ATMEL AT89C51CC01 User Manual

0 (0)

BDTIC www.bdtic.com/ATMEL

Features

80C51 Core Architecture

256 Bytes of On-chip RAM

1K Bytes of On-chip XRAM

32K Bytes of On-chip Flash Memory

Data Retention: 10 Years at 85°C Erase/Write Cycle: 100K

Boot Code Section with Independent Lock Bits

2K Bytes of On-chip Flash for Bootloader

In-System Programming by On-Chip Boot Program (CAN, UART) and IAP Capability

2K Bytes of On-chip EEPROM Erase/Write Cycle: 100K

14-sources 4-level Interrupts

Three 16-bit Timers/Counters

Full Duplex UART Compatible 80C51

Maximum Crystal Frequency 40 MHz, in X2 Mode, 20 MHz (CPU Core, 20 MHz)

Five Ports: 32 + 2 Digital I/O Lines

Five-channel 16-bit PCA with:

PWM (8-bit)

High-speed Output

Timer and Edge Capture

Double Data Pointer

21-bit Watchdog Timer (7 Programmable Bits)

A 10-bit Resolution Analog to Digital Converter (ADC) with 8 Multiplexed Inputs

Full CAN Controller:

Fully Compliant with CAN Rev2.0A and 2.0B

Optimized Structure for Communication Management (Via SFR)

15 Independent Message Objects:

Each Message Object Programmable on Transmission or Reception Individual Tag and Mask Filters up to 29-bit Identifier/Channel 8-byte Cyclic Data Register (FIFO)/Message Object

16-bit Status and Control Register/Message Object

16-bit Time-Stamping Register/Message Object

CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message Object

Access to Message Object Control and Data Registers Via SFR Programmable Reception Buffer Length Up To 15 Message Objects

Priority Management of Reception of Hits on Several Message Objects at the Same Time (Basic CAN Feature)

Priority Management for Transmission Message Object Overrun Interrupt

– Supports:

Time Triggered Communication

Autobaud and Listening Mode Programmable Automatic Reply Mode

1-Mbit/s Maximum Transfer Rate at 8 MHz (1) Crystal Frequency in X2 Mode

Readable Error Counters

Programmable Link to On-chip Timer for Time Stamping and Network Synchronization

Independent Baud Rate Prescaler

Data, Remote, Error and Overload Frame Handling

On-chip Emulation Logic (Enhanced Hook System)

Power Saving Modes:

Idle Mode

Power-down Mode

1.At BRP = 1 sampling point will be fixed.

Enhanced 8-bit Microcontroller with CAN Controller and Flash Memory

T89C51CC01

AT89C51CC01

Rev. 4129N–CAN–03/08

1

Power Supply: 3V to 5.5V

Temperature Range: Industrial (-40° to +85°C)

Packages: VQFP44, PLCC44

Description

The T89C51CC01 is the first member of the CANaryTM family of 8-bit microcontrollers dedicated to CAN network applications.

In X2 mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.

Besides the full CAN controller T89C51CC01 provides 32K Bytes of Flash memory including In-System-Programming (ISP), 2K Bytes Boot Flash Memory, 2K Bytes EEPROM and 1.2-Kbyte RAM.

Special attention is paid to the reduction of the electro-magnetic emission of T89C51CC01.

Block Diagram

RxD

TxD

Vcc

Vss

ECI

PCA

T2EX

T2

RxDC

TxDC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL1

 

 

 

 

UART

 

RAM

 

Flash

 

Boot

 

EE

 

XRAM

 

PCA

 

Timer 2

 

CAN

 

 

 

 

 

 

 

 

 

 

 

 

XTAL2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

256x8

 

32kx

 

loader

 

PROM

 

1kx8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

2kx8

 

2kx8

 

 

 

 

 

 

 

CONTROLLER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE

C51

 

 

 

PSEN

CORE

IB-bus

CPU

 

 

 

EA

 

 

 

 

 

 

 

 

 

 

 

Timer 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INT

 

 

 

Parallel I/O Ports and Ext. Bus

 

 

Watch

 

 

10 bit

 

 

RD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 1

 

 

Ctrl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dog

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port 0

Port 1

Port 2

Port 3

Port 4

 

 

 

 

ADC

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0

P1(1)

P2

P3

P4(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

T0 T1

 

INT0

 

INT1

 

 

VAREF

VAVCC

VAGND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 1. 8 analog Inputs/8 Digital I/O 2. 2-Bit I/O Port

2A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Pin Configuration

 

 

 

P1.3/AN3/CEX0

P1.2/AN2/ECI

P1.1/AN1/T2EX

P1.0/AN 0/T2

VAREF

VAGND

RESET

VSS

VCC

XTAL1

XTAL2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

5

4

3

2

1

44

43

42

41

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.4/AN4/CEX1

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

 

ALE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.5/AN5/CEX2

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

 

PSEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.6/AN6/CEX3

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

 

P0.7/AD7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.7/AN7/CEX4

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

P0.6/AD6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

P0.5/AD5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.0/RxD

 

12

 

 

 

 

 

 

 

 

PLCC44

 

 

 

 

34

 

P0.4/AD4

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.1/TxD

 

13

 

 

 

 

 

 

 

 

 

 

 

 

33

 

P0.3/AD3

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.2/INT0

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

P0.2/AD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.3/INT1

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

P0.1/AD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.4/T0

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

P0.0/AD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.5/T1

 

17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

P2.0/A8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

19

20

21

22

23

24

25

26

27

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.6/WR

P3.7/RD

P4.0/ TxDC

P4.1/RxDC

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

 

 

 

 

 

 

 

P1.3/AN3/CEX0

P1.2/AN2/ECI

P1.1/AN1/T2EX

P1.0/AN 0/T2 VAREF VAGND RESET VSS

VCC

XTAL1

XTAL2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 43 42 41 40 39 38 37 36 35 34

 

 

 

 

P1.4/AN4/CEX1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

 

 

ALE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.5/AN5/CEX2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.6/AN6/CEX3

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

P0.7/AD7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.7/AN7/CEX4

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

P0.6/AD6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA

 

 

5

 

 

 

 

 

 

 

VQFP44

 

 

 

 

29

 

 

P0.5/AD5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.0/RxD

 

 

6

 

 

 

 

 

 

 

 

 

 

 

28

 

 

P0.4 /AD4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.1/TxD

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

 

 

P0.3 /AD3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.2/INT0

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

 

P0.2 /AD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.3/INT1

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

P0.1 /AD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.4/T0

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

P0.0 /AD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.5/T1

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

P2.0/A8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 13 14 15 16 17 18 19 20 21 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.6/WR

P3.7/RD

P4.0/TxDC

P4.1/RxDC P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

 

 

 

3

4129N–CAN–03/08

I/O Configurations

Each Port SFR operates via type-D latches, as illustrated in Figure 1 for Ports 3 and 4. A CPU "write to latch" signal initiates transfer of internal bus data into the type-D latch. A CPU "read latch" signal transfers the latched Q output onto the internal bus. Similarly, a "read pin" signal transfers the logical level of the Port pin. Some Port data instructions activate the "read latch" signal while others activate the "read pin" signal. Latch instructions are referred to as Read-Modify-Write instructions. Each I/O line may be independently programmed as input or output.

Port 1, Port 3 and Port 4 Figure 1 shows the structure of Ports 1 and 3, which have internal pull-ups. An external source can pull the pin low. Each Port pin can be configured either for general-purpose I/O or for its alternate input output function.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 1,3 or 4). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output FET drive.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the "alternate output function" signal controls the output level (see Figure 1). The operation of Ports 1, 3 and 4 is discussed further in the "quasi-Bidirectional Port Operation" section.

Figure 1. Port 1, Port 3 and Port 4 Structure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

ALTERNATE

 

 

 

 

 

 

 

 

 

INTERNAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

READ

 

 

 

 

 

 

 

 

FUNCTION

 

 

 

 

 

 

 

 

 

PULL-UP (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LATCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.x

INTERNAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4.x

BUS

 

 

D P1.X Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4.X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WRITE

 

 

LATCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LATCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

READ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN

 

 

 

 

 

 

 

ALTERNATE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

Port 0 and Port 2

Note: The internal pull-up can be disabled on P1 when analog function is selected.

