Nokia 2180 Service Manual ch4sysps

Programme’s After Market Services
NHD–4 Series Transceivers
Chapter 4
System Module
Original 11/97
NHD–4 System Module
Technical Documentation
CONTENTS
Baseband Block Connections 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Signals and Connections 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Block 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Block 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Memory Block 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DSP Block 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DSP memory Block 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDSB ASIC Block 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDRFI Block 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUDIO Block 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page No
External Signals and Connections 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Interface Connector 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Functional Description 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Block 4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DSP Block 4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDRFI 4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audio Block 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter Functional Description 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 4–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX Gain Limiting 4–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDMA TX Gain Control 4–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMPS TX Gain Control 4–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX PA Bias Control (Dynamic TXB) 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Compensation 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Description 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDAGCT IC (N100) 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AT–109 Variable Attenuator (V106) 4–21. . . . . . . . . . . . . . . . . . . . . . . . . . .
3rd Stage Amplifier (V112) 4–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver Functional Description 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Antenna and Coaxial Cable (W400) 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duplexor (Z102) 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF LNA Switches and SWAGC/RX_CAL Control Lines 4–24. . . . . . . . . .
LNA and RX SAW Filter 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mixer (T1) 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 4–2
Original 11/97
NHD–4
Technical Documentation
1st IF AMP (V9) and the Diode Switch (V10) 4–26. . . . . . . . . . . . . . . . . . .
AMPS Receiver 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal Filter (Z3) 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDMA Receiver 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDMA IF SAW Filter (Z2) 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer Functional Description 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLL IC (N300) 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The VCTCXO Clock (G300) 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The UHF Synthesizer 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The VHF Synthesizer 4–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AGC Functional Description 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Descriptions 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.36 MHz 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module
DC Voltage Supplies 4–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts List GR1_17A 4–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Original 11/97
Page 4–3
NHD–4 System Module
Technical Documentation
This page intentionally left blank
Page 4–4
Original 11/97
NHD–4
Technical Documentation

Baseband Block Connections

Below is a list of the functional blocks of the baseband architecture:
– Power Supply Charging Logic Device (PSL+3) – Microcomputer Unit (MCU) – MCU External Memory –
Electrically Eraseable Programmable Read Only Memory (EE­PROM) Static Random Access Memory (SRAM)
Flash Memory – Digital Signal Processor (DSP) – DSP External Memory –
Static Random Access Memory (SRAM) – CDSB ASIC – CDMA RF to BB Interface (CDRFI)
System Module
– Audio Coder/Decoder (CODEC)

Internal Signals and Connections

Power Block

Table 1. Power Block Connections
Signal Name T ype Notes
XPWRON IN PWR on switch XPWROFF IN Power off control VBATT IN Battery voltage VCHAR IN Charging voltage VOLTLIM IN Voltage Limiting of charging while call is in prog-
ress. 5VOFF IN voltage reg control –ON / OFF VCHRGPWM IN PWM for controlling battery charging. XPWR_
RESET
OUT Master reset
VL1 OUT Logic supply voltage 1. VL2 OUT Logic supply voltage 2. VL3 OUT Logic supply voltage 3. VA1 OUT Analog supply voltage 1. VA2 OUT Analog supply voltage 2. VREF OUT Reference voltage VL5VOLT OUT Logic supply voltage for MBUS
Original 11/97
Page 4–5
NHD–4 System Module
Table 1. Power Block Connections (continued)
NotesTypeSignal Name
Technical Documentation
VLCD OUT Voltage for LCD on UIF VBATDET OUT Switched VBATT VC OUT Attenuated VCHRGMON CHRG_INT OUT Signal to indicate a Charger has been connected
to Phone.

