit;
D Control the air flow so that no dust or coolant enters the air outlet (2)The cabinet must be designed to maintain a difference in temperature
of 10°C or less between the air in the cabinet and the outside air when
the temperature in the cabinet increases.
See Sec. 3.4 for the details on thermal design of the cabinet. (3) A closed cabinet must be equipped with a fan to circulate the air
within.
The fan must be adjusted so that the air moves at 0.5 m/sec along the
surface of each installed unit.
CAUTION
If the air blows directly from the fan to the unit, dust easily abheres to the unit. This may cause the unit to fail.
(4)For the air to move easily, a clearance of 100 mm is required between
each unit and the wall of the cabinet. (5) Packing materials must be used for the cable port and the door in
oreder to seal the cabinet.
Because the CRT unit uses a voltage of approximatery 1 1 kV, airborne
dust gathers easily. If the cabinet is insufficiently sealed, dust passes
through the gap and abheres to the unit. This may cause the insulation
of the unit to deteriorate. (6)The display unit and other display units must be installed in a location
where coolant cannot be poured directly on it. The unit does have a
dust–proof front panel. (7)Noise must be minimized.
As the machine and the CNC unit are reduced in size, the parts that
generate noise may be placed near noise–sensitive parts in the
magnetics cabinet.
The CNC unit is built to protect it from external noise. Cabinet design
to minimize noise generation and to prevent it from being transmitted
to the CNC unit is necessary. See Sec. 3.5 for details of noise
elimination/management. (8)The units must be installed or arranged in the cabinet so that they are
easy to inspect and maintain.
9
3. INSTALLATION
B–63503EN/01
(9)The CRT screen can be distorted by magnetic interference.
Arranging magnetic sources must be done with care.
If magnetic sources (such as transformers, fan motors,
electromagnetic contactors, solenoids, and relays) are located near the
CRT display, they frequently distort the display screen. To prevent
this, the CRT display and the magnetic sources generatlly must be kept
300 mm apart. If the CRT display and the magnetic sources are not
300 mm apart, the screen distortion may be suppressed by changing
the direction in which the magnetic sources are installed.
The magnetic intensity is not constant, and it is often increased by
magnetic interference from multiple magnetic sources interacting
with each other . As a result, simply keeping the CR T and the magnetic
sources 300 mm apart may not be enough to prevent the distortion.
If they cannot be kept apart, or if the CRT screen remains distorted
despite the distance, cover the screen with a magnetic shield.
10
B–63503EN/01
3. INSTALLATION
3.4

THERMAL DESIGN OF THE CABINET

3.4.1
Temperature Rise Within the Cabinet
The purpose of the thermal design of the cabinet is to limit the difference in temperature between the air in the cabinet and the outside air to 10°C or less when the temperature in the cabinet increases. The internal air temperature of the cabinet increases when the units and parts installed in the cabinet generate heat. Since the generated heat is radiated from the surface of the cabinet, the temperature of the air in the cabinet and the outside air balance at certain heat levels. If the amount of heat generated is constant, the larger the surface area of the cabinet, the less the internal temperature rises. The thermal design of the cabinet refers to calculating the heat generated in the cabinet, evaluating the surface area of the cabinet, and enlarging that surface area by installing heat exchangers in the cabinet, if necessary. Such a design method is described in the following subsections.
The cooling capacity of a cabinet made of sheet metal is generally 6 W/°C per 1m cabinet having a surface area of 1 m cabinet rises by 1°C. In this case the surface area of the cabinet refers to the area useful in cooling , that is, the area obtained by subtracting the area of the cabinet touching the floor from the total surface area of the cabinet. There are two preconditions : The air in the cabinet must be circuited by the fun, and the temperature of the air in the cabinet must be almost constant. The following expression must then be satisfied to limit the difference in temperature between the air in the cabinet and the outside air to 10°C or less when the temperature in the cabinet rises:
For example, a cabinet having a surface area of 4m of 24W/°C. T o limit the internal temperature increase to 10°C under these conditions, the internal heat must not exceed 240W. If the actual internal heat is 320W, however, the temperature in the cabinet rises by 13°C or more. When this happens, the cooling capacity of the cabinet must be improved using the heat exchanger described next.
2
surface area, that is, when the 6W heat source is contained in a
Internal heat loss P [W] x 6 [W/m
× 10 [°C] of rise in temperature
2
, the temperature of the air in the
2 S
@ °C ] × surface area S [m2]
2
has a cooling capacity
3.4.2
Cooling by Heat Exchanger
If the temperature rise cannot be limited to 10°C by the cooling capacity of the cabinet, a heat exchanger must be added. The heat exchanger forcibly applies the air from both the inside and outside of the cabinet to the cooling fin to obtain effective cooling. The heat exchanger enlar ges the surface area.
11
3. INSTALLATION
3.4.3
Heat Loss of Each Unit
B–63503EN/01
Name Heat loss
Control unit Series 0i 60W Display unit
I/O unit
Multi–tap transformer 51W
9CRT/MDI unit 14W
8.4LCD/MDI color unit
AIF01A, AIF01B 1.2W AID32A, AID32B 1.2W+0.23W number of ON points AID16C, AID16D 0.1W+0.21W number of ON points AID32E, AID32F 0.1W+0.23W number of ON points
20W
12
B–63503EN/01
3. INSTALLATION
3.5

ACTION AGAINST NOISE

3.5.1
Separating Signal Lines
The CNC has been steadily reduced in size using surface–mount and custom LSI technologies for electronic components. The CNC also is designed to be protected from external noise. However, it is difficult to measure the level and frequency of noise quantitatively, and noise has many uncertain factors. It is important to prevent both noise from being generated and generated noise from being introduced into the CNC. This precaution improves the stability of the CNC machine tool system.
The CNC component units are often installed close to the parts generating noise in the power magnetics cabinet. Possible noise sources into the CNC are capacitive coupling, electromagnetic induction, and ground loops.
When designing the power magnetics cabinet, guard against noise in the machine as described in the following section.
The cables used for the CNC machine tool are classified as listed in the following table:
Process the cables in each group as described in the action column.
Group Signal line Action
Primary AC power line Secondary AC power line AC/DC power lines (containing the
power lines for the servo and
A
spindle motors) AC/DC solenoid
Bind the cables in group A sep­arately (Note 1) from groups B and C, or cover group A with an electromagnetic shield (Note 2).
See Subsec. 3.5.4 and con­nect spark killers or diodes with
nect spark killers or diodes with the solenoid and relay .
AC/DC relay DC solenoid (24VDC)
DC relay (24VDC)
DI/DO cable between the CNC and
B
power magnetics cabinet
DI/DO cable between the CNC and machine
Connect diodes with DC sole­noid and relay .
Bind the cables in group B sep­arately from group A, or cover group B with an electromagnet­ic shield.
Separate group B as far from Group C as possible.
It is more desirable to cover group B with the shield.
13
3. INSTALLATION
B–63503EN/01
Group ActionSignal line
Cable between the CNC and servo amplifier
Cable for position and velocity feedback
Cable between the CNC and spindle amplifier
Cable for the position coder Cable for the manual pulse gener-
C
ator Cable between the CNC and the
CRT/MDI RS–232–C and RS–422 interface
cable Cable for the battery
Other cables to be covered with the shield
Bind the cables in group C separately from group A, or cover group C with an electro­magnetic shield.
Separate group C as far from Group B as possible.
Be sure to perfrom shield pro­cessing in Subsec. 3.5.5.
NOTE
1 The groups must be 10 cm or more apart from one another
when binding the cables in each group.
2 The electromagnetic shield refers to shielding between
groups with grounded steel plates.
Spindle amp.
Cabinet
Servo amp.
Cable of group A
Control unit
Cable of group B, C
Duct
Section
Group A Group B, C
Cover
To operators panel, motor , etc.
14
B–63503EN/01
3. INSTALLATION
3.5.2
Ground
The following ground systems are provided for the CNC machine tool: (1)Signal ground system (SG)
The signal ground (SG) supplies the reference voltage (0 V) of the
electrical signal system. (2)Frame ground system (FG)
The frame ground system (FG) is used for safety, and suppressing
external and internal noises. In the frame ground system, the frames,
cases of the units, panels, and shields for the interface cables between
the units are connected. (3)System ground system
The system ground system is used to connect the frame ground
systems connected between devices or units with the ground.
Signal ground system
Power magnet­ics unit
Servo amplifier
CNC control unit
Frame ground sysytem System ground system
Operators panel
Machine tool
Notes on connecting the ground systems
Power magnetics cabinet
Distribution board
D Connect the signal ground with the frame ground (FG) at only one
place in the CNC control unit.
D The grounding resistance of the system ground shall be 100 ohms or
less (class 3 grounding).
D The system ground cable must have enough cross–sectional area to
safely carry the accidental current flow into the system ground when an accident such as a short circuit occurs. (Generally, it must have the cross–sec tional area of the AC power cable or more.)
D Use the cable containing the AC power wire and the system ground
wire so that power is supplied with the ground wire connected.
15
3. INSTALLATION
3.5.3
Connecting the Signal Ground (SG) of the Control Unit
Control unit
B–63503EN/01
MAIN
STATUS ALARM
IOL INK JD 1A
SPDL–1 JA 7A
A–OUT JA 8A
SERVO1 JS1A
SERVO2 JS2A
SERVO3 JS3A
SERVO4 JS4A
SCALE1 JF21
SCALE2 JF22
SCALE3 JF23
SCALE4 JF24
SC–ABS JF25
BATTERY
MEMORY CARD CNMC
I/O PSU
4
231
CPS
MPG JA3B
FUSE75A
PIL
CP1A
CP1B
DCIN
DCOUT
24V
24V
5A
CRT JA1
MDI JA2
R232–1 JD5A
R232–2 JD5B
1A
R
L
R
L
RSW1
M3 terminal for
MINI SLOT
signal ground (SG)
Ground plate
Ground cable (upper 2mm
Frame ground (FG)
FANUC
FA- NUC
2
)
= Ground plate of
the cabinet
FANUC
M3
Ground cable
System ground
Connect the 0 V line of the electronic circuit in the control unit with the ground plate of the cabinet via the signal ground (SG) terminal. The SG terminal is located below the main board of the control unit.
16
B–63503EN/01
3. INSTALLATION
MDI
M4 stud
Approx. 15mm
Approx. 20 mm (for 9 CRT/MDI unit) Approx. 150 mm (for 8.4 LCD/MDI unit)
CRT
9CRT/MDI unit
8.4 LCD/MDI unit
17
3. INSTALLATION
B–63503EN/01
3.5.4
Noise Suppressor
Notes on selecting the spark killer
The AC/DC solenoid and relay are used in the power magnetics cabinet. A high pulse voltage is caused by coil inductance when these devices are
turned on or off. This pulse voltage induced through the cable causes the electronic circuits
to be disturbed.
D Use a spark killer consisting of a resistor and capacitor in series. This
type of spark killer is called a CR spark killer.(Use it under AC)
(A varistor is useful in clamping the peak voltage of the pulse voltage,
but cannot suppress the sudden rise of the pulse voltage. FANUC
therefore recommends a CR spark killer.) D The reference capacitance and resistance of the spark killer shall
conform to the following based on the current (I (A)) and DC
resistance of the stationary coil:
1) Resistance (R) : Equivalent DC resistance of the coil
2) Capacitance (C) :
10
2
I
2
I
to
20
(µF)
I : Current at stationary state of the coil
RC
Equivalent circuit of the spark killer
AC relay
Spark killer
Mount the noise eliminator near a motor or a relay coil.
Spark killer
NOTE
Use a CR–type noise eliminator. Varistor–type noise eliminators clamp the peak pulse voltage but cannot suppress a sharp rising edge.
Diode (used for direct–current circuits)
Diode
Use a diode which can withstand a
DC relay
voltage up to two times the applied voltage and a current up to two times the applied current.
Motor
18
B–63503EN/01
3. INSTALLATION
3.5.5
Cable Clamp and Shield Processing
The CNC cables that require shielding should be clamped by the method shown below. This cable clamp treatment is for both cable support and proper grounding of the shield. To insure stable CNC system operation, follow this cable clamp method.
Partially peel out the sheath and expose the shield. Push and clamp by the plate metal fittings for clamp at the part. The ground plate must be made by the machine tool builder, and set as follows :
Ground plate
Cable
Metal fittings for clamp
40mm – 80mm
Fig.3.5.5(a) Cable clamp (1)
19
3. INSTALLATION
B–63503EN/01
Machine side installation board
Control unit
Ground plate
Metal fittings for clamp
Shield cover
Fig.3.5.5(b) Cable clamp (2)
Prepare ground plate like the following figure.
Ground terminal (grounded)
Hole for securing metal fitting clamp
Mount screw hole
Fig.3.5.5(c) Ground plate
For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.
20
B–63503EN/01
3. INSTALLATION
8mm
12mm
20mm
Fig.3.5.5(d) Ground plate holes
(Reference) Outer drawings of metal fittings for clamp.
Max. 55mm
Ground plate
6mm
Fig.3.5.5(e) Outer drawings of metal fittings for clamp
Ordering specification for metal fittings for clamp
A02B–0124–K001 (8 pieces)
28mm
17mm
21
3. INSTALLATION
3.6