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, shown in Figure 3, differs from the other Ports in not having internal pull-ups. Figure 3 shows the structure of Port 2. An external source can pull a Port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 0 or 2). To use a pin for general-purpose input, set the bit in the Px register to turn off the output driver FET.

4A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Read-Modify-Write

Instructions

Figure 2. Port 0 Structure

 

 

 

 

ADDRESS LOW/

CONTROL

VDD

 

 

DATA

 

 

READ

 

 

 

(2)

 

 

 

 

LATCH

 

 

 

P0.x (1)

 

 

 

 

 

 

 

1

 

INTERNAL

 

 

0

 

BUS

DP0.X

Q

 

 

 

WRITE

LATCH

 

 

 

 

 

 

 

TO

 

 

 

 

LATCH

 

 

 

 

READ

 

 

 

 

PIN

 

 

 

 

Notes: 1. Port 0 is precluded from use as general-purpose I/O Ports when used as address/data bus drivers.

2.Port 0 internal strong pull-ups assist the logic-one output for memory bus cycles only. Except for these bus cycles, the pull-up FET is off, Port 0 outputs are open-drain.

Figure 3. Port 2 Structure

 

 

 

 

ADDRESS HIGH/ CONTROL

VDD

 

 

 

 

INTERNAL

READ

 

 

 

PULL-UP (2)

LATCH

 

 

 

P2.x (1)

 

 

 

 

 

 

 

1

 

INTERNAL

 

 

0

 

BUS

DP2.X

Q

 

 

 

WRITE

LATCH

 

 

 

 

 

 

 

TO

 

 

 

 

LATCH

 

 

 

 

READ

 

 

 

 

PIN

 

 

 

 

Notes: 1. Port 2 is precluded from use as general-purpose I/O Ports when as address/data bus drivers.

2.Port 2 internal strong pull-ups FET (P1 in FiGURE) assist the logic-one output for memory bus cycle.

When Port 0 and Port 2 are used for an external memory cycle, an internal control signal switches the output-driver input from the latch output to the internal address/data line.

Some instructions read the latch data rather than the pin data. The latch based instructions read the data, modify the data and then rewrite the latch. These are called "Read- Modify-Write" instructions. Below is a complete list of these special instructions (see Table ). When the destination operand is a Port or a Port bit, these instructions read the latch rather than the pin:

5

4129N–CAN–03/08

Quasi-Bidirectional Port

Operation

Table 1. Read-Modify-Write Instructions

Instruction

Description

Example

 

 

 

ANL

logical AND

ANL P1, A

 

 

 

ORL

logical OR

ORL P2, A

 

 

 

XRL

logical EX-OR

XRL P3, A

 

 

 

JBC

jump if bit = 1 and clear bit

JBC P1.1, LABEL

 

 

 

CPL

complement bit

CPL P3.0

 

 

 

INC

increment

INC P2

 

 

 

DEC

decrement

DEC P2

 

 

 

DJNZ

decrement and jump if not zero

DJNZ P3, LABEL

 

 

 

MOV Px.y, C

move carry bit to bit y of Port x

MOV P1.5, C

 

 

 

CLR Px.y

clear bit y of Port x

CLR P2.4

 

 

 

SET Px.y

set bit y of Port x

SET P3.3

 

 

 

It is not obvious the last three instructions in this list are Read-Modify-Write instructions. These instructions read the port (all 8 bits), modify the specifically addressed bit and write the new byte back to the latch. These Read-Modify-Write instructions are directed to the latch rather than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at the pin. For example, a Port bit used to drive the base of an external bipolar transistor can not rise above the transistor’s base-emitter junction voltage (a value lower than VIL). With a logic one written to the bit, attempts by the CPU to read the Port at the pin are misinterpreted as logic zero. A read of the latch rather than the pins returns the correct logic-one value.

Port 1, Port 2, Port 3 and Port 4 have fixed internal pull-ups and are referred to as "quasi-bidirectional" Ports. When configured as an input, the pin impedance appears as logic one and sources current in response to an external logic zero condition. Port 0 is a "true bidirectional" pin. The pins float when configured as input. Resets write logic one to all Port latches. If logical zero is subsequently written to a Port latch, it can be returned to input conditions by a logical one written to the latch.

Note: Port latch values change near the end of Read-Modify-Write instruction cycles. Output buffers (and therefore the pin state) update early in the instruction after Read-Modify- Write instruction cycle.

Logical zero-to-one transitions in Port 1, Port 2, Port 3 and Port 4 use an additional pullup (p1) to aid this logic transition (see Figure 4.). This increases switch speed. This extra pull-up sources 100 times normal internal circuit current during 2 oscillator clock periods. The internal pull-ups are field-effect transistors rather than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for two oscillator periods immediately after a zero-to-one transition in the Port latch. A logical one at the Port pin turns on pFET #3 (a weak pull-up) through the inverter. This inverter and pFET pair form a latch to drive logical one. pFET #2 is a very weak pull-up switched on whenever the associated nFET is switched off. This is traditional CMOS switch convention. Current strengths are 1/10 that of pFET #3.

6A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Figure 4. Internal Pull-Up Configurations

VCC VCC VCC

2 Osc. PERIODS

 

 

 

 

 

 

 

 

 

p1(1)

 

 

p2

 

 

p3

 

 

 

 

 

 

 

 

 

 

 

 

P1.x

P2.x

P3.x

P4.x

OUTPUT DATA

 

 

 

n

 

 

INPUT DATA

READ PIN

Note: Port 2 p1 assists the logic-one output for memory bus cycles.

7

4129N–CAN–03/08

SFR Mapping

The Special Function Registers (SFRs) of the T89C51CC01 fall into the following categories:

Table 2. C51 Core SFRs

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

ACC

E0h

Accumulator

 

 

 

 

 

 

 

 

 

 

 

B

F0h

B Register

 

 

 

 

 

 

 

 

 

 

 

PSW

D0h

Program Status Word

CY

AC

F0

RS1

RS0

OV

F1

P

 

 

 

 

 

 

 

 

 

 

 

SP

81h

Stack Pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Pointer Low

 

 

 

 

 

 

 

 

DPL

82h

byte

 

 

LSB of DPTR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Pointer High

 

 

 

 

 

 

 

 

DPH

83h

byte

 

 

MSB of DPTR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. I/O Port SFRs

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

P0

80h

Port 0

 

 

 

 

 

 

 

 

 

 

 

P1

90h

Port 1

 

 

 

 

 

 

 

 

 

 

 

P2

A0h

Port 2

 

 

 

 

 

 

 

 

 

 

 

P3

B0h

Port 3

 

 

 

 

 

 

 

 

 

 

 

P4

C0h

Port 4 (x2)

 

 

 

 

 

 

 

 

 

 

 

Table 4. Timers SFRs

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

TH0

8Ch

Timer/Counter 0 High

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TL0

8Ah

Timer/Counter 0 Low

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TH1

8Dh

Timer/Counter 1 High

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TL1

8Bh

Timer/Counter 1 Low

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TH2

CDh

Timer/Counter 2 High

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TL2

CCh

Timer/Counter 2 Low

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCON

88h

Timer/Counter 0 and

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

1 control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMOD

89h

Timer/Counter 0 and

GATE1

C/T1#

M11

M01

GATE0

C/T0#

M10

M00

1 Modes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Table 4. Timers SFRs (Continued)

 

 

 

 

 

 

 

 

Mnemonic

Add

Name

 

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

T2CON

C8h

Timer/Counter 2

 

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

C/T2#

CP/RL2#

control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2MOD

C9h

Timer/Counter 2

 

T2OE

DCEN

Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer/Counter 2

 

 

 

 

 

 

 

 

 

RCAP2H

CBh

Reload/Capture High

 

 

 

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer/Counter 2

 

 

 

 

 

 

 

 

 

RCAP2L

CAh

Reload/Capture Low

 

 

 

byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WDTRST

A6h

Watchdog Timer

 

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WDTPRG

A7h

Watchdog Timer

 

S2

S1

S0

Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Serial I/O Port SFRs

 

 

 

 

 

 

 

 

Mnemonic

Add

Name

 

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

SCON

98h

Serial Control

 

FE/SM0

SM1

SM2

REN

TB8

RB8

TI

RI

 

 

 

 

 

 

 

 

 

 

 

 

SBUF

99h

Serial Data Buffer

 

 

 

 

 

 

 

 

 

 

 

 

 

SADEN

B9h

Slave Address Mask

 

 

 

 

 

 

 

 

 

 

 

 

 

SADDR

A9h

Slave Address

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.