MCU Block

Table 2. MCU Block Connections
Signal Name T ype Notes
MCU_CLK IN Clk into MCU XSYS_RESET IN MCU Reset
MCUAD(19:0) OUT MCU Address Bus MCUDA(7:0) I/O MCU Data Bus XMCU_AS OUT MCU Address Strobe XMCU_RD OUT MCU Read XMCU_WR OUT MCU Write MCU_NMI IN MCU Non Maskable Interupt MCU_INT0 IN MCU Maskable Interupt 1 CODEC_DI OUT Audio codec control data CODEC_CLK OUT Codec Clock XCODEC_CS OUT Audio codec chip select CODEC_DO IN Audio codec control data CALL_LED OUT UIF CALL_LED enable BACK_LIGHT OUT UIF BACK_LIGHT enable PHFS_TXD2 OUT Hands Free speaker Mute Control HOOK_RXD2 OUT Hook Recieved data VIB_CONT OUT Vibrator Control MBUS_OUT OUT MBUS data output VAHS_EN OUT Headset voltage enable VOLTLIM OUT Voltage Limiting 5VOFF OUT voltage reg control VCHRGPWM OUT Control PWM XPWROFF OUT Watchdog signal TEMP1_EN OUT RFTEMP1 TEMP2_EN OUT RFTEMP2 VBATDET IN A/D input for battery voltage level
Page 4–6
Original 11/97
NHD–4
Technical Documentation
Table 2. MCU Block Connections (continued)
NotesTypeSignal Name
System Module
VCHRGMON IN A/D input for monitoring of charging voltage HOOK_RXD2 IN A/D input – Hook indicator (Phone on or off Hook) BTEMP IN A/D input for monitoring Battery temp. RFTEMP IN A/D input for monitoring RFTEMP 1 and 2 temp. BTYPE IN A/D input for monitoring Battery type. RSSI IN A/D input for monitoring RSSI. JCONN IN A/D input for monitoring Accessory type. MBUS_DET IN MBUS data input.

MCU Memory Block

Table 3. MCU Memory Block Connections
Signal Name T ype Notes
MCUAD IN MCU Address Bus MCUDA I/O MCU Data Bus XMCU_RD IN MCU Read used as Output Enable XMCU_WR IN MCU Write used as Read/Write select XFLASH_CS IN Flash Chip Select XSRAM_CS IN SRAM Chip Select XROM_CS IN EEPROM Chip Select
Original 11/97
Page 4–7
NHD–4 System Module
Technical Documentation

DSP Block

Table 4. DSP Block Connections
Signal Name T ype Notes
DSP_CLK IN DSP Clock XSYS_RESET IN DSP Reset DSP_INT0 IN DSP Maskable Interupt 0 DSP_INT1 IN DSP Maskable Interupt 1 DSPAD(15:0) OUT DSP Address Bus DSPDA(15:0) I/O DSP Data Bus DSP_RXW OUT DSP Read / Write Select XDSP_STRB OUT DSP Master Strobe for Memory Access XDSP_DS OUT DSP Data Strobe for Memory Access Codec_FS IN Frame Sync
Codec_MCLK IN Codec CLK PCMOUT IN Data from Codec PCMIN OUT Data to Codec DSP_SYNC I/O Frame Sync DSP_MCLK I/O CLK DBUS_IN IN Data to DSP. DBUS_OUT OUT Data from DSP.

DSP memory Block

Table 5. DSP Memory Block Connections
Signal Name T ype Notes
DSPAD(15:0) IN DSP Address Bus DSPDA(15:0) I/O DSP Data Bus DSP_RXW IN DSP Read / Write Select XDSP_STRB IN DSP Master Strobe
Page 4–8
Original 11/97
NHD–4
Technical Documentation