CONTROL UNIT

B–63503EN/01
3.6.1
Installation of the Control Unit
The rack consists of a plastic box, fan motors and a backplane PCB. The air comes into the rack from the bottom and goes out through the fan motor, which is located on the top of the rack. Space as shown in Fig.
3.6.1 must be reserved not to disturb the air flow ((A), (B)) The backplane PCB, which is located on the rear side of the rack,
interconnects the PCBs installed in the rack. It has another connector which appears at the left side panel of the rack. This connector is used for testing the controller, connecting other purposes. The space for this shall be reserved as shown in (C) of Fig. 3.6.1.
AIR FLOWAIR FLOW
Reserved
Reserved
(C)
(A)
50
(A)
250
30
(B)
Reserved
Fig.3.6.1
50
(B)
172
Unit : mm
22
B–63503EN/01
3. INSTALLATION
3.7

CABLE LEAD–IN DIAGRAM

Fig. 3.7 (a) shows the grid of connector location. Control board may not have all connectors as shown in Fig. 3.7 (a). For actual connector layout of each board, please see the connector layout diagrams in Fig. 3.8 (a) or later.
8
1732350392545 25
36
745864386086
129
35
Main board I/O board
52
1452
9
Fig.3.7 (a)
23
3. INSTALLATION
B–63503EN/01
Memory card
(80)
172
Unit : mm
Fig.3.7 (b)
24
B–63503EN/01
3.8

CONNECTOR LAYOUT DIAGRAM

3. INSTALLATION
LED display Connector name and comment Function Upper Lower
LED STATUS/ALARM Battery for memory CPB
Battery BATTERY
Memory card MEMORY/CARD CNMC
Rotary switch RSW1 for maintenance
Serial I/O Link IOLINK JD1A
Serial spindle SPDL–1 JA7A Analog output A–OUT1 JA8A Servo amp.1 SERVO1 JS1A Servo amp.2 SERVO2 JS2A Servo amp.3 SERVO3 JS3A Servo amp.4 SERVO4 JS4A
Linear scale1 SCALE1 JF21 Linear scale2 SCALE2 JF22 Linear scale3 SCALE3 JF23 Linear scale4 SCALE4 JF24 APC battery for SC–ABS JF25
linear scale
Fig.3.8 (a) Main board
25
3. INSTALLATION
B–63503EN/01
Connector name and comment
Function Upper Lower
Position
1 Serial port R232–1 JD5A 2 Fuse FUSE 3 4 Pilot lamp PIL 5 24VDC output (R side) DC OUT CP1B 6 24VDC input (L side) DC IN CP1A 7 Operators panel I/O (R side) DI/DO–1 CB104 8 Machine side I/O (L side) DI/DO–2 CB105
R
L
9
10 CRTdisplay CRT JA1 1 1 MDI MDI JA2 12 Serial port R232–2 JD5B 13 Manual pulse generator MPG JA3 14 15 Machine side I/O (R side) DI/DO–3 CB106 16 Machine side I/O (L side) DI/DO–4 CB107
R
L
17 18 19 20 21
Fig.3.8 (b) I/O board
26
B–63503EN/01
3. INSTALLATION
Function Comment
Mode switch
LED display
High–speed serial
bus interface
Fig.3.8 (c) High–speed serial bus interface board
SW
ST– 4 3 2 1 AL– 1 2
COP7
27

4. POWER SUPPLY CONNECTION

POWER SUPPLY CONNECTION
4
B–63503EN/01
28
B–63503EN/01
4. POWER SUPPLY CONNECTION
4.1

GENERAL

This section explains the connection of power supply for Series 0i control unit.
29
4. POWER SUPPLY CONNECTION
4.2