PCA SFRs

 

 

 

 

 

 

 

 

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

CCON

D8h

PCA Timer/Counter Control

CF

CR

CCF4

CCF3

CCF2

CCF1

CCF0

 

 

 

 

 

 

 

 

 

 

 

CMOD

D9h

PCA Timer/Counter Mode

CIDL

WDTE

CPS1

CPS0

ECF

 

 

 

 

 

 

 

 

 

 

 

CL

E9h

PCA Timer/Counter Low byte

 

 

 

 

 

 

 

 

 

 

 

CH

F9h

PCA Timer/Counter High byte

 

 

 

 

 

 

 

 

 

 

 

CCAPM0

DAh

PCA Timer/Counter Mode 0

 

ECOM0

CAPP0

CAPN0

MAT0

TOG0

PWM0

ECCF0

CCAPM1

DBh

PCA Timer/Counter Mode 1

 

ECOM1

CAPP1

CAPN1

MAT1

TOG1

PWM1

ECCF1

CCAPM2

DCh

PCA Timer/Counter Mode 2

ECOM2

CAPP2

CAPN2

MAT2

TOG2

PWM2

ECCF2

CCAPM3

DDh

PCA Timer/Counter Mode 3

 

ECOM3

CAPP3

CAPN3

MAT3

TOG3

PWM3

ECCF3

CCAPM4

DEh

PCA Timer/Counter Mode 4

 

ECOM4

CAPP4

CAPN4

MAT4

TOG4

PWM4

ECCF4

 

 

 

 

 

 

 

 

 

 

 

CCAP0H

FAh

PCA Compare Capture Module 0 H

CCAP0H7

CCAP0H6

CCAP0H5

CCAP0H4

CCAP0H3

CCAP0H2

CCAP0H1

CCAP0H0

CCAP1H

FBh

PCA Compare Capture Module 1 H

CCAP1H7

CCAP1H6

CCAP1H5

CCAP1H4

CCAP1H3

CCAP1H2

CCAP1H1

CCAP1H0

CCAP2H

FCh

PCA Compare Capture Module 2 H

CCAP2H7

CCAP2H6

CCAP2H5

CCAP2H4

CCAP2H3

CCAP2H2

CCAP2H1

CCAP2H0

CCAP3H

FDh

PCA Compare Capture Module 3 H

CCAP3H7

CCAP3H6

CCAP3H5

CCAP3H4

CCAP3H3

CCAP3H2

CCAP3H1

CCAP3H0

CCAP4H

FEh

PCA Compare Capture Module 4 H

CCAP4H7

CCAP4H6

CCAP4H5

CCAP4H4

CCAP4H3

CCAP4H2

CCAP4H1

CCAP4H0

 

 

 

 

 

 

 

 

 

 

 

9

4129N–CAN–03/08

Table 6. PCA SFRs (Continued)

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

CCAP0L

EAh

PCA Compare Capture Module 0 L

CCAP0L7

CCAP0L6

CCAP0L5

CCAP0L4

CCAP0L3

CCAP0L2

CCAP0L1

CCAP0L0

CCAP1L

EBh

PCA Compare Capture Module 1 L

CCAP1L7

CCAP1L6

CCAP1L5

CCAP1L4

CCAP1L3

CCAP1L2

CCAP1L1

CCAP1L0

CCAP2L

ECh

PCA Compare Capture Module 2 L

CCAP2L7

CCAP2L6

CCAP2L5

CCAP2L4

CCAP2L3

CCAP2L2

CCAP2L1

CCAP2L0

CCAP3L

EDh

PCA Compare Capture Module 3 L

CCAP3L7

CCAP3L6

CCAP3L5

CCAP3L4

CCAP3L3

CCAP3L2

CCAP3L1

CCAP3L0

CCAP4L

EEh

PCA Compare Capture Module 4 L

CCAP4L7

CCAP4L6

CCAP4L5

CCAP4L4

CCAP4L3

CCAP4L2

CCAP4L1

CCAP4L0

 

 

 

 

 

 

 

 

 

 

 

Table 7. Interrupt SFRs

 

 

 

 

 

 

 

 

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

IEN0

A8h

Interrupt Enable

EA

EC

ET2

ES

ET1

EX1

ET0

EX0

Control 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEN1

E8h

Interrupt Enable

ETIM

EADC

ECAN

Control 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPL0

B8h

Interrupt Priority

PPC

PT2

PS

PT1

PX1

PT0

PX0

Control Low 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPH0

B7h

Interrupt Priority

PPCH

PT2H

PSH

PT1H

PX1H

PT0H

PX0H

Control High 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPL1

F8h

Interrupt Priority

POVRL

PADCL

PCANL

Control Low 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPH1

F7h

Interrupt Priority

POVRH

PADCH

PCANH

Control High1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. ADC SFRs

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

ADCON

F3h

ADC Control

PSIDLE

ADEN

ADEOC

ADSST

SCH2

SCH1

SCH0

 

 

 

 

 

 

 

 

 

 

 

ADCF

F6h

ADC Configuration

CH7

CH6

CH5

CH4

CH3

CH2

CH1

CH0

 

 

 

 

 

 

 

 

 

 

 

ADCLK

F2h

ADC Clock

PRS4

PRS3

PRS2

PRS1

PRS0

 

 

 

 

 

 

 

 

 

 

 

ADDH

F5h

ADC Data High byte

ADAT9

ADAT8

ADAT7

ADAT6

ADAT5

ADAT4

ADAT3

ADAT2

 

 

 

 

 

 

 

 

 

 

 

ADDL

F4h

ADC Data Low byte

ADAT1

ADAT0

 

 

 

 

 

 

 

 

 

 

 

Table 9. CAN SFRs

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

CANGCON

ABh

CAN General

ABRQ

OVRQ

TTC

SYNCTTC

AUT–

TEST

ENA

GRES

Control

BAUD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANGSTA

AAh

CAN General

OVFG

TBSY

RBSY

ENFG

BOFF

ERRP

Status

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANGIT

9Bh

CAN General

CANIT

OVRTIM

OVRBUF

SERG

CERG

FERG

AERG

Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANBT1

B4h

CAN Bit Timing 1

BRP5

BRP4

BRP3

BRP2

BRP1

BRP0

 

 

 

 

 

 

 

 

 

 

 

CANBT2

B5h

CAN Bit Timing 2

SJW1

SJW0

PRS2

PRS1

PRS0

 

 

 

 

 

 

 

 

 

 

 

CANBT3

B6h

CAN Bit Timing 3

PHS22

PHS21

PHS20

PHS12

PHS11

PHS10

SMP

 

 

 

 

 

 

 

 

 

 

 

10 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Table 9. CAN SFRs (Continued)

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

CANEN1

CEh

CAN Enable

ENCH14

ENCH13

ENCH12

ENCH11

ENCH10

ENCH9

ENCH8

Channel byte 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANEN2

CFh

CAN Enable

ENCH7

ENCH6

ENCH5

ENCH4

ENCH3

ENCH2

ENCH1

ENCH0

Channel byte 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANGIE

C1h

CAN General

ENRX

ENTX

ENERCH

ENBUF

ENERG

Interrupt Enable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Interrupt

 

 

 

 

 

 

 

 

CANIE1

C2h

Enable Channel

IECH14

IECH13

IECH12

IECH11

IECH10

IECH9

IECH8

 

 

byte 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Interrupt

 

 

 

 

 

 

 

 

CANIE2

C3h

Enable Channel

IECH7

IECH6

IECH5

IECH4

IECH3

IECH2

IECH1

IECH0

 

 

byte 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Status

 

 

 

 

 

 

 

 

CANSIT1

BAh

Interrupt Channel

SIT14

SIT13

SIT12

SIT11

SIT10

SIT9

SIT8

 