CDSB ASIC Block

Table 6. CDSB ASIC Block Connections
Signal Name T ype Notes
XPWR_
IN Master reset FROM PSL+ 3
RESET XSYS_RESET OUT System Reset OSC_OUT IN 32KHz Clk input OSC_IN IN 32KHz Clk input CDRFI_SI OUT CDRFI Serial Data In CDRFI_SO IN CDRFI Serial Data Out CDRFI_SEN OUT CDRFI Serial data ENABLE CDRFI_SCLK OUT CDRFI Serial data CLocK CDRFI_9.8M OUT CDRFI 9.8 MHz clock
System Module
15.36M_IN IN 15.36MHz Clk IN
9.83M_IN IN 9.83MHz Clk IN TXD(7:0) I/O CDRFI TX Data CDRFI_RWSEL OUT CDRFI Read/Write SELect CDRFI_IQSEL OUT CDRFI Tx IQ SELECT RXQ IN CDRFI RX Quadrature–phase data RXI IN CDRFI RX In–phase data DAFOUT IN CDRFI DAF INput GATE OUT CDRFI VCO_EN OUT CDRFI DSP_CLK OUT 7.68 MHz Clk to DSP DSP_INT0 OUT DSP Maskable Interupt 0 DSP_INT1 OUT DSP Maskable Interupt 1 DSPAD IN DSP Address Bus DSPDA I/O DSP Data Bus DSP_RXW IN DSP Read / Write Select XDSP_STRB IN DSP Master Strobe XDSP_DS IN DSP Data Strobe DSP_SYNC OUT Frame Sync DSP_MCLK OUT CLK Codec_FS OUT Frame Sync Codec_MCLK OUT CLK MCU_CLK OUT 15.36 MHz Clk to MCU MCUAD(19:0) IN MCU Address Bus
Original 11/97
Page 4–9
NHD–4 System Module
Technical Documentation
Table 6. CDSB ASIC Block Connections (continued)
NotesTypeSignal Name
MCUDA I/O MCU Data Bus XMCU_AS IN MCU Address Strobe XMCU_RD IN MCU Read Enable XMCU_WR IN MCU Write used as Read/Write select MCU_NMI OUT MCU Non Maskable Interupt MCU_INT0 OUT MCU Maskable Interupt 1 MBUS_DET IN MBUS data input. CHRG_INT IN Signal to indicate a Charger has been connected to
Phone. XFLASH_CS OUT Flash Chip Select XSRAM_CS OUT SRAM Chip Select XROM_CS OUT EEPROM Chip Select LCD_COL I/O LCD and COL/RO lines to UIF CDATTEN OUT SW AGC to RF RF_LIMADJ IN RF_SCLK OUT Serial Data Clk RF_SDATA OUT Serial Data RF_RX_LE OUT Latch Enable for Serial Data RF_TXB OUT Tx Power Bias RF_TXREF OUT REF Level for TXIP comparator RF_AFC OUT VCTCXO control voltage RF_AGCREF OUT Sets RXI & RXQ levels RF_TXGAIN OUT Offsets TX gain to RX gain RF_TXSLP OUT Correction of TX gain slope RF_RXSLP OUT Correction of RX gain slope RF_TXC OUT Limit maximum TX gain RF_TXPUNC OUT RF_VCO_EN OUT RF_RFE0 OUT RFEN0 RF_RFE1 OUT RFEN1 RF_RFE2 OUT RFEN2 RF_RFE3 OUT FAST RF_RFE4 OUT RX_FIL_CAL RF_RFE5 OUT SEL0
Page 4–10
Original 11/97
NHD–4
Technical Documentation
Table 6. CDSB ASIC Block Connections (continued)
RF_RFE6 OUT SEL1 RF_RFE7 OUT RF Control Line

CDRFI Block

Table 7. CDRFI Block Connections
Signal Name T ype Notes
XSYS_RESET IN XRESET SDI IN Serial Data In SDO OUT Serial Data Out SENABLE IN Serial data ENABLE
System Module
NotesTypeSignal Name
SCLK IN Serial data CLocK
9.8M IN 9.8 MHz clock VCLKIN IN VCLocK INput VCLKOUT OUT VCLocK OUTput CLKIN IN CLocK INput CLKOUT OUT CLocK OUTput TXI+ OUT TX signal In–phase (+) TXI– OUT TX signal In–phase (–) TXQ+ OUT TX signal Quadrature–phase (+) TXQ– OUT TX signal Quadrature–phase (–) TXD(7:0) I/O TX Data R/WSEL IN Read/Write SELect IQSELECT IN Tx IQ SELECT RXQ IN RX signal Quadrature–phase RXI IN RX signal In–phase RXQ(5:0) OUT RX Quadrature–phase data RXI(5:0) OUT RX In–phase data TXAGC1 OUT TX AGC control RXAGC1 OUT RX AGC control ANATX OUT ANAlog mode TX signal ANARX+DAF IN ANAlog mode RX + DAF signal DAFOUT OUT DAF OUTput GATE IN TBA VCO_EN IN TBA
Original 11/97
Page 4–11
NHD–4 System Module
Technical Documentation