TURNING ON AND OFF THE POWER TO THE CONTROL UNIT

B–63503EN/01
4.2.1
Power Supply for the Control Unit
Main breaker
200VAC
Magnetic contactor
Supply power (24VDC) to the control uint of Series 0i from an external sources.
Install a power switch at (1) in Fig. 4.2.1 (a).
AC line filter
External 24VDC power
Servo unit
PSM
Input 3f 200VAC
For control line 1f 200VAC
(1)
SVM
ON/OFF circuit
Series 0i control unit
24VDC Input
24VDC Output
9CRT or
8.4LCD unit
Fig.4.2.1 (a)
30
ON OFFCOM
B–63503EN/01
4. POWER SUPPLY CONNECTION
ON/OFF circuit (example)
G
+24V
DC INPUT 24V 4A
0V 0V
OFF COM ON
For example, ON/OFF circuit is as follows : (Fig.4.2.1 (b) ) Select the circuit devices, in consideration of its capacity.
G
lc3
+24V
DC OUTPUT
RY1 LC3
ry1
ry1
SERGE ABSORBER
24V 4A
SPARK KILLER
POWER ON/OFF SWITCH
OFF ON
Fig.4.2.1 (b)
DIODE
RELAY COIL
B CONT ACT
FUSE
RELAY CONTACT
A CONT ACT
31
4. POWER SUPPLY CONNECTION
B–63503EN/01
4.2.2
+24 V Input Power Specifications
Recommended connection and recommended power specifications (1)Recommended connection
AC input
Regulated power supply
CNC unit
(2)Recommended power specifications
(Must conform to the applicable safety standard.)
Output voltage: +24 V "10% (21.6 V to 26.4 V)
(including ripple voltage and noise. See the figure below.)
Output current: The continuous load current must be larger than
the current consumption of the CNC (at the maximum allowable temperature in the power magnetics cabinet in which the power supply is located).
Output retention time in the event of an instantaneous input
interruption: 10 mS (in the event of a drop by 100%) 20 mS (in the event of a drop by 50%)
AC input voltage
26.4V
Output voltage
21.6V
Output current
0A
Instantaneous
interruption
(–100%)
10mS 20mS
Fig. Examples of ripple voltage and noise due to switching power supply
Instantaneous
interruption
(–50%)
Abrupt load change
Noise
Ripple voltage
Noise
Fig.4.2.2 Timing Chart
32
B–63503EN/01
4. POWER SUPPLY CONNECTION
D Circuit configurations
Circuit configurations such as those shown below are not recommended. a) Circuit examples in which the output voltage cannot be retained in the
event of an instantaneous interruption (the voltage decreases to 21.6
V or below) Example 1
AC input
circuit
Rectifying
CNC unit
Example 2
AC input
circuit
Rectifying
CNC unit
b) Circuit examples that exceed the output voltage specification (21.6 V
to 26.4 V) due to an abrupt load change Example 1
AC input
Example 2
AC input
Regulated power supply
Regulated power supply
CNC unit
Unit with consider­able load fluctuations
CNC unit
Unit with large rush current
33
4. POWER SUPPLY CONNECTION
B–63503EN/01
4.2.3
Procedure for Turning On the Power
Turn on the power to each unit in the following order or all at the same time.
1. Power supplies (200 VAC) for the entire machine
2. Power supplies (24 VDC) for slave I/O devices connected using the FANUC I/O Link
3. Power supplies (24 VDC) for the control unit and CRT unit
Do not disconnect the battery for memory backup (3 VDC) or the battery for the separate absolute pulse coders (6 VDC) regardless of whether the power to the control unit is on or off. If batteries are disconnected when the power to the control unit is turned off, current data stored in the control unit for the pulse coders, parameters, programs etc, are lost.
Make sure that the power to the control unit is on when replacing batteries. See Section 4.4.1 for how to replace the batteries for memory backup.
CAUTION
The maintenance rotary switch must be always set to 0 (set to 0 at shipping from factory). Changing this setting may cause the contents of memory to be lost.
4.2.4
Procedure for Turning Off the Power
Turn off the power to each unit in the following order or all at the same time.
1. Power supplies (24 VDC) for slave I/O devices connected using the FANUC I/O Link
2. Power supplies (24 VDC) for the control unit and CRT unit
3. Power supplies (200 VAC) for the entire machine
Motors cannot be controlled when the power is turned off or momentarily interrupted. Take appropriate action on the machine side when necessary . For example, when the tool is moved along a gravity axis, apply brakes to prevent the axis from falling. Apply a brake that clamps the motor when the servo is not operating or the motor is not rotating. Release the clamp only when the motor is rotating. When the servo axis cannot be controlled when the power is turned off or momentarily interrupted, clamp the servo motor . In this case, the axis may fall before the relay for clamping starts operating. The designer should make sure if the distance results in trouble.
34
B–63503EN/01
4. POWER SUPPLY CONNECTION
4.3

CABLE FOR POWER SUPPLY TO CONTROL UNIT

Supply power to the control unit from external resouce.
Series 0i control unit
CP1A
13+24V 2
Cable
CP1A AMP Japan 1–178288–3 (housing) 1–175218–5 (Contact)
Recommended cable : A02B–0124–K830 (5m) (Crimp terminal of size M3 is available on the external power side)
0V
+24V (1)
0v (2)
External power
24VDC stabilized power 24VDC "10%
External power
Select a source that meets the external power terminal.
35
4. POWER SUPPLY CONNECTION
4.4

BATTERY

B–63503EN/01
4.4.1
Battery for Memory Backup (3VDC)
Part programs, offset data, and system parameters are stored in CMOS memory in the control unit. The power to the CMOS memory is backed up by a lithium battery mounted on the front panel of the control unit. The above data is not lost even when the main battery goes dead. The backup battery is mounted on the control unit at shipping. This battery can maintain the contents of memory for about a year. When the voltage of the battery becomes low, alarm message “BAT blinks on the CRT display and the battery alarm signal is output to the PMC. When this alarm is displayed, replace the battery as soon as possible. In general, the battery can be replaced within two or three weeks, however, this depends on the system configuration. If the voltage of the battery becomes any lower, memory can no longer be backed up. T urning on the power to the control unit in this state causes system alarm 910 (SRAM parity alarm) to occur because the contents of memory are lost. Clear the entire memory and reenter data after replacing the battery.The power to the control unit must be turned on when the battery is replaced. If the battery is disconnected when the power is turned off, the contents of memory are lost. Observe the following precautions for lithium batteries:
WARNING
If an unspecified battery is used, it may explode. Replace the battery only with the specified battery (A02B–0177–K106.)
Replacing the battery
Dispose of batteries used in accordance with the applicable laws of your country or the applicable laws or regulations of your local self–governing body. Before disposal, insulate the terminals with tape or something similar to prevent them from being short–circuited.
1 Use a litium battery (ordering drawing number :
A02B–0177–K106) 2 Turn on the Series 0i. 3 Remove the battery case from the front panel of the power supply unit.
The case can be removed easily by holding the top and bottom of it and
pulling.
36
B–63503EN/01
4. POWER SUPPLY CONNECTION
Front panel of control unit main board
MAIN
STATUS ALARM
Battery case
BATTERY
Battery (Ordering drawing number A02B–0177–K106)
Fig.4.4.1(a) Replacing the battery(1)
4 Remove the connector from the battery.
Front panel of control unit main board
CP8
231
MEMORY CARD CNMC
4
CP8
Battery connector
RSW1
Battery connector
BATTERY
MEMORY CARD CNMC
Fig.4.4.1(b) Replacing the battery(2)
5 Replace the battery and reconnect the connector. 6 Install the battery case. 7 Turn off the Series 0i.
37
Battery
4. POWER SUPPLY CONNECTION
B–63503EN/01
4.4.2
Battery for Separate Absolute Pulse Coders (6VDC)
One battery unit can maintain current position data for six absolute pulse coders for a year. When the voltage of the battery becomes low , APC alarms 3n6 to 3n8 (n: axis number) are displayed on the CRT display. When APC alarm 3n7 is displayed, replace the battery as soon as possible. In general, the battery should be replaced within two or three weeks, however, this depends on the number of pulse coders used. If the voltage of the battery becomes any lower , the current positions for the pulse coders can no longer be maintained. Turning on the power to the control unit in this state causes APC alarm 3n0 (reference position return request alarm) to occur. Return the tool to the reference position after replacing the battery .See Subsec. 7.1.3 for connecting the battery for separate absolute pulse coders.
38
B–63503EN/01
5

5. CONNECTION TO CNC PERIPHERALS

CONNECTION TO CNC PERIPHERALS
39
5. CONNECTION TO CNC PERIPHERALS
5.1

CONNECTION T O THE DISPLAY UNIT

B–63503EN/01
5.1.1
Outline
The display unit is used for displaying the programs, parameters etc, and supporting the machine operation. The Series 0i supports the following display units: 9 CRT and 8.4 LCD.
40
B–63503EN/01
5.1.2
Connection to Display Unit
Connection to Series 0i
Control unit
5. CONNECTION TO CNC PERIPHERALS
CP1B DC OUT
Power supply cable
CRT JA1
Video cable
CN2 (CRT) CP5 (LCD)
CRT/MDI, LCD/MDI unit
CN1 (CTR) JA1 (LCD)
41
5. CONNECTION TO CNC PERIPHERALS
5.1.3
9CRT Display Unit Interface
Series 0i CRT unit
B–63503EN/01
JA1 (PCR–EV20MDT)
VDR
01
0V
02 03
VDG
04
0V
05
VDB
06
0V 07 08
09 10
CP1B Cable side JAPAN AMP 2–178288–3 (Housing) 1–175218–5 (contact)
Connection of VIDEO Signal Cable
JA1 HIROSE FI40A–20S–CV5 (Connector)
11 12
13 14 15
16 17
18 19 20
1 2 3
VSYNC 0V
0V
HSYNC
+24V
0V
CN1 (MR–20RM)
1
VDR
2
HSYNC
3
VSYNC
4
VDG
5
VDB 6 7
1 2 3
(0V)
4
0V
5
+24V
6
(+24V)
0V
8
0V
9
0V
10
0V
11
0V
12
13
CN2 Cable side JAPAN FCI SMS6PN–5 (Housing) RC16M–23TB or RC16M (contact)
CN1 HONDA MR20pins/female
14 15 16
17 18 19 20
(0V) (0V)
VDR (01)
0V (02)
VDG (03)
0V (04)
VDB (05)
0V (06)
HSYNC (18)
0V (16)
VSYNC (12)
0V (14)
RECOMMENDED CABLE MA TERIAL
A66L–0001–0371 COAXIAL CABLE (MAX : 50m)
RECOMMENDED CABLE MA TERIAL
A02B–0120–K819 CRT VIDEO SIGNAL CABLE (5m)
(01) VDR (08) 0V (04) VDG (1 1) 0V (05) VDB (12) 0V (02) HSYNC (09) 0V (03) VSYNC (10) 0V
42
B–63503EN/01
5.1.4
8.4 LCD Units Interface
Series 0i LCD unit
5. CONNECTION TO CNC PERIPHERALS
JA1 (PCR–HV20MDT)
01
VDR
02
0V
03
VDG
04
0V
05
VDB
06
0V 07 08
09 10
CP1B
Cable side Housing: JAPAN AMP 2–178288–3 Contact : JAPAN AMP 1–175218–5
Connection of VIDEO Signal Cable
JA1 HIROSE FI40A–20S–CV5 (Connector)
11 12
13 14 15
16 17 18 19 20
1 2 3
VSYNC
0V
0V
HSYNC
(+24V)
(0V)
JA1 (PCR–HV20MDT)
01 02 03 04 05 06 07 08 09 10
1 2 3
VDR 0V VDG
0V VDB
0V
(+24V) (0V)
11
12
13
14
15 16 17 18 19 20
CP5 Cable side
Housing: JAPAN AMP 2–178288–3 Contact : JAPAN AMP 1–173218–5
VSYNC
0V
0V
HSYNC
JA1 HIROSE FI40A–20S–CV5 (Connector)
VDR (01)
0V (02)
VDG (03)
0V (04)
VDB (05)
0V (06)
HSYNC (18)
0V (14)
VSYNC (12)
0V (16)
RECOMMENDED CABLE MA TERIAL
A66L–0001–0371 COAXIAL CABLE (MAX : 50m)
RECOMMENDED CABLE MA TERIAL
A02B–0120–K818 LCD/VIDEO SIGNAL CABLE (5m)
(01) VDR (02) 0V (03) VDG (04) 0V (05) VDB (06) 0V (18) HSYNC (16) 0V (12) VSYNC (14) 0V
43
5. CONNECTION TO CNC PERIPHERALS
B–63503EN/01
5.1.5
Adjusting the TFT Color LCD
(1)Applied unit
Name Specification number
8.4 color LCD/MDI unit A02B–0279–C081#TA A02B–0279–C081#MA
(2)Adjustment point (as viewed from the rear of the display unit
TM1
SW1
(3)Adjustment method
(a)Display horizontal setting
D The horizontal position of the display is set as described below ,
using SW1. Rotating SW1 one notch in the positive (+) direction shifts the display one dot to the right. Rotating SW1 one notch in the negative (–) direction shifts the display one dot to the left.
D Set SW1 such that the entire display is visible. There is only one
optimum setting position.
(b)Flickering adjustment
Flickering is eliminated by setting jumper pin TM1. One side of TM1 is marked A, while the other side is marked B. TM1 is factory–set to the B position. If the screen flickers, set TM1 to the A position.
44
B–63503EN/01
5.2