 

byte1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Status

 

 

 

 

 

 

 

 

CANSIT2

BBh

Interrupt Channel

SIT7

SIT6

SIT5

SIT4

SIT3

SIT2

SIT1

SIT0

 

 

byte2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANTCON

A1h

CAN Timer

TPRESC 7

TPRESC 6

TPRESC 5

TPRESC 4

TPRESC 3

TPRESC 2

TPRESC 1

TPRESC 0

Control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANTIMH

ADh

CAN Timer high

CANTIM

CANTIM

CANTIM

CANTIM

CANTIM

CANTIM

CANTIM

CANTIM

15

14

13

12

11

10

9

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANTIML

ACh

CAN Timer low

CANTIM 7

CANTIM 6

CANTIM 5

CANTIM 4

CANTIM 3

CANTIM 2

CANTIM 1

CANTIM 0

 

 

 

 

 

 

 

 

 

 

 

CANSTMH

AFh

CAN Timer Stamp

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

high

15

14

13

12

11

10

9

8

 

 

 

 

 

 

 

 

 

 

 

 

 

CANSTML

AEh

CAN Timer Stamp

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

TIMSTMP

low

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

CANTTCH

A5h

CAN Timer TTC

TIMTTC 15

TIMTTC 14

TIMTTC 13

TIMTTC 12

TIMTTC 11

TIMTTC 10

TIMTTC 9

TIMTTC 8

high

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANTTCL

A4h

CAN Timer TTC

TIMTTC

TIMTTC

TIMTTC

TIMTTC

TIMTTC

TIMTTC

TIMTTC

TIMTTC

low

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

CANTEC

9Ch

CAN Transmit

TEC7

TEC6

TEC5

TEC4

TEC3

TEC2

TEC1

TEC0

Error Counter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANREC

9Dh

CAN Receive

REC7

REC6

REC5

REC4

REC3

REC2

REC1

REC0

Error Counter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANPAGE

B1h

CAN Page

CHNB3

CHNB2

CHNB1

CHNB0

AINC

INDX2

INDX1

INDX0

 

 

 

 

 

 

 

 

 

 

 

CANSTCH

B2h

CAN Status

DLCW

TXOK

RXOK

BERR

SERR

CERR

FERR

AERR

Channel

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANCONH

B3h

CAN Control

CONCH1

CONCH0

RPLV

IDE

DLC3

DLC2

DLC1

DLC0

Channel

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANMSG

A3h

CAN Message

MSG7

MSG6

MSG5

MSG4

MSG3

MSG2

MSG1

MSG0

Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

4129N–CAN–03/08

Table 9. CAN SFRs (Continued)

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier Tag

IDT10

IDT9

IDT8

IDT7

IDT6

IDT5

IDT4

IDT3

 

 

byte 1(Part A)

 

 

 

 

 

 

 

 

 

 

CANIDT1

BCh

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier Tag

IDT28

IDT27

IDT26

IDT25

IDT24

IDT23

IDT22

IDT21

 

 

byte 1(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier Tag

IDT2

IDT1

IDT0

 

 

byte 2 (PartA)

CANIDT2

BDh

 

 

 

 

 

 

 

 

CAN Identifier Tag

 

 

 

 

 

 

 

 

 

 

IDT20

IDT19

IDT18

IDT17

IDT16

IDT15

IDT14

IDT13

 

 

byte 2 (PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier Tag

 

 

byte 3(PartA)

CANIDT3

BEh

 

 

 

 

 

 

 

 

CAN Identifier Tag

 

 

 

 

 

 

 

 

 

 

IDT12

IDT11

IDT10

IDT9

IDT8

IDT7

IDT6

IDT5

 

 

byte 3(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier Tag

RTRTAG

RB0TAG

 

 

byte 4(PartA)

 

 

 

 

 

 

 

 

CANIDT4

BFh

 

 

 

 

 

 

 

 

CAN Identifier Tag

 

 

 

 

 

 

 

 

 

 

IDT4

IDT3

IDT2

IDT1

IDT0

RB1TAG

 

 

byte 4(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

Mask byte

IDMSK10

IDMSK9

IDMSK8

IDMSK7

IDMSK6

IDMSK5

IDMSK4

IDMSK3

 

 

1(PartA)

CANIDM1

C4h

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

IDMSK28

IDMSK27

IDMSK26

IDMSK25

IDMSK24

IDMSK23

IDMSK22

IDMSK21

 

 

Mask byte

 

 

 

 

 

 

 

 

 

 

 

 

1(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

Mask byte

IDMSK2

IDMSK1

IDMSK0

 

 

2(PartA)

CANIDM2

C5h

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

IDMSK20

IDMSK19

IDMSK18

IDMSK17

IDMSK16

IDMSK15

IDMSK14

IDMSK13

 

 

Mask byte

 

 

 

 

 

 

 

 

 

 

 

 

2(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

Mask byte

 

 

3(PartA)

CANIDM3

C6h

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

IDMSK12

IDMSK11

IDMSK10

IDMSK9

IDMSK8

IDMSK7

IDMSK6

IDMSK5

 

 

Mask byte

 

 

 

 

 

 

 

 

 

 

 

 

3(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

Mask byte

RTRMSK

IDEMSK

 

 

4(PartA)

 

 

 

 

 

 

 

CANIDM4

C7h

 

 

 

 

 

 

 

 

CAN Identifier

 

 

 

 

 

 

 

 

 

 

IDMSK4

IDMSK3

IDMSK2

IDMSK1

IDMSK0

 

 

 

Mask byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4(PartB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10.

Other SFRs

 

 

 

 

 

 

 

 

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

PCON

87h

Power Control

SMOD1

SMOD0

POF

GF1

GF0

PD

IDL

 

 

 

 

 

 

 

 

 

 

 

AUXR

8Eh

Auxiliary Register 0

M0

XRS1

XRS2

EXTRAM

A0

 

 

 

 

 

 

 

 

 

 

 

AUXR1

A2h

Auxiliary Register 1

ENBOOT

GF3

0

DPS

 

 

 

 

 

 

 

 

 

 

 

CKCON

8Fh

Clock Control

CANX2

WDX2

PCAX2

SIX2

T2X2

T1X2

T0X2

X2

 

 

 

 

 

 

 

 

 

 

 

12 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Table 10.

Other SFRs

 

 

 

 

 

 

 

 

Mnemonic

Add

Name

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

FCON

D1h

Flash Control

FPL3

FPL2

FPL1

FPL0

FPS

FMOD1

FMOD0

FBUSY

 

 

 

 

 

 

 

 

 

 

 

EECON

D2h

EEPROM Contol

EEPL3

EEPL2

EEPL1

EEPL0

EEE

EEBUSY

 

 

 

 

 

 

 

 

 

 

 

Table 11. SFR Mapping

 

0/8(1)

1/9

2/A

3/B

4/C

5/D

6/E

7/F

 

 

 

 

 

 

 

 

 

F8h

IPL1

CH

CCAP0H

CCAP1H

CCAP2H

CCAP3H

CCAP4H

 

xxxx x000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

F0h

B

 

ADCLK

ADCON

ADDL

ADDH

ADCF

IPH1

0000 0000

 

xxx0 0000

x000 0000

0000 0000

0000 0000

0000 0000

xxxx x000

 

 

 

 

 

 

 

 

 

 

 

E8h

IEN1

CL

CCAP0L

CCAP1L

CCAP2L

CCAP3L

CCAP4L

 

xxxx x000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

E0h

ACC

 

 

 

 

 

 

 

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D8h

CCON

CMOD

CCAPM0

CCAPM1

CCAPM2

CCAPM3

CCAPM4

 

00x0 0000

00xx x000

x000 0000

x000 0000

x000 0000

x000 0000

x000 0000

 

 

 

 

 

 

 

 

 

 

 

 

D0h

PSW

FCON

EECON

 

 

 

 

 

0000 0000

0000 0000

xxxx xx00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C8h

T2CON

T2MOD

RCAP2L

RCAP2H

TL2

TH2

CANEN1

CANEN2

0000 0000

xxxx xx00

0000 0000

0000 0000

0000 0000

0000 0000

x000 0000

0000 0000

 

 

 

 