AUDIO Block

Table 8. Audio Block Connections
Signal Name T ype Notes
VA2 IN Analog supply voltage 1. Max 80 mA. PCMIN IN Received audio in PCM–format CODEC_FS IN frame sync CODEC_MCLK IN codec main clock CODEC_DIN IN Audio codec control data CODEC_CLK IN Clock for audio codec control data transfer XCODEC_CS IN Audio codec chip select HFMIC IN External microphone MICN, MICP IN Differential microphone signal PCMOUT OUT Transmitted audio in PCM–format
CODEC_DO OUT Audio codec control data MIC_EN OUT Microphone enable EXTEAR OUT External received audio EARN, EARP OUT Internal received audio

External Signals and Connections

Table 9. List of Connectors
Connector Name Notes
User Interface Connector 30 pin ZIF for Flex System Connector Acc., Charging, Test connector .

User Interface Connector

Table 10. UIF Connector

Signal Name Pin / Conn. Notes

VL1 1 Logic supply voltage GND 2, 29 Ground VBAT 3, 30 Battery voltage BACKLIGHT 4 Backlights on/off UIF(0:6) 5 – 11 Lines for keyboard write and LCD–controller
control MIC_EN 12 Microphone bias enable COL(0:3) 13 – 16 Lines for keyboard read CALL_LED 17 Call led enable MICP 18 Microphone (positive node)
Page 4–12
Original 11/97
NHD–4
Technical Documentation
Table 10. UIF Connector (continued)
NotesPin / Conn.Signal Name
MICN 19 Microphone (negative node) EARN 20 Earpiece (negative node) EARP 21 Earpiece (positive node) BUZZER 22 Buzzer control ONKEYX 23 Power key VA1 24 Analog supply voltage VL5VOLT 26 LCD supply voltage NC 25,27,28 NO CONNECT
System Module
Original 11/97
Page 4–13
NHD–4 System Module

Baseband Functional Description

Below is a list of the functional blocks of the baseband architecture:
– Power Supply – Microcomputer Unit (MCU)
External Memory –
Electrically Eraseable Programmable Read Only Memory (EEPROM) Static Random Access Memory (SRAM) Flash Memory
MBUS
– Digital Signal Processor (DSP)
External Memory –Static Random Access Memory (SRAM) DBUS Multipath Analyzyer
– Audio Coder/Decoder (CODEC) – CDSB ASIC
Sleep Clock Oscillator (32 KHz)
– CDMA RF to BB Interface (CDRFI)
Technical Documentation

Power Supply

The PSL+3 – IC produces the supply voltages:
It also has internal watchdog, voltage detection and charger detection functions. The watchdog will cut the output voltages if it is not resetted once in about 6 seconds. The voltage detector resets the phone if the battery voltage falls below 4.0 V. The charger detection starts the phone if it is in power–off when the charging voltage is applied.
The charging electronics is controlled by the MCU. When the charging voltage is applied to the phone while the phone is powered up, the MCU detects it and starts controlling the charging.
If the phone is in power–off, the PSL+3 will detect the charging voltage and start the phone. If the battery voltage is high enough the reset will be released and the MCU will start controlling the charging. If the battery voltage is too low the phone is in reset and charging control circuitry will pass the charging current to the battery. When the battery voltage has reached 4 V the reset will be removed and the MCU starts controlling the charging. This all is invisible to the user.
– RF Interface
3 * VL 150 mA for logic VA1 40 mA not used at this time VA2 80 mA for AUDIO VREF 5 mA reference
Page 4–14
Original 11/97
NHD–4
Technical Documentation

MCU Block

The MCU block controls the user interface, link layer, upper layer protocols, some physical layer tasks, and accessories not linked to data services. It also executes service and diagnostics commands and manages the battery.