CONNECTION OF MDI UNIT

5. CONNECTION TO CNC PERIPHERALS
5.2.1
General
5.2.2
Connection to the MDI Unit
Control unit
Manual data input devices for the Series 0i are called MDI units. MDI units are keyboards used to enter data such as CNC programs and parameters into the CNC.
MDI JA2
MDI CABLE
Connection to the MDI
CK1
CRT/MDI unit LCD/MDI unit
45
5. CONNECTION TO CNC PERIPHERALS
5.2.3
Connection to the Standard MDI Unit
B–63503EN/01
MDI unitSeries 0i control unit
JA2
:KEY01
:KEY00
01 02
:KEY02
03
:KEY04
04
:KEY06
05
:COM00
06
:COM02 :COM04
07 08
:COM06
09
:COM08
10
:COM10
Cable JA2
Honda PCR connector
11
:KEY03
12
:KEY05
13
:KEY07
14
:COM01
15
:COM03
16
:COM05
17 18
:COM07 :COM09
19
:COM11
20
:KEY00 (01) :KEY02 (02) :KEY04 (03)
:KEY06 (04) :COM00 (05) :COM02 (06) :COM04 (07) :COM06 (08) :COM08 (09) :COM10 (10)
:KEY01 (1 1) :KEY03 (12) :KEY05 (13) :KEY07 (14)
:COM01 (15) :COM03 (16) :COM05 (17) :COM07 (18) :COM09 (19)
:COM1 1 (20)
CK1
:KEY01
:KEY00
01 02
:KEY02
03
:KEY04
04
:KEY06
05
:COM00
06
:COM02 :COM04
07 08
:COM06
09
:COM08
10
:COM10
CK1 Honda PCR connector
(01) :KEY00 (02) :KEY02 (03) :KEY04 (04) :KEY06 (05) :COM00 (06) :COM02 (07) :COM04 (08) :COM06 (09) :COM08 (10) :COM10 (11) :KEY01 (12) :KEY03 (13) :KEY05 (14) :KEY07 (15) :COM01 (16) :COM03 (17) :COM05 (18) :COM07 (19) :COM09 (20) :COM11
11
:KEY03
12
:KEY05
13
:KEY07
14
:COM01
15
:COM03
16
:COM05
17
:COM07
18
:COM09
19
:COM11
20
GROUND
PLATE
RECOMMENDED CABLE SPECIFICA TION : A02B–0120–K810 (5m) RECOMMENDED CABLE MA TERIAL : A66L–0001–0284#10P (#28AWG 10pair)
SHIELD
46
B–63503EN/01
5.2.4
V aried MDI Key Switch
D 9CRT/MDI unit and
8.4LCD/MDI unit for Series 0i–TA
English display
5. CONNECTION TO CNC PERIPHERALS
D 9CRT/MDI unit and
8.4LCD/MDI unit for Series 0i–MA
English display
47
5. CONNECTION TO CNC PERIPHERALS
5.3