 

 

 

 

 

 

C0h

P4

CANGIE

CANIE1

CANIE2

CANIDM1

CANIDM2

CANIDM3

CANIDM4

xxxx xx11

1100 0000

x000 0000

0000 0000

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

 

 

 

 

 

 

 

 

 

 

B8h

IPL0

SADEN

CANSIT1

CANSIT2

CANIDT1

CANIDT2

CANIDT3

CANIDT4

x000 0000

0000 0000

x000 0000

0000 0000

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

 

 

 

 

 

 

 

 

 

 

B0h

P3

CANPAGE

CANSTCH

CANCONCH

CANBT1

CANBT2

CANBT3

IPH0

1111 1111

0000 0000

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

x000 0000

 

 

 

 

 

 

 

 

 

 

A8h

IEN0

SADDR

CANGSTA

CANGCON

CANTIML

CANTIMH

CANSTMPL

CANSTMPH

0000 0000

0000 0000

1010 0000

0000 0000

0000 0000

0000 0000

xxxx xxxx

xxxx xxxx

 

 

 

 

 

 

 

 

 

 

A0h

P2

CANTCON

AUXR1

CANMSG

CANTTCL

CANTTCH

WDTRST

WDTPRG

1111 1111

0000 0000

xxxx 00x0

xxxx xxxx

0000 0000

0000 0000

1111 1111

xxxx x000

 

 

 

 

 

 

 

 

 

 

98h

SCON

SBUF

 

CANGIT

CANTEC

CANREC

 

 

0000 0000

0000 0000

 

0x00 0000

0000 0000

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90h

P1

 

 

 

 

 

 

 

1111 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88h

TCON

TMOD

TL0

TL1

TH0

TH1

AUXR

CKCON

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

x00x 1100

0000 0000

 

 

 

 

 

 

 

 

 

 

80h

P0

SP

DPL

DPH

 

 

 

PCON

1111 1111

0000 0111

0000 0000

0000 0000

 

 

 

00x1 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0/8(1)

1/9

2/A

3/B

4/C

5/D

6/E

7/F

FFh

F7h

EFh

E7h

DFh

D7h

CFh

C7h

BFh

B7h

AFh

A7h

9Fh

97h

8Fh

87h

Reserved

Note: 1. These registers are bitaddressable.

Sixteen addresses in the SFR space are both byteaddressable and bitaddressable. The bitaddressable SFR’s are those whose address ends in 0 and 8. The bit addresses, in this area, are 0x80 through to 0xFF.

13

4129N–CAN–03/08

Clock

The T89C51CC01 core needs only 6 clock periods per machine cycle. This feature, called ”X2”, provides the following advantages:

Divides frequency crystals by 2 (cheaper crystals) while keeping the same CPU power.

Saves power consumption while keeping the same CPU power (oscillator power saving).

Saves power consumption by dividing dynamic operating frequency by 2 in operating and idle modes.

Increases CPU power by 2 while keeping the same crystal frequency.

 

In order to keep the original C51 compatibility, a divider-by-2 is inserted between the

 

XTAL1 signal and the main clock input of the core (phase generator). This divider may

 

be disabled by the software.

 

An extra feature is available to start after Reset in the X2 mode. This feature can be

 

enabled by a bit X2B in the Hardware Security Byte. This bit is described in the section

 

"In-System-Programming".

Description

The X2 bit in the CKCON register (see Table 12) allows switching from 12 clock cycles

 

per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated

 

(STD mode).

 

Setting this bit activates the X2 feature (X2 mode) for the CPU Clock only (see Figure

 

5.).

 

The Timers 0, 1 and 2, Uart, PCA, Watchdog or CAN switch in X2 mode only if the cor-

 

responding bit is cleared in the CKCON register.

 

The clock for the whole circuit and peripheral is first divided by two before being used by

 

the CPU core and peripherals. This allows any cyclic ratio to be accepted on the XTAL1

 

input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic

 

ratio between 40 to 60%. Figure 5. shows the clock generation block diagram. The X2

 

bit is validated on the XTAL1 2 rising edge to avoid glitches when switching from the X2

 

to the STD mode. Figure 6 shows the mode switching waveforms.

14 A/T89C51CC01

4129N–CAN–03/08

ATMEL AT89C51CC01 User Manual

A/T89C51CC01

Figure 5. Clock CPU Generation Diagram

 

X2B

 

 

PCON.0

 

 

 

Hardware byte

On RESET

IDL

 

 

 

 

 

 

 

 

 

X2

 

 

 

CKCON.0

 

 

XTAL1

2

0

CPU Core

 

Clock

 

 

 

 

 

1

 

XTAL2

 

 

 

 

 

 

CPU

 

 

 

CLOCK

PD

CPU Core Clock Symbol

PCON.1

and ADC

 

 

 

 

 

 

2

1

 

 

 

 

 

 

 

FT0 Clock

 

 

 

 

 

 

 

0

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

FT1 Clock

 

 

 

 

 

 

0

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

FT2 Clock

 

 

 

 

 

0

 

 

 

 

 

2

1

 

 

FUart Clock

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

 

 

FPca Clock

 

 

 

0

 

 

 

 

 

2

1

 

 

 

 

FWd Clock

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

2

1

 

 

 

 

 

FCan Clock

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

PERIPH

X2

 

 

 

 

 

 

CLOCK

 

 

 

 

 

 

 

CKCON.0

 

 

 

 

 

 

 

Peripheral Clock Symbol

CANX2

WDX2

PCAX2

SIX2

T2X2

T1X2

T0X2

CKCON.7

CKCON.6

CKCON.5

CKCON.4

CKCON.3

CKCON.2

CKCON.1

15

4129N–CAN–03/08

Figure 6. Mode Switching Waveforms

XTAL1

 

 

XTAL1/2

 

 

X2 bit

 

 

CPU clock

 

 

STD Mode

X2 Mode

STD Mode

Note: In order to prevent any incorrect operation while operating in the X2 mode, users must be aware that all peripherals using the clock frequency as a time reference (UART, timers...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. A UART with a 4800 baud rate will have a 9600 baud rate.

16 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Register

Table 12.

CKCON Register

 

 

 

 

 

 

 

 

 

CKCON (S:8Fh)

 

 

 

 

 

 

 

 

 

 

 

Clock Control Register

 

 

 

 

 

 

 

 

 

7

 

6

5

 

4

 

3

 

2

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANX2

WDX2

PCAX2

 

SIX2

 

T2X2

 

T1X2

 

T0X2

X2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

 

Bit

 

 

 

 

 

 

 

 

 

 

 

Number

Mnemonic

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN clock (1)

 

 

 

 

 

 

 

 

 

7

 

CANX2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Watchdog clock (1)

 

 

 

 

 

 

 

6

 

WDX2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programmable Counter Array clock (1)

 

 

 

 

 

5

 

PCAX2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhanced UART clock (MODE 0 and 2) (1)

 

 

 

 

 

4

 

SIX2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 clock (1)

 

 

 

 

 

 

 

 

 

3

 

T2X2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 1 clock (1)

 

 

 

 

 

 

 

 

 

2

 

T1X2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 0 clock (1)

 

 

 

 

 

 

 

 

 

1

 

T0X2

Clear to select 6 clock periods per peripheral clock cycle.

 

 

 

 

 

 

Set to select 12 clock periods per peripheral clock cycle.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU clock

 

 

 

 

 

 

 

 

 

 

 

 

Clear to select 12 clock periods per machine cycle (STD mode) for CPU and all

 

0

 

X2

the peripherals.

 

 

 

 

 

 

 

 

 

 

 

 

Set to select 6 clock periods per machine cycle (X2 mode) and to enable the

 

 

 

 

individual peripherals "X2"bits.

 

 

 

 

 

 

 

 

 

 

 

 

Note:

1.

This control bit is validated when the CPU clock bit X2 is set; when X2 is low, this bit

 

 

 

has no effect.

 

 

 

 

 

 

 

 

Reset Value = 0000 0000b

17

4129N–CAN–03/08

Power Management

Reset Pin

Two power reduction modes are implemented in the T89C51CC01: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 Mode detailed in Section “Clock”.