CONNECTING I/O DEVICES

B–63503EN/01
5.3.1
General
I/O devices are used for inputting various data such as CNC programs and parameters from external devices to the CNC or outputting data from the CNC to external devices. The Handy File is one of the I/O devices for the Series 0i. The interface for I/O devices complies with RS–232–C. The Series 0i can therefore be connected to devices which have an RS–232–C interface.
48
B–63503EN/01
5.3.2
Connecting I/O Devices
Control unit
5. CONNECTION TO CNC PERIPHERALS
Punch panel
R232–1 JD5A
R232–2 JD5B
Handy File
49
5. CONNECTION TO CNC PERIPHERALS
5.3.3
RS–232–C Serial Port
CNC
JD5A, JD5B (PCR–EV20MDT)
RD
1
0V
2
DR
3
0V
4
CS
5
0V
6
CD
7
0V
8
9
+24V
10
11 12 13 14 15 16 17
18
19
20
SD 0V ER 0V RS 0V
+24V
B–63503EN/01
RELA YING CONNECTOR (DBM–25S)
FG
10 11 12 13
1 2
SD RD
3
RS
4 5
CS DR
6
SG
7 8
CD
9
14 15 16 17 18 19 20 21 22 23 24 25
ER
+24V
CABLE WIRING
1
RD
2
0V
3
DR
4
0V
5
CS
6
0V
7
CD
8
0V
9 10
+24V
11
SD
12
0V
13
ER
14
0V
15
RS
16
0V
17 18 19
+24V
20
SHIELD
GROUND PLA TE
RECOMMENDED CABLE MA TERIAL A66L–0001–0284#10P(#28AWG 10–pair) RECOMMENDED CABLE SPECIFICA TION (PUNCH P ANEL)
<Narrow width type>
A02B–0120–C191 (1m) A02B–0120–C192 (2m) A02B–0120–C193 (5m)
<Wide width type>
A02B–0120–C181 (1m) A02B–0120–C182 (2m) A02B–0120–C183 (5m)
20
25
GND
3
6
5
8
2
4 7
1
RD
DR
CS
CD
SD
ER
RS SG
+24V
50
B–63503EN/01
5.3.4
RS–232–C Interface Specification
5. CONNECTION TO CNC PERIPHERALS
RS–232–C Interface signals
Generally signals as follows are used in RS–232–C interface.
CNC
Output
Input
SD (Send data)
RD (Recieve data)
RS (Request to Send)
CS (Enable to send)
ER (Ready)
DR (Data set ready)
CD (Check data)
SG (Signal ground)
When CS is not used short CS and RS.
When DR is not used short DR and ER.
Always short ER and CD.
FG (Frame ground)
Fig.5.3.4 RS–232–C interface
51
5. CONNECTION TO CNC PERIPHERALS
B–63503EN/01
Signal description of RS–232–C interface
Signal
name
RS–232–C
circuit
number
SD 103 Output Sending
RD 104 Input Receiv-
RS 105 Input Sending
CS 106 Input Sending
DR 107 Input Data set
I/O Description
data
ing data
request
permitted
ready
Start bit Stop bit
ON OFF
This signal is set to on when NC starts sending data and is turned off when transmission ends.
When both this signal and the DR signal are set, the NC can send data. If external device processing is delayed by a punching operation, etc., NC data sending can be stopped by turning off this signal after sending two characters, including the data being sent currently. If this signal will not be used, make sure to strap this signal circuit to the RS signal cir­cuit.
When external device is ready to op­erate, this signal is set. This signal should usually be connected to the signal indicating external device pow­er supply being on. (ER signal of ex­ternal device). See Note below. The NC transfers data when this sig­nal is set. If the signals turned off dur­ing data transfer , alarm 086 is issued. If the DR signal will not be used, make sure to strap this signal circuit to the ER signal circuit.
123 8567
(When ISO code “0” is sent)
4
ER 108.2 Output NC ready
to operation
CD 109 Input Signal
quality signal
SG 102 Signal
grounding
FG 101 Frame
grounding
This signal is set when the NC is ready to operate. External device should regard the SD signal as being significant when the ER signal is set.
Since this signal is not used in con­nections with external device, the sig­nal circuit must be strapped, inside the connecting cable, to the ER sig­nal circuit.
NOTE
Signal on/off state is defined as follows;
3V or lower
Function
Signal Condition
52
OFF
Marking
+3V or higher
ON
Spacing
B–63503EN/01
Transmission Method of RS–232–C interface
5. CONNECTION TO CNC PERIPHERALS
Start–stop
Codes
Generally , two transmission methods are available at the serial interface. Series 0i use the start–stop method. With this method, start and stop signals are output before and after each data bit.
One character in start–stop
b1 b2 b3 b4 b5 b6 b7 b8
Start bit
(8 bit including one parity bit)
Data bit
Stop bits (2 bits)
Transmission codes are as follows: (i) EIA code and Control codes DC1 to DC4. (ii) ISO code and Control codes DC1 to DC4 (Optional ISO code input
is necessary.)
The connected external device must be able to recognize the following control codes, sent from NC.
Control code 8 7 6 5 4 3 2 1
DC1 Tape reader start f d f DC2 Tape punch designation f d f DC3 Tape reader stop f f d f DC4 Tape punch release f d f f
NOTE
The listed control codes are used for both EIA and ISO.
In this interface, control codes DC1 to DC4 are used. (a) NC can control external device by issuing codes DC1 to DC4. (b) When external processing falls behind the pace of the NC signals
(When NC issues data)
(i) External device can temporarily stop NC data output by using
the NC’s CS signal. Data output stops within two characters including a currently transmitting character when CS OFF signal is input to NC. When CS signal is turned on again, data transmission start.
(ii) If control code DC3 is input to NC, NC stops data output within
ten characters. When control code DC1 is input to NC, NC starts sending data again.
(c) When the external device is equipped with an ISO/EIA converter,
the external device must satisfy the specification shown in Table
5.3.4 (a).
53
5. CONNECTION TO CNC PERIPHERALS
B–63503EN/01
T able 5.3.4(a)
ISO code EIA code
Character
8 7 6 5 4 0 f f 1 f f f 2 f f f 3 f f 4 f f f 5 f f 6 f f 7 f f f 8 f f f f 9 f f f A f B f C f f D f E f f F f f G f H f f I f f f J f f f K f f L f f f M f f N f f
O f f f
P f f Q f f f R f f f S f f T f f f U f f
3 2 1
F
F
F
F
F
f 4 F f Numeral 4
F
f f 5 f F f f Numeral 5
F
f f 6 f F f f Numeral 6
F
f f f 7 F f f f Numeral 7
F
F
F
F
F
F
f d f f F f Address D
F
f f e f f f F f f ? Address E
F
f f f f f f F f f Address F
F
f f f g f f F f f f Address G
F
F
F
F
F
f l f F f f Address L
F
f f m f f F f Address M
F
f f n f F f f Address N
F
f f f o f F f f
F
F
F
F
F
f t f F f f Address T
F
f f u f f F f Address U
Character
8 7 6 5 4 3 2 1
0 f F Numeral 0
f 1 F f Numeral 1 f 2 F f Numeral 2 f f 3 f F f f Numeral 3
8 f F Numeral 8 f 9 f f F f Numeral 9 f a f f F f Address A
f b f f F f Address B f f c f f f F f f Address C
h f f f F Address H f i f f f f F f Address I
f j f f F f Address J f f k f f F f Address K
Not used at significant data zone in ISO code. Assumed as address 0 at EIA code.
p f f F f f f Address P
f q f f f F Address Q
f r f f F f Address R f f s f f F f Address S
V f f F f f v f F f f Address V W f f f F f f f w f F f f Address W X f f f f F x f f F f f f Address X Y f f f F f y f f f F Address Y Z f f f F f z f f F f Address Z DEL f f f f f F f f f Del f f f f F f f f : Delete (cancel erroneous hole)
NUL F Blank F :
No holes. Not used at significant data
zone is EIA code. BS f f F BS f f F f : Back space HT f F f Tab f f f F f f : Tabulator LF or NL f F f CR or EOB f F End of block CR f f F f f : Carriage return SP f f F SP f F : Space % f f F f f ER f F f f Absolute rewind stop ( f f F ( 2–4–5 ) f f F f Control out (start of comment) ) f f f F f ( 2–4–7 ) f f F f Control in (end of comment) + f f F f f + f f f F : Plus sign – f f F f f f F – Minus sign : f f f F f Assumed as program number in ISO code. / f f f F f f f / f f F f Optional block skip . f f F f f . f f f F f f Decimal point # f f F f f : Sharp $ f F f : Dollar symbol & f f F f f & f F f f : Ampersand
f F f f f : Apostrophe : f f f F f : Asterisk
, f f f F f , f f f F f f : Comma ; f f f f F f f : Semicolon < f f f F f : Left angle bracket = f f f f F f f : Equal mark > f f f f F f f : Right angle bracket ? f f f F f f f : Question mark @ f f F : Commerical at mark f F f : Quotation mark
Meaning
54
B–63503EN/01
5. CONNECTION TO CNC PERIPHERALS
NOTE
1 When the external device is equipped with an ISO/EIA
converter, the following items must be noted in Table
5.3.4(a).
Control out (Comment field start) Control in (Comment field end)
EIA code (.......................)
Condition1 Condition1
ISO code (.......................)
Condition1
Left parenthesis “(”of the ISO code punches holes at bits 2, 4, and 5 when used in the EIA code. Right parenthesis “)”of the ISO code punches holes at bits 2, 4, and 7 when used in the EIA code.
Condition2
LF
EIA code is in ISO code.
Condition3
EIA code O is : in ISO code.
CR
CR
Condition2 Condition3
LF
o ....................
: ....................
NOTE
2 Control codes DC1 to DC4 are transmission codes output
from the NC. So they need not to be punched on the NC tape.
(iii) Transmission rate (Baud rate)
The transmission rate (Baud rate) is the number of bits transferred per second. The following baud rates are available depending on the system parameter.
50, 100, 110, 150, 200, 300, 600, 1200, 2400, 4800, 9600.
(Example)
Baud rate : 110 When using one start bit and two stop bits (totalling 11 bits
per character):
110
Transmission characters/second=
=10 characters/second
11
(Max.)
55
5. CONNECTION TO CNC PERIPHERALS
(iv) Cable length
Time chart when the NC receives data (Read into memory)
(1) NC outputs DC1. (2) The external device starts sending data upon receiving DC1. (3) NC sends DC3 when NC processing is delayed. (4) The external device stops sending data to NC after receiving DC3.
(5) NC reissues DC1 upon completing delayed processing. (6) The external device restarts data output upon receiving the DC1
(7) NC sends DC3 upon completing data read. (8) The external device stops sending data.
B–63503EN/01
The cable length depends on the external device type. Consult with the device manufacturers for actual connecting cable lengths. When cable A (A66L–0001–0041) is used, cable length is as follows by the specification of NC.
for RS–232–C 100m or less ... 4800 bauds or less
60m or less ... 9600 bauds or less
The device may send up to 10 characters after receiving DC3. If it sends more than 10 characters, alarm 087 will occur.
code (the data must be the next data to the preceding.)
ER(Output)
RS(Output)
SD(Output)
RD(Input)
DR(Input)
CS(Input)
10ms or longer 100ms or longer
DC1 CD3 DC1
Up to 10 characters
1ms or longer
DC3
ER code
56
B–63503EN/01
5. CONNECTION TO CNC PERIPHERALS
Time chart when the NC send data (Punch out)
10ms or longer 100ms or longer
ER(Output)
RS(Output)
(1) NC output DC2. (2) NC outputs punch data in succession. (3) When data processing is delayed at the external device. (a) Data output stops within two characters including a currently
transmitting character when CS signal is turned off. When CS signal is turned on again, data transmission starts. (See Fig.A)
(b) If control code DC3 is input to NC, NC stops data output within ten
characters. When control code DC1 is input to NC, NC starts sending data again. (See Fig.B)
(4) The NC starts sending the next data if the CS signal is turned on after
the external device completes data processing.
(5) The NC issues DC4 upon completing data output.
DC4DC2
SD(Output)
RD(Input)
CS(Input)
ER(Output)
RS(Output)
SD(Output)
RD(Input)
1ms or longer
10ms or longer
Within 2 characters
Fig.A
100ms or longer
DC4DC2
DC1DC3
Within 10 characters
DR(Input)
CS(Input)
1ms or longer
Fig.B
57
5. CONNECTION TO CNC PERIPHERALS
Connection between RS–232–C interface and I/O devices
B–63503EN/01
CNC I/O device side
SD
SD
RD
RS
CS
ER
DR
CD
SG
FG
RD
RS
CS
ER
DR
CD
SG
FG
58
B–63503EN/01
5.3.5
F ANUC Handy File Connection
CNC
JD5A, JD5B (PCR–EV20MDT)
RD
1
0V
2
DR
3
0V
4
CS
5
0V
6 7
CD 0V
8 9
+24V
10
RELA YING CONNECTOR SIGNAL LA YOUT
11 12 13 14 15 16 17 18
19 20
SD 0V ER 0V RS 0V
+24V
5. CONNECTION TO CNC PERIPHERALS
Cable side connector Connector: DBM–25P (Japan Aviation Elec­tronic Inc., Ltd.)
Cover: DB–C2–J9 (Japan Aviation Electronic Inc., Ltd.)
Relaying cable
FG
Accessory for Handy File
Relaying connector Connector: DBM–25S (Japan Aviation Electronic Inc., Ltd.)
Lock metal: D20418–J9 (Japan Aviation Electronic Inc., Ltd.)
1SD2RD3RS4CS5DR6SG7CD8 9 10 11 12 13
FG
14 15 16 17 18 19ER20 21 22 23 24
FANUC Handy File
25
+24
NOTE
1 Machine tool builder shall furnish relay connector and relay
cable.
2 Use a totally shielded cable for the signal cable.
Recommended cable specification:
A66L–0001–0284#10P 3 Open all terminals other than illustrated. 4 Set suitable parameters on reader/puncher interface for
FANUC Handy File. The baud rate is 4800 baud in standard.
5 Connect the FANUC Handy File to either JD5A or JD5B. Do
not use both pins; the power capacity may exceed that of +24V and blow the fuse.
59
5. CONNECTION TO CNC PERIPHERALS
5.4

CONNECTING THE MANUAL PULSE GENERATOR

B–63503EN/01
5.4.1
General
Manual pulse generators are used to manually move an axis in the handle feed mode. Up to two manual pulse generators can be connected with the 0i–TA.
Up to three manual pulse generators can be connected with the 0i–MA.
Control unit
Manual Pulse Generator (No.1)
MPG JA3B
Manual Pulse Generator (No.2)
Manual Pulse Generator (No.3)
60
B–63503EN/01
5.4.2
Connection to Manual Pulse Generators
CNC
5. CONNECTION TO CNC PERIPHERALS
Manual Pulse Generator
I/O PCB JA3B (PCR–EV20MDT)
10
1 2 3 4 5 6 7 8 9
HA1 HB1 HA2 HB2 HA3 HB3
+5V +5V
11
12 13 14 15
16 17
18 19
20
0V 0V 0V 0V 0V 0V +5V +5V +5V +5V
Cable connection
HA1 HB1
+5V
0V
HA2 HB2
+5V
0V
HA3 HB3
+5V
0V
1 2 9 12
3 4 18 14
5 6
20 16
7 RD 7 WH 5 RD 2 BK
8 RD 8 BK 4 RD 3 BK
9 BK 9 WH
6 RD 1 BK
shield
Manual Pulse Generator unit #1 (M3 screw terminal)
3456
+5V 0V HA1 HB1 Manual Pulse Generator unit #2 (M3 screw terminal)
3456
+5V 0V HA2 HB2 Manual Pulse Generator unit #3 (M3 screw terminal)
3456
+5V 0V HA3 HB3
T.B.
Manual Pulse Generator
#1 HA1 HB1
+5V
0V
HA2 HB2
+5V
0V
HA3 HB3
+5V
0V
5
HA1
6
HB1
3
+5V
4
0V
#2
5
HA2
6
HB2
3
+5V
4
0V
#3
5
HA3
6
HB3
3
+5V
4
0V
Ground Plate
Cable
Wires
Recommended Cable Material (See Appendix B for details of cable material.)
A66L–0001–0286 (#20AWG 6+#24AWG 3) Max.20m. . . . . .
A66L–0001–0402 (#18AWG 6+#24AWG 3) Max.30m. . . . . .
A66L–0001–0403 (#16AWG 6+#24AWG 3) Max.50m. . . . . .
Recommended Cable (except for part of wires)
A02B–0120–K841 (7m) With three manual pulse generators. . . . . .
A02B–0120–K847 (7m) With two manual pulse generators. . . . . .
A02B–0120–K848 (7m) With one manual pulse generators. . . . . .
NOTE
Up to two manual pulse generators can be connected to the 0i–TA. In such a case, signals HA3 and HB3 are not used.
61
5. CONNECTION TO CNC PERIPHERALS
B–63503EN/01
5.4.3
Cable Length When Only One Manual Pulse Generator is Used
Manual pulse generators are supplied with 5 VDC power the same as pulse coders. The drop in voltage due to cable resistance must not exceed
0.2V (on 0V and 5V lines in total).
0.1 R 2L
0.2y
Therefore,
m
Lx
R
m
where0.1 :Power supply current for the
manual pulse generator = 0.1 A R : Wire resistance per unit length [Ω/m] m: Number of 0–V wires
(= number of 5–V wires) L : Cable length [m]
Example: When cable A66L–0001–0286 is used This cable consists of three pairs of signal lines and six power wires
(20/0.18, 0.0394
/m).
When these three cables are used for 0V and 5V lines, the cable length is:
3
Lx
0.0394
=76.75[m]
The maximum distance is, however, 50 m for the transmission of a pulse signal from the manual pulse generator . The cable length is, therefore, up to 50 m.
The maximum cable length is 38.37 m when using the two manual pulse generators, or 25.58 m when using the three generators.
62
B–63503EN/01
6
Serial spindle

SPINDLE CONNECTION

The following two configurations of the spindle interface are available in Series 0i.
SPDL–1(JA7A) JA7B
Main board
JA7A
6. SPINDLE CONNECTION
P/C
Serial spindle amplifier
Motor
Spindle
Analog spindle
SPDL–1(JA7A)
A–OUT1(JA8A)
Main board
The position coder return signal is connected to connector JA7A used for connection of the serial spindle.
Position coder return signal (A/B/Z phase)
Analog signal
Analog spindle amplifier
Motor
P/C
Spindle
63
6. SPINDLE CONNECTION
6.1

SERIAL SPINDLE INTERFACE

B–63503EN/01
CNC JA7A (Main board)
(PCR–EV20MDT)
SIN
1
:SIN
2
SOUT
3
:SOUT
4 5 6 7 8 9
10
Cable connection
Connector JA7A
SOUT
: SOUT
CNC
SIN
: SIN
Spindle amplifier module
JA7B (PCR–E20MDT)
0V
11
0V
12
0V
13
0V
14
0V
15
0V
16 17 18 19
20
1 2 3 4 5 6 7 8 9
10
SIN :SIN SOUT :SOUT
0V
11
0V
12
0V
13
0V
14
0V
15
0V
16 17 18 19 20
Connector JA7B
31
42
13 24
11,12,13 14,15,16
11,12,13 14,15,16
SIN
: SIN
SOUT
: SOUT
Spindle amplifier module
Connector used connector Housing
(HONDA) PCR–E20FA PCR–V20LA
Grounding plate Grounding plate
Cable specification : 0.09mm2 Twisted pair unified cable
64
Connector used connector Housing
(HONDA) PCR–E20FA PCR–V20LA
B–63503EN/01
6.2

ANALOG SPINDLE INTERFACE

6. SPINDLE CONNECTION
CNC
JA8A (Main board) (PCR–EV20MDT)
1
0V
2
CLKX0
3
0V
4
FSX0
5
ES
6
DX0
7
SVC
8
ENB1
9
ENB2
10
+15V
CABLE WIRING
11 12 13 14 15 16 17 18 19 20
SVC
ES ENB1 ENB2
0V CLKX1 0V FSX1 0V DX1
–15V
+5V +15V +5V
7 5
8 9
GROUND PLATE
Signal name
SVC, ES
ENB1, ENB2
CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, "15V, +5V, 0V
SHIELD
Description
Spindle command voltage and common line
Spindle enable signal (Note 1)
Feed axis check signal (Note 2)
FANUC SPINDLE SERVO UNIT
DA2 E
NOTE
1 ENB1 and 2 turn on when a spindle command voltage is
effective. These signals are not used when the FANUC Spindle Servo Unit is used.
2 Feed axis check signal is used when a feed axis is checked
or service work is done. This signal is not used for spindle control.
65
6. SPINDLE CONNECTION
6.3

POSITION CODER INTERFACE

CNC
JA7A(Main board) (PCR–EV20MDT)
1
SC
2
:SC
3
SOUT
4
:SOUT
PA
5 6
:PA PB
7 8
:PB +5V
9 10
11 12 13 14 15 16 17 18 19 20
0V
0V
0V
+5V
+5V
Name
SC, :SC
PA, :PA
PB, :PB
SOUT, :SOUT
B–63503EN/01
Description
Position coder C–phase signal
Positon coder A–phase signal
Position coder B–phase signal
Signals for serial spindle (Note)
CNC
SOUT
:SOUT
PA
:PA
PB
:PB
SC
:SC
+5V
0V
5 6 7 8 1 2 9,18,20 12,14,16 3 4
SHIELD
EARTH PLATE
POSITION CODER
A(PA) N(:PA) C(PB) R(:PB) B(PZ) P(:PZ) H K
RECOMMENDED CABLE A66L–0001–0286 (#20AWG+6 #24AWG 3) MAX LENGTH 20m.
NOTE
Signals SOUT and :SOUT are for a serial spindle. These signals are not used for an analog spindle. This means that if the position coder feedback function is employed in the analog spindle, no serial spindle can be connected.
66
B–63503EN/01
7