In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, a high level has to be applied on the RST pin. A bad level leads to a wrong initialisation of the internal registers like SFRs, PC, etc. and to unpredictable behavior of the microcontroller. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as a watchdog, PCA, timer, etc.

At Power-up (Cold Reset) Two conditions are required before enabling a CPU start-up:

VDD must reach the specified VDD range,

The level on xtal1 input must be outside the specification (VIH, VIL).

If one of these two conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be maintained until both of the above conditions are met. A reset is active when the level VIH1 is reached and when the pulse width covers the period of time where VDD and the oscillator are not stabilized. Two parameters have to be taken into account to determine the reset pulse width:

VDD rise time (vddrst),

Oscillator startup time (oscrst).

To determine the capacitor the highest value of these two parameters has to be chosen.

The reset circuitry is shown in Figure 7.

Figure 7. Reset Circuitry

VDD

Crst

RST pin

Internal reset

Rrst

Reset input circuitry

0

Table 13 and Table 15 give some typical examples for three values of VDD rise times, two values of oscillator start-up time and two pull-down resistor values.

Table 13. Minimum Reset Capacitor for a 15k Pull-down Resistor

oscrst/vddrst

1ms

10ms

100ms

 

 

 

 

5ms

2.7µF

4.7µF

47µF

 

 

 

 

20ms

10µF

15µF

47µF

 

 

 

 

Note: These values assume VDD starts from 0v to the nominal value. If the time between two on/off sequences is too fast, the power-supply de coupling capacitors may not be fully discharged, leading to a bad reset sequence.

18 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Warm Reset

To achieve a valid reset, the reset signal must be maintained for at least 2 machine

 

cycles (24 oscillator clock periods) while the oscillator is running. The number of clock

 

periods is mode independent (X2 or X1).

Watchdog Reset

As detailed in Section “PCA Watchdog Timer”, page 123, the WDT generates a 96-clock

 

period pulse on the RST pin. In order to properly propagate this pulse to the rest of the

 

application in case of external capacitor or power-supply supervisor circuit, a 1KΩ resis-

 

tor must be added as shown Figure 8.

 

Figure 8. Reset Circuitry for WDT reset out usage

VDD

+

 

 

 

 

 

 

 

 

 

 

RST

 

 

 

 

 

 

 

To CPU core

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and peripherals

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RST

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To other

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on-board

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

circuitry

Reset Recommendation to Prevent Flash Corruption

Idle Mode

An example of bad initialization situation may occur in an instance where the bit ENBOOT in AUXR1 register is initialized from the hardware bit BLJB upon reset. Since this bit allows mapping of the bootloader in the code area, a reset failure can be critical.

If one wants the ENBOOT cleared in order to unmap the boot from the code area (yet due to a bad reset) the bit ENBOOT in SFRs may be set. If the value of Program Counter is accidently in the range of the boot memory addresses then a flash access (write or erase) may corrupt the Flash on-chip memory.

It is recommended to use an external reset circuitry featuring power supply monitoring to prevent system malfunction during periods of insufficient power supply voltage (power supply failure, power supply switched off).

Idle mode is a power reduction mode that reduces the power consumption. In this mode, program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked. The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained. The status of the Port pins during Idle mode is detailed in Table 14.

Entering Idle Mode

To enter Idle mode, you must set the IDL bit in PCON register (see Table 15). The

 

T89C51CC01 enters Idle mode upon execution of the instruction that sets IDL bit. The

 

instruction that sets IDL bit is the last instruction executed.

 

Note: If IDL bit and PD bit are set simultaneously, the T89C51CC01 enters Power-down mode.

 

Then it does not go in Idle mode when exiting Power-down mode.

Exiting Idle Mode

There are two ways to exit Idle mode:

 

1. Generate an enabled interrupt.

 

– Hardware clears IDL bit in PCON register which restores the clock to the

 

CPU. Execution resumes with the interrupt service routine. Upon completion

 

 

 

 

 

19

 

 

 

 

 

4129N–CAN–03/08

 

 

 

 

 

 

 

 

of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Idle mode. The general-purpose flags (GF1 and GF0 in PCON register) may be used to indicate whether an interrupt occurred during normal operation or during Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine GF1 and GF0.

2.Generate a reset.

A logic high on the RST pin clears IDL bit in PCON register directly and asynchronously. This restores the clock to the CPU. Program execution momentarily resumes with the instruction immediately following the instruction that activated the Idle mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the T89C51CC01 and vectors the CPU to address C:0000h.

Note:

1.

During the time that execution resumes, the internal RAM cannot be accessed; how-

 

 

ever, it is possible for the Port pins to be accessed. To avoid unexpected outputs at

 

 

the Port pins, the instruction immediately following the instruction that activated Idle

 

 

mode should not write to a Port pin or to the external RAM.

 

2.

If Idle mode is invoked by ADC Idle, the ADC conversion completion will exit Idle.

Power-down Mode

The Power-down mode places the T89C51CC01 in a very low power state. Power-down mode stops the oscillator and freezes all clocks at known states. The CPU status prior to entering Power-down mode is preserved, i.e., the program counter, program status word register retain their data for the duration of Power-down mode. In addition, the SFRs and RAM contents are preserved. The status of the Port pins during Power-down mode is detailed in Table 14.

Entering Power-down Mode To enter Power-down mode, set PD bit in PCON register. The T89C51CC01 enters the Power-down mode upon execution of the instruction that sets PD bit. The instruction that sets PD bit is the last instruction executed.

Exiting Power-down Mode If VDD was reduced during the Power-down mode, do not exit Power-down mode until VDD is restored to the normal operating level.

There are two ways to exit the Power-down mode:

1.Generate an enabled external interrupt.

The T89C51CC01 provides capability to exit from Power-down using INT0#, INT1#.

Hardware clears PD bit in PCON register which starts the oscillator and restores the clocks to the CPU and peripherals. Using INTx# input, execution resumes when the input is released (see Figure 9) while using KINx input, execution resumes after counting 1024 clock ensuring the oscillator is restarted properly (see Figure 8). Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-down mode.

Note: 1. The external interrupt used to exit Power-down mode must be configured as level sensitive (INT0# and INT1#) and must be assigned the highest priority. In addition, the duration of the interrupt must be long enough to allow the oscillator to stabilize. The execution will only resume when the interrupt is deasserted.

2.Exit from power-down by external interrupt does not affect the SFRs nor the internal RAM content.

20 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Figure 9. Power-down Exit Waveform Using INT1:0#

INT1:0#

OSC

Active phase Power-down phaseOscillator restart phase Active phase

2.Generate a reset.

A logic high on the RST pin clears PD bit in PCON register directly and asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals. Program execution momentarily resumes with the instruction immediately following the instruction that activated Power-down mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the T89C51CC01 and vectors the CPU to address 0000h.

Notes: 1. During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated the Power-down mode should not write to a Port pin or to the external RAM.

2.Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Table 14. Pin Conditions in Special Operating Modes

Mode

Port 0

Port 1

Port 2

Port 3

Port 4

ALE

PSEN#

 

 

 

 

 

 

 

 

Reset

Floating

High

High

High

High

High

High

 

 

 

 

 

 

 

 

Idle

 

 

 

 

 

 

 

(internal

Data

Data

Data

Data

Data

High

High

code)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle

 

 

 

 

 

 

 

(external

Floating

Data

Data

Data

Data

High

High

code)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-

 

 

 

 

 

 

 

Down(inter

Data

Data

Data

Data

Data

Low

Low

nal code)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-

 

 

 

 

 

 

 

Down

Floating

Data

Data

Data

Data

Low

Low

(external

 

 

 

 

 

 

 

code)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

21

4129N–CAN–03/08

Registers

Table 15.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCON Register

 

 

 

 

 

 

 

 

 

 

PCON (S:87h) – Power configuration Register

 

 

 

 

 

 

 

7

6

5

 

 

 

 

4

 

3

 

2

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMOD1

SMOD0

-

 

 

 

 

POF

 

GF1

 

GF0

 

PD

IDL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

Bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number

Mnemonic

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

SMOD1

Serial port Mode bit 1

 

 

 

 

 

 

 

Set to select double baud rate in mode 1, 2 or 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial port Mode bit 0

 

 

 

 

 

 

 

6

SMOD0

Clear to select SM0 bit in SCON register.

 

 

 

 

 

 

 

Set to select FE bit in SCON register.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

-

Reserved

 

 

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-Off Flag

 

 

 

 

 

 

 

 

 

 

4

POF

Clear to recognize next reset type.

 

 

 

 

 

Set by hardware when Vcc rises from 0 to its nominal voltage. Can also be set by

 

 

 

 

 

 

software.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General-purpose flag 1

 

 

 

 

 

 

 

3

GF1

One use is to indicate whether an interrupt occurred during normal operation or

 

 

 

during Idle mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General-purpose flag 0

 

 

 

 

 

 

 

2

GF0

One use is to indicate whether an interrupt occurred during normal operation or

 

 

 

during Idle mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-down Mode bit

 

 

 

 

 

 

 

1

PD

Cleared by hardware when an interrupt or reset occurs.

 

 

 

Set to activate the Power-down mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If IDL and PD are both set, PD takes precedence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle Mode bit

 

 

 

 

 

 

 

 

 

 

0

IDL

Cleared by hardware when an interrupt or reset occurs.

 

 

 

Set to activate the Idle mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If IDL and PD are both set, PD takes precedence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = 00X1 0000b

 

 

 

 

 

 

 

 

 

22 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

Data Memory

The T89C51CC01 provides data memory access in two different spaces:

1.The internal space mapped in three separate segments:

• the lower 128 Bytes RAM segment.

• the upper 128 Bytes RAM segment.

• the expanded 1024 Bytes RAM segment (XRAM).

2.The external space.

A fourth internal segment is available but dedicated to Special Function Registers, SFRs, (addresses 80h to FFh) accessible by direct addressing mode.

Figure 11 shows the internal and external data memory spaces organization.

Figure 10. Internal Memory - RAM

FFh

Upper

FFh

Special

 

 

 

128 Bytes

 

Function

 

Internal RAM

 

Registers

 

indirect addressing

 

direct addressing

80h

 

80h

 

7Fh

 

 

 

Lower

 

 

 

 

 

 

128 Bytes

 

 

 

Internal RAM

 

 

 

direct or indirect

 

 

00h

addressing

 

 

 

 

 

Figure 11. Internal and External Data Memory Organization XRAM-XRAM

FFFFh

64K Bytes

External XRAM

 

 

FFh or

 

3FFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

256 up to 1024 Bytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal XRAM

 

 

 

EXTRAM = 1

00h

EXTRAM = 0

 

 

0000h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

 

 

External

 

 

 

 

 

 

 

 

 

 

 

 

 

23

4129N–CAN–03/08

Internal Space

Lower 128 Bytes RAM

The lower 128 Bytes of RAM (see Figure 11) are accessible from address 00h to 7Fh

 

using direct or indirect addressing modes. The lowest 32 Bytes are grouped into 4

 

banks of 8 registers (R0 to R7). Two bits RS0 and RS1 in PSW register (see Figure 18)

 

select which bank is in use according to Table 16. This allows more efficient use of code

 

space, since register instructions are shorter than instructions that use direct address-

 

ing, and can be used for context switching in interrupt service routines.

 

Table 16. Register Bank Selection

 

 

 

 

 

 

RS1

RS0

Description

 

 

 

 

 

0

0

Register bank 0 from 00h to 07h

 

 

 

 

 

0

1

Register bank 0 from 08h to 0Fh

 

 

 

 

 

1

0

Register bank 0 from 10h to 17h

 

 

 

 

 

1

1

Register bank 0 from 18h to 1Fh

 

 

 

 

The next 16 Bytes above the register banks form a block of bit-addressable memory space. The C51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00h to 7Fh.

Figure 12. Lower 128 Bytes Internal RAM Organization

7Fh

 

 

30h

 

 

 

 

2Fh

 

Bit-Addressable Space

 

 

 

 

 

 

20h

 

(Bit Addresses 0-7Fh)

 

 

 

 

 

 

 

 

 

1Fh

 

 

 

 

18h

 

 

 

 

17h

 

4 Banks of

 

 

10h

 

8 Registers

 

 

0Fh

 

 

 

 

R0-R7

 

 

08h

 

 

 

 

 

 

 

07h

 

 

Upper 128 Bytes RAM

 

00h

 

 

The upper 128 Bytes of RAM are accessible from address 80h to FFh using only indirect

 

addressing mode.

 

 

Expanded RAM

The on-chip 1024 Bytes of expanded RAM (XRAM) are accessible from address 0000h

 

to 03FFh using indirect addressing mode through MOVX instructions. In this address

 

range, the bit EXTRAM in AUXR register is used to select the XRAM (default) or the

 

XRAM. As shown in Figure 11 when EXTRAM = 0, the XRAM is selected and when

 

EXTRAM = 1, the XRAM is selected.

 

 

The size of XRAM can be configured by XRS1-0 bit in AUXR register (default size is 1024 Bytes).

Note: Lower 128 Bytes RAM, Upper 128 Bytes RAM, and expanded RAM are made of volatile memory cells. This means that the RAM content is indeterminate after power-up and must then be initialized properly.

24 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

External Space

Memory Interface

External Bus Cycles

The external memory interface comprises the external bus (port 0 and port 2) as well as the bus control signals (RD, WR, and ALE).

Figure 13 shows the structure of the external address bus. P0 carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 17 describes the external memory interface signals.

Figure 13. External Data Memory Interface Structure

T89C51CC01

 

RAM

 

PERIPHERAL

 

 

P2

A15:8

A15:8

 

ALE

 

 

AD7:0

Latch

A7:0

P0

 

A7:0

 

 

D7:0

RD

 

OE

WR

 

WR

Table 17. External Data Memory Interface Signals

Signal

 

 

Alternative

Name

Type

Description

Function

 

 

 

 

 

 

A15:8

O

Address Lines

P2.7:0

Upper address lines for the external bus.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address/Data Lines

 

AD7:0

I/O

Multiplexed lower address lines and data for the external

P0.7:0

 

 

 

 

memory.

 

 

 

 

 

 

 

 

 

 

 

Address Latch Enable

 

ALE

O

ALE signals indicates that valid address information are available

-

 

 

 

 

on lines AD7:0.

 

 

 

 

 

 

 

 

 

 

 

Read

 

 

RD

O

P3.7

 

Read signal output to external data memory.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Write

 

 

WR

O

P3.6

 

Write signal output to external memory.

 

 

 

 

 

 

 

 

 

 

 

This section describes the bus cycles the T89C51CC01 executes to read (see Figure 14), and write data (see Figure 15) in the external data memory.

External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator clock period in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2 mode.

Slow peripherals can be accessed by stretching the read and write cycles. This is done using the M0 bit in AUXR register. Setting this bit changes the width of the RD and WR signals from 3 to 15 CPU clock periods.

For simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not provide precise timing information. For bus cycle timing parameters refer to the Section “AC Characteristics”.

25

4129N–CAN–03/08

Figure 14. External Data Read Waveforms

CPU Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPL or Ri

 

 

 

 

 

 

 

 

 

D7:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

 

 

DPH or P22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 1.

RD signal may be stretched using M0 bit in AUXR register.

 

 

 

 

 

 

 

 

 

 

 

2.

When executing MOVX @Ri instruction, P2 outputs SFR content.

 

 

 

 

 

 

 

 

 

 

 

Figure 15. External Data Write Waveforms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPL or Ri

 

 

 

 

D7:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

DPH or P22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 1.

WR signal may be stretched using M0 bit in AUXR register.

 

 

 

 

 

 

 

 

 

 

 

2.

When executing MOVX @Ri instruction, P2 outputs SFR content.

 

 

 

 

 

 

 

 

 

 

 

26 A/T89C51CC01

4129N–CAN–03/08

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A/T89C51CC01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dual Data Pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description

The T89C51CC01 implements a second data pointer for speeding up code execution

 

 

and reducing code size in case of intensive usage of external memory accesses.