7. SERVO INTERFACE

SERVO INTERF ACE
67
7. SERVO INTERFACE
B–63503EN/01
7.1

OUTLINE

7.1.1
Interface to the Servo Amplifier
This chapter describes how to connect the servo unit to the Series 0i. For connection on control motor amplifier α series or β series, refer to the
Descriptions manual.
Servo Amplifier ModuleSeries 0i
JSnA (PCR–EV20MDT)
01
IRn
02
GDRn
:PWMAn
03 04
0V
05
:PWMCn
06
0V
:PWMEn
07 08
0V
09
:DRDYn :MCONn
10
11 12
:ENBLn
13 14 15 16
:PDn
17 18
:PREQn
19 20
ISn GDSn
0V PDn
PREQn
0V 0V
n:Axis number (1 to 4)
JSnB (PCR–EV20MDT)
01
IRn
02
GDRn
03
:PWMAn
04
0V
05
:PWMCn
06
0V
:PWMEn
07
08
0V
:DRDYn
09
:MCONn
10
11 12 13 14 15 16 17 18 19 20
ISn GDSn
:ENBLn
0V PDn
:PDn
PREQn
:PREQn
0V 0V
CABLE WIRING
1
IRn
0V
0V
0V
ISn
0V
PDn
0V 0V
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ground plate
GDRn
:PWMAn
:PWMCn
:PWMEn
:DRDYn
:MCONn
GDSn
:ENBLn
:PDn
PREQn
:PREQn
RECOMMENDED CABLE MA TERIAL A66L–0001–0284#10P(#28WAG 10 pair)
RECOMMENDED CABLE SPECIFICA TION A02B–0120–K800(5m)
Shield
1 2 3 4 5 6 7 8 9
10
11 12 13 14 15 16 17 18 19 20
IRN GDRN :PWMAN 0V :PWMCN 0V :PWMEN 0V
:DRDYN :MCONN
ISN GDSN :ENBLN 0V PDN :PDN PREQN :PREQN 0V 0V
68
B–63503EN/01
7. SERVO INTERFACE
NOTE
1 The total length of the cable between the CNC and amplifier
and that between the amplifier and motor shall not exceed 50m.
2 As the current feedback lines (IRn and ISn), use the middle
twisted pair of the recommended cable. If any other pair is used, abnormal noise or oscillation may occur.
3 The servo interface of the Series 0i is type B. Use a servo
unit which supports the type–B interface. When using a servo unit which supports both the type–A and type–B interfaces, select the type–B interface. For details, refer to the manual supplied with the servo unit. If the interface setting is incorrect, a servo alarm (AL401 V READY OFF) will be issued.
69
7. SERVO INTERFACE
7.1.2
Separate Type Detector Interface
Control unit
B–63503EN/01
SCALE1 JF21 SCALE2 JF22 SCALE3 JF23 SCALE4 JF24
Linear scale
70
B–63503EN/01
7.1.3
Connection of Battery for Separate Type Absolute Detector
Control unit
+
7. SERVO INTERFACE
Battery case for separate type absolute detector.
SC–ABS JF25
+
71
7. SERVO INTERFACE
B–63503EN/01
CNC JF25
(PCR–EV20MDT)
01 02 03 04 05 06 07
+6V
08 09 10
Cable connection
+6V
0V
11 12
13 14 15 16
17
18
19
20
7 12
0V
Battery case
(M3 terminal)
+
+6V 0V
Battery caseJF25
+
+6V
0V
Recommended Cable Material y0.2mm2(7/0.18)
Recommended Cable Specification A02B–0177–K809
NOTE
This battery is necessary only when a separate–type absolute detector is used. When the absolute pulse coder contained in the motor is used, the battery contained in the amplifier is used; the battery for a separate–type absolute detector is not necessary.
72
B–63503EN/01
Linear scale interface
CNC
JF21 to JF24 (PCR-EV20MDT)
7. SERVO INTERFACE
Linear scale
1 PCA 2 *PCA 3 PCB 4 *PCB 5 PCZ 6 *PCZ 7 (+6V) 8 (REQ) 9 +5V 19
10 20 +5V
11 12 0V 13 14 0V 15 16 0V 17 18 +5V
Cable wiring
1
PCA
2
*PCA
3
PCB
4
*PCB
5
PCZ
6
*PCZ
9
+5V
18
+5V
20
+5V
12
0V
14
0V
16
0V
+6V and REQ are for separate absolute pulse coders.
PCA *PCA
PCB *PCB
PCZ *PCZ
+5V +5V
+5V 0V
0V 0V
Shield
Grounding plate
Recommended cable material A66L-0001-0286 (#20AWG 6 + #24AWG 3–pair)
73
7. SERVO INTERFACE
Separate type pulse coder interface
D For absolute detector
B–63503EN/01
CNC
JF21 to JF24 (PCR–EV20MDT)
1 PCA 2 *PCA 3 PCB 4 *PCB 5 PCZ 6 *PCZ 7 +6V 8 REQ 9 +5V 19
10 20 +5V
11 12 0V 13 14 0V 15 16 0V 17 18 +5V
Separate type detector
Pulse coder (MS3102A–22–14P)
A PCA B *PCA C PCB D *PCB E PCZ F *PCZ G H J K L +5V M 0V
N SHLD P R S REQ
T +6VA U 0VA V
MS3106B22–14S
Cable wiring
1
PCA
2
*PCA
3
PCB
4
*PCB
5
PCZ
6
*PCZ
7
+6V
8
REQ
9
+5V
18
+5V
20
+5V
12
0V
14
0V
16
0V
Grounding plate
Shield
Recommended cable material A66L-0001-0286 (#20AWG 6 + #24AWG 3–pair)
A B
C D
E
F T
S
L
M
U N
PCA *PCA
PCB *PCB
PCZ *PCZ
+6VA REQ
+5V 0V
0VA SHLD
(Shield)
74
B–63503EN/01
D For incremental detector
7. SERVO INTERFACE
CNC
JF21 to JF24 (PCR-EV20MDT)
1 PCA 2 *PCA 3 PCB 4 *PCB 5 PCZ 6 *PCZ 7 +6V 8 REQ 9 +5V 19
10 20 +5V
11 12 0V 13 14 0V 15 16 0V 17 18 +5V
Cable wiring
1
PCA
2
*PCA
3
PCB
4
*PCB
5
PCZ
6
*PCZ
Separate type detector
Pulse coder (MS3102A–20–29P)
A PCA B PCB C +5V D *PCA E *PCB F PCZ G *PCZ H SHLD J +5V K +5V L M
N 0V P 0V R S
T 0V
MS3106B20–29SW REQ is not used.
A
PCA
D
*PCA
B
PCB
E
*PCB
F
PCZ
G
*PCZ
9
+5V
18
+5V
20
+5V
12
0V
14
0V
16
0V
Shield
Grounding plate
Recommended cable material A66L-0001-0286 (#20AWG 6 + #24AWG 3–pair)
C
J
K N
P
T
H
+5V +5V
+5V 0V
0V 0V
SHLD (Shield)
75
7. SERVO INTERFACE
B–63503EN/01
Input signal requirements
The standard of the feedback signal from the additional detector is as shown below.
(1)A and B phase signal input This is a method to input position information by the mutual 90 degree
phase slip of A and B phase signals. Detection of the position is performed with the state in which the B phase is leading taken as a shift in the plus direction, and the state in which the A phase is leading as a shift in the minus direction.
A phase signal
Shift in plus direction
B phase signal
A phase signal
Shift in minus direction
B phase signal
(2)Phase difference and minimum repeat frequency
A
PCA/*PCA
0.5V
Td
0.5V
B
Td
Tp
Td
Td
*PCA/PCA
PCB/*PCB
*PCB/PCB
(3)Z phase signal input For the Z phase signal (1 rotation signal), a signal width of more than 1/4
frequency of the A phase or B phase signals is necessary.
Z phase signal
Tw
Twy 1/4 frequency of A phase or B phase
76
B–63503EN/01
7. SERVO INTERFACE
Time requirements
Receiver circuit
Requirements for the signals at the input pins of input connectors JF21 to JF24
TD y 0.15 µsec
The signals for these connectors are differential input signals with A and B phases. An important factor is time TD from point A, when the potential difference between PCA and *PCA exceeds 0.5V, to point B, when the potential difference between PCB and *PCB becomes lower than 0.5V. The minimum value of TD is 0.15 µs. The period and pulse width of the signals must be long enough to satisfy the above requirements.
TEXAS INSTRUMENTS, INC.: SN751 15
A–phase signal
PCA
110
*PCA
560
5V
The same circuit is used for B–phase signals (PCB and *PCB) and one–rotation signals (PCZ and *PCZ).
Relationship between the direction of rotation of the servo motor and that of the separate pulse coder
If the separate pulse coder rotates in the opposite direction to that of the servo motor, reconnect the interface cable of the separate pulse coder as described below.
(1)Exchange signal PCA with signal PCB. (2)Exchange signal *PCA with signal *PCB.
77

8. CONNECTING MACHINE INTERFACE I/O

CONNECTING MACHINE INTERF ACE I/O
8
B–63503EN/01
78
B–63503EN/01
8. CONNECTING MACHINE INTERFACE I/O
8.1

GENERAL

The Series 0i has a built–in I/O board for machine interface I/O. Number of DI/DO points for built–in I/O card are 96/64 points. If the number of DI/DO points is not sufficient, external I/O units such as the dispersed I/O can be added using the FANUC I/O Link. MIL ribbon cable connectors are used as the internal connectors for the built–in I/O board to simplify connection with the connector panel.
79
8. CONNECTING MACHINE INTERFACE I/O
B–63503EN/01
8.2

CAUTIONS

8.2.1
DI Signals and Receivers
8.2.2
DO Signals and Drivers
The following cautions must be observed when using I/O signal receivers and drivers for the machine interface.
DI signals are basically of the sink type (a type that drains ener gy). Some DI signals, however, can be set to either sink type or source type (a type that supplies energy). See the description of the I/O board in the following section for details. A common signal is provided for selectable receivers. Whether the common signal is connected to 0 V or 24 V determines whether a DI signal is of sink or source type. A source type DI signal is undesirable from the viewpoint of safety, however , because if the input signal line is grounded, it will be latched in the same state as that existing when the contact is closed. It is recommended that all DI signals be set to sink type. Always connect the common signal to either 0 or 24 V; do not leave it open.
The driver of DO signals is source type (a type that supplies energy). If a system alarm occurs in a control unit of the Series 0i, all I/O board
drivers are turned off. Keep this in mind when setting up a machine sequence. The same situation can occur if the power to the control unit is turned of f independently.
80
B–63503EN/01
8.3