 

 

DPTR 0 and DPTR 1 are seen by the CPU as DPTR and are accessed using the SFR

 

 

addresses 83h and 84h that are the DPH and DPL addresses. The DPS bit in AUXR1

 

 

register (see Figure 20) is used to select whether DPTR is the data pointer 0 or the data

 

 

pointer 1 (see Figure 16).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Dual Data Pointer Implementation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPL0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPL1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPTR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR1.0

 

 

DPTR

 

 

 

DPTR1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPH0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application

 

 

 

 

 

 

 

 

DPH1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software can take advantage of the additional data pointers to both increase speed and

 

 

reduce code size, for example, block operations (copy, compare…) are well served by

 

 

using one data pointer as a “source” pointer and the other one as a “destination” pointer.

Hereafter is an example of block move implementation using the two pointers and coded in assembler. The latest C compiler takes also advantage of this feature by providing enhanced algorithm libraries.

The INC instruction is a short (2 Bytes) and fast (6 machine cycle) way to manipulate the DPS bit in the AUXR1 register. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry.

;ASCII block move using dual data pointers

;Modifies DPTR0, DPTR1, A and PSW

;Ends when encountering NULL character

;Note: DPS exits opposite to the entry state unless an extra INC AUXR1 is added

AUXR1EQU0A2h

move:movDPTR,#SOURCE ; address of SOURCE incAUXR1 ; switch data pointers movDPTR,#DEST ; address of DEST

mv_loop:incAUXR1; switch data pointers movxA,@DPTR; get a byte from SOURCE incDPTR; increment SOURCE address incAUXR1; switch data pointers movx@DPTR,A; write the byte to DEST incDPTR; increment DEST address jnzmv_loop; check for NULL terminator

end_move:

27

4129N–CAN–03/08

Registers

Table 18.

PSW Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSW (S:D0h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Status Word Register

 

 

 

 

 

 

 

 

 

 

 

 

7

6

 

5

 

4

 

3

 

2

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CY

AC

 

F0

 

 

RS1

 

RS0

 

OV

F1

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

Bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number

Mnemonic

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

CY

Carry Flag

 

 

 

 

 

 

 

Carry out from bit 1 of ALU operands.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

AC

Auxiliary Carry Flag

 

 

 

 

 

 

 

Carry out from bit 1 of addition operands.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

F0

User Definable Flag 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-3

RS1:0

Register Bank Select Bits

 

 

 

 

 

 

 

Refer to Table 16 for bits description.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

OV

Overflow Flag

 

 

 

 

 

 

 

Overflow set by arithmetic operations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

F1

User Definable Flag 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parity Bit

 

 

 

 

 

 

 

 

 

 

 

 

0

P

Set when ACC contains an odd number of 1’s.

 

 

 

 

 

 

Cleared when ACC contains an even number of 1’s.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = 0000 0000b

 

 

 

 

 

 

 

 

 

 

 

 

Table 19.

AUXR Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR (S:8Eh)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Auxiliary Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

6

 

5

 

4

 

3

 

2

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

-

-

 

M0

 

 

-

 

XRS1

 

XRS0

EXTRAM

 

A0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

Bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number

Mnemonic

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7-6

-

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

The value read from these bits are indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stretch MOVX control:

 

 

 

 

 

 

 

 

 

the RD/ and the WR/ pulse length is increased according to the value of M0.

 

5

M0

M0 Pulse length in clock period

 

 

 

 

 

 

 

0

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

-

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRAM size:

 

 

 

 

 

 

 

 

 

Accessible size of the XRAM

 

 

 

 

 

 

 

 

 

XRS 1:0

XRAM size

 

 

 

 

 

 

 

3-2

XRS1-0

0

0

 

256 Bytes

 

 

 

 

 

 

 

 

 

0

1

 

512 Bytes

 

 

 

 

 

 

 

 

 

1

0

 

768 Bytes

 

 

 

 

 

 

 

 

 

1

1

 

1024 Bytes (default)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 A/T89C51CC01

4129N–CAN–03/08

A/T89C51CC01

 

Bit

Bit

 

 

 

 

 

 

 

 

 

 

 

Number

Mnemonic

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal/External RAM (00h - FFh)

 

 

 

 

 

 

1

EXTRAM

access using MOVX @ Ri/@ DPTR

 

 

 

 

 

 

0 - Internal XRAM access using MOVX @ Ri/@ DPTR.

 

 

 

 

 

 

 

 

 

 

 

 

1 - External data memory access.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disable/Enable ALE)

 

 

 

 

 

 

 

 

0

A0

0 - ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2

 

mode is used)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 - ALE is active only during a MOVX or MOVC instruction.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = X00X 1100b

 

 

 

 

 

 

 

 

 

Not bit addressable

 

 

 

 

 

 

 

 

 

 

 

Table 20.

AUXR1 Register

 

 

 

 

 

 

 

 

 

AUXR1 (S:A2h)

 

 

 

 

 

 

 

 

 

 

 

Auxiliary Control Register 1

 

 

 

 

 

 

 

 

 

7

6

5

 

4

3

 

2

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

-

ENBOOT

 

-

GF3

 

0

 

-

 

DPS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

Bit

 

 

 

 

 

 

 

 

 

 

 

Number

Mnemonic

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7-6

-

Reserved

 

 

 

 

 

 

 

 

 

The value read from these bits is indeterminate. Do not set these bits.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enable Boot Flash

 

 

 

 

 

 

 

 

5

ENBOOT(1)

Set this bit for map the boot Flash between F800h -FFFFh

 

 

 

 

 

 

Clear this bit for disable boot Flash.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

-

Reserved

 

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

GF3

General-purpose Flag 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Always Zero

 

 

 

 

 

 

 

 

 

2

0

This bit is stuck to logic 0 to allow INC AUXR1 instruction without affecting GF3

 

 

 

flag.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

-

Reserved for Data Pointer Extension.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Pointer Select Bit

 

 

 

 

 

 

 

 

0

DPS

Set to select second dual data pointer: DPTR1.

 

 

 

 

 

 

Clear to select first dual data pointer: DPTR0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = XXXX 00X0b

Note: 1. ENBOOT is initialized with the invert BLJB at reset. See In-System Programming section.

29

4129N–CAN–03/08

EEPROM Data

Memory

Write Data in the Column

Latches

The 2-Kbyte on-chip EEPROM memory block is located at addresses 0000h to 07FFh of the XRAM/XRAM memory space and is selected by setting control bits in the EECON register. A read in the EEPROM memory is done with a MOVX instruction.

A physical write in the EEPROM memory is done in two steps: write data in the column latches and transfer of all data latches into an EEPROM memory row (programming).

The number of data written on the page may vary from 1 up to 128 Bytes (the page size). When programming, only the data written in the column latch is programmed and a ninth bit is used to obtain this feature. This provides the capability to program the whole memory by Bytes, by page or by a number of Bytes in a page. Indeed, each ninth bit is set when the writing the corresponding byte in a row and all these ninth bits are reset after the writing of the complete EEPROM row.

Data is written by byte to the column latches as for an external RAM memory. Out of the 11 address bits of the data pointer, the 4 MSBs are used for page selection (row) and 7 are used for byte selection. Between two EEPROM programming sessions, all the addresses in the column latches must stay on the same page, meaning that the 4 MSB must no be changed.

The following procedure is used to write to the column latches:

Save and disable interrupt.

Set bit EEE of EECON register

Load DPTR with the address to write

Store A register with the data to be written

Execute a MOVX @DPTR, A

If needed loop the three last instructions until the end of a 128 Bytes page

Restore interrupt.

Note: The last page address used when loading the column latch is the one used to select the page programming address.

Programming

The EEPROM programming consists of the following actions:

writing one or more Bytes of one page in the column latches. Normally, all Bytes must belong to the same page; if not, the last page address will be latched and the others discarded.

launching programming by writing the control sequence (50h followed by A0h) to the EECON register.

EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading.

The end of programming is indicated by a hardware clear of the EEBUSY flag.

Note: The sequence 5xh and Axh must be executed without instructions between then otherwise the programming is aborted.

Read Data

The following procedure is used to read the data stored in the EEPROM memory:

 

• Save and disable interrupt

 

• Set bit EEE of EECON register

 

• Load DPTR with the address to read

 

• Execute a MOVX A, @DPTR

 

• Restore interrupt

30 A/T89C51CC01

4129N–CAN–03/08

Loading...
+ 137 hidden pages