BUILT–IN I/O CARD CONNECTION

Control unit Machine Operators panel
8. CONNECTING MACHINE INTERFACE I/O
Magnetic cabinet circuit
81
8. CONNECTING MACHINE INTERFACE I/O
8.3.1
Connector Pin Arrangement
B–63503EN/01
CB104
HIROSE 50PIN
AB 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
17 18
19 20
21 22 23 24 25
0V +24V X1000.0 X1000.1 X1000.2 X1000.3 X1000.4 X1000.5 X1000.6 X1000.7 X1001.0 X1001.1 X1001.2 X1001.3 X1001.4 X1001.5 X1001.6 X1001.7 X1002.0 X1002.1 X1002.2 X1002.3 X1002.4 X1002.5 X1002.6 X1002.7
Y1000.0 Y1000.1 Y1000.2 Y1000.3 Y1000.4 Y1000.5 Y1000.6 Y1000.7 Y1001.0 Y1001.1 Y1001.2 Y1001.3 Y1001.4 Y1001.5 Y1001.6 Y1001.7
DOCOM DOCOM DOCOM DOCOM
CB105
HIROSE 50PIN
AB 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
17 18
19 20
21 22 23 24 25
0V +24V X1003.0 X1003.1 X1003.2 X1003.3 X1003.4 X1003.5 X1003.6 X1003.7 X1008.0 X1008.1 X1008.2 X1008.3 X1008.4 X1008.5 X1008.6 X1008.7 X1009.0 X1009.1 X1009.2 X1009.3 X1009.4 X1009.5 X1009.6 X1009.7
Y1002.0 Y1002.1 Y1002.2 Y1002.3 Y1002.4 Y1002.5 Y1002.6 Y1002.7 Y1003.0 Y1003.1 Y1003.2 Y1003.3 Y1003.4 Y1003.5 Y1003.6 Y1003.7
DOCOM DOCOM DOCOM DOCOM
CB106
HIROSE 50PIN
AB 01 02 03 04 05 06 07 08 09 10
12 13 14 15 16
17 18
19 20
21 22 23 24 25
0V +24V X1004.0 X1004.1 X1004.2 X1004.3 X1004.4 X1004.5 X1004.6 X1004.7 X1005.0 X1005.1 X1005.2 X1005.3 X1005.4 X1005.5 X1005.6 X1005.7 X1006.0 X1006.1 X1006.2 X1006.3
11
X1006.4 X1006.5 X1006.6 X1006.7
COM4
HDI0 Y1004.0 Y1004.1 Y1004.2 Y1004.3 Y1004.4 Y1004.5 Y1004.6 Y1004.7 Y1005.0 Y1005.1 Y1005.2 Y1005.3 Y1005.4 Y1005.5 Y1005.6 Y1005.7
DOCOM DOCOM DOCOM DOCOM
CB107
HIROSE 50PIN
AB 01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16
17 18
19 20
21 22 23 24 25
0V +24V X1007.0 X1007.1 X1007.2 X1007.3 X1007.4 X1007.5 X1007.6 X1007.7 X1010.0 X1010.1 X1010.2 X1010.3 X1010.4 X1010.5 X1010.6 X1010.7 X1011.0 X1011.1 X1011.2 X1011.3 X1011.4 X1011.5 X1011.6 X1011.7
Y1006.0 Y1006.1 Y1006.2 Y1006.3 Y1006.4 Y1006.5 Y1006.6 Y1006.7 Y1007.0 Y1007.1 Y1007.2 Y1007.3 Y1007.4 Y1007.5 Y1007.6 Y1007.7
DOCOM DOCOM DOCOM DOCOM
82
B–63503EN/01
8.3.2
Connecting DI/DO
For example, connecting DI
8. CONNECTING MACHINE INTERFACE I/O
X1000.0 X1000.1 X1000.2 X1000.3 X1000.4 X1000.5 X1000.6 X1000.7
X1001.0 X1001.1 X1001.2 X1001.3 X1001.4 X1001.5 X1001.6 X1001.7
Address No. Bit No.
RV RV RV RV RV RV RV RV
RV RV RV RV RV RV RV RV
T erminal No.
+24V
CB104(B01)
CB104(A02) CB104(B02) CB104(A03) CB104(B03) CB104(A04) CB104(B04) CB104(A05) CB104(B05)
CB104(A06) CB104(B06) CB104(A07) CB104(B07) CB104(A08) CB104(B08) CB104(A09) CB104(B09)
83
8. CONNECTING MACHINE INTERFACE I/O
B–63503EN/01
X1002.0 X1002.1 X1002.2 X1002.3 X1002.4 X1002.5 X1002.6 X1002.7
X1003.0 X1003.1 X1003.2 X1003.3 X1003.4 X1003.5 X1003.6 X1003.7
Address No. Bit No.
RV RV RV RV RV RV RV RV
RV RV RV RV RV RV RV RV
T erminal No.
+24V
CB104(B01),CB105(B01)
CB104(A10) CB104(B10) CB104(A11) CB104(B11) CB104(A12) CB104(B12) CB104(A13) CB104(B13)
CB105(A02) CB105(B02) CB105(A03) CB105(B03) CB105(A04) CB105(B04) CB105(A05) CB105(B05)
84
B–63503EN/01
8. CONNECTING MACHINE INTERFACE I/O
X1004.0 X1004.1 X1004.2 X1004.3 X1004.4 X1004.5 X1004.6 X1004.7
Address No. Bit No.
RV RV RV RV RV RV RV RV
+24V
COM4
T erminal No.
CB106(B01)
CB106(A02) CB106(B02) CB106(A03) CB106(B03) CB106(A04) CB106(B04) CB106(A05) CB106(B05)
CB106(A14)
CB106(A01)
X1005.0 X1005.1 X1005.2 X1005.3 X1005.4 X1005.5 X1005.6 X1005.7
RV RV RV RV RV RV RV RV
CB106(A06) CB106(B06) CB106(A07) CB106(B07) CB106(A08) CB106(B08) CB106(A09) CB106(B09)
For address X1004, either a source or sink type (with a 0– or 24–V common voltage) can be selected. COM4 must be connected to either 24 or 0 V; never leave it open. From the viewpoint of safety standards, it is recommended that a sink type signal be used. The above diagram shows an example in which the signal is of sink type (with a 24–V common voltage).
85
8. CONNECTING MACHINE INTERFACE I/O
B–63503EN/01
X1006.0 X1006.1 X1006.2 X1006.3 X1006.4 X1006.5 X1006.6 X1006.7
X1007.0 X1007.1 X1007.2 X1007.3 X1007.4 X1007.5 X1007.6 X1007.7
Address No. Bit No.
RV RV RV RV RV RV RV RV
RV RV RV RV RV RV RV RV
T erminal No.
+24V
CB106(B01),CB107(B01)
CB106(A10) CB106(B10) CB106(A11) CB106(B11) CB106(A12) CB106(B12) CB106(A13) CB106(B13)
CB107(A02) CB107(B02) CB107(A03) CB107(B03) CB107(A04) CB107(B04) CB107(A05) CB107(B05)
86
B–63503EN/01
8. CONNECTING MACHINE INTERFACE I/O
X1008.0 X1008.1 X1008.2 X1008.3 X1008.4 X1008.5 X1008.6 X1008.7
X1009.0 X1009.1 X1009.2 X1009.3 X1009.4 X1009.5 X1009.6 X1009.7
Address No. Bit No.
RV RV RV RV RV RV RV RV
RV RV RV RV RV RV RV RV
T erminal No.
+24V
CB105(B01)
CB105(A06) CB105(B06) CB105(A07) CB105(B07) CB105(A08) CB105(B08) CB105(A09) CB105(B09)
CB105(A10) CB105(B10) CB105(A11) CB105(B11) CB105(A12) CB105(B12) CB105(A13) CB105(B13)
87
8. CONNECTING MACHINE INTERFACE I/O
B–63503EN/01
X1010.0 X1010.1 X1010.2 X1010.3 X1010.4 X1010.5 X1010.6 X1010.7
X1011.0 X1011.1 X1011.2 X1011.3 X1011.4 X1011.5 X1011.6 X1011.7
Address No. Bit No.
RV RV RV RV RV RV RV RV
RV RV RV RV RV RV RV RV
T erminal No.
+24V
CB107(B01)
CB107(A06) CB107(B06) CB107(A07) CB107(B07) CB107(A08) CB107(B08) CB107(A09) CB107(B09)
CB107(A10) CB107(B10) CB107(A11) CB107(B11) CB107(A12) CB107(B12) CB107(A13) CB107(B13)
88
B–63503EN/01
For example, connecting DO
Address No. Bit No.
8. CONNECTING MACHINE INTERFACE I/O
T erminal No.
CB104(A24,B24,A25,B25) CB105(A24,B24,A25,B25) CB106(A24,B24,A25,B25)
DOCOM
CB107(A24,B24,A25,B25)
0V+24V
+24V stabilized power supply
Y1000.0
Y1000.1 Y1000.2 Y1000.3 Y1000.4 Y1000.5 Y1000.6 Y1000.7 Y1001.0
Y1001.1 Y1001.2 Y1001.3 Y1001.4 Y1001.5 Y1001.6 Y1001.7
DV
DV DV DV DV DV DV DV DV
DV DV DV DV DV DV DV
CB104(A16)
Relay CB104(B16) CB104(A17) CB104(B17) CB104(A18) CB104(B18) CB104(A19) CB104(B19) CB104(A20)
CB104(B20) CB104(A21) CB104(B21) CB104(A22) CB104(B22) CB104(A23) CB104(B23)
CB104(A01)
89
8. CONNECTING MACHINE INTERFACE I/O
Address No. Bit No.
B–63503EN/01
T erminal No.
CB104(A24,B24,A25,B25) CB105(A24,B24,A25,B25) CB106(A24,B24,A25,B25) CB107(A24,B24,A25,B25)
0V+24V
+24V stabilized power supply
Y1002.0
Y1002.1 Y1002.2 Y1002.3 Y1002.4 Y1002.5 Y1002.6 Y1002.7 Y1003.0
Y1003.1 Y1003.2 Y1003.3 Y1003.4 Y1003.5 Y1003.6 Y1003.7
DV
DV DV DV DV DV DV DV DV
DV DV DV DV DV DV DV
CB105(A16)
Relay CB105(B16) CB105(A17) CB105(B17) CB105(A18) CB105(B18) CB105(A19) CB105(B19) CB105(A20)
CB105(B20) CB105(A21) CB105(B21) CB105(A22) CB105(B22) CB105(A23) CB105(B23)
CB105(A01)
90
Loading...