DSP Block

The DSPU provides control and signal processing for AMPS and CDMA modes of operation.
– Control and general functions:
– communication with MCU / PC–Locals – mode control of ASIC hardware – RF control – DBUS communication
– AMPS mode speech processing:
– audio signal filtering – acoustic echo cancellation
– AMPS mode modem functions:
– ST (Signalling Tone) signal generation – SAT (Supervisory Audio Tone) signal detection and regeneration – WBD (Wide Band Data) sending – Handoff control
– CDMA mode speech processing:
– Vocoder (Voice Coder) encoding and decoding – acoustic echo cancellation
– CDMA mode control:
– PN (Pseudo Noise) signal acquisition and monitoring – soft & hard handoffs – ASIC Rake Receiver demodulator control – received data rate determination – Multiplex Sublayer (LM) routing of data to MCU or Voice
Coder
– Loopback and Markov Service Options
System Module

CDRFI

CDRFI is a monolitic CMOS high speed CODEC designed for use in CDMA (Code Division Multiple Access) Digital Cellular Telephone applications. It provides AD conversion of the in–phase and quadrature signals in receive path and generation of the in–phase and quadrature signals in transmit path. The CODEC interfaces with digital chip(s) via two parallel interface (separate interfaces for AD and DA signal converters) and one serial interface (for the control DA converters).
Original 11/97
Page 4–15
NHD–4 System Module

Audio Block

The block consists of audio codec with some peripheral components. The codec includes microphone and earpiece amplifier and all the necessary switches for routing. The controlling of the codec is done by the MCU. The PCM–data comes from and goes to DSPs.
The code converts analog voice to digital samples that can be processed by the DSP. It also accepts DSP processed speech, converts it to analog and transmits the output to the handset or hands free speaker. The codec communicates linear coded data with the DSP over a dedicated serial port. The master clock of the codec is synchronized with the RF VCTCXO and generated by the CDSB ASIC. Codec set up and DTMF tone generation are controlled by the microprocessor via a second serial port.
Technical Documentation

Transmitter Functional Description

The transmitter stages are as follows:
The CDAGCT ASIC  The Variable Attenuator  Two SAW filters  Three BJT driver amplifiers  The GaAs FET power amplifier  The Detector circuit  The Isolator  The Duplexer
Page 4–16
Original 11/97
NHD–4
Technical Documentation

Introduction

NHD–4 uses the same transmitter to up convert, amplify and filter the analog AMPS and the digital CDMA signals. The key differences between analog and digital transmission are the Power Amplifier (PA) bias levels , attenuation levels of the variable attenuator, and operation of the RF transmitter ASIC (CDAGCT). It is important to keep in mind that the AMPS and CDMA signals are significantly different. The AMPS signal is distinct FM modulated carrier with a channel bandwidth of 30 kHz. CDMA modulation is spread spectrum. A CDMA signal is 1.23 MHz wide and appears noise–like.
Aside from this introduction, the Functional Description describes the various signals entering and exiting the NHD–4 transmitter circuit, as well as the DC voltage supplies that bias it.

TX Gain Limiting

TX Limiting is a control feature for CDMA TX operation. In some conditions the AGC loop of the phone may call upon the transmitter to provide more output power than is recommended for healthy operation. The TX Limiting circuit places a ceiling or limit on the output power of the CDMA transmitter. Transmitting above the limit might put the CLY–10 PA (V113) out of its linear range of operation.
System Module
In CDMA operation the TXI_REF PDM stays fixed at a tuned voltage level. This tuned level corresponds to the TX output power limit. The tuned TXI_REF PDM line will be approximately 1.0 V. The detector voltage, TXI, directly reflects the output power of the TX PA chain (V110–V113). For maximum CDMA output power TXI is approximately 1.0 V DC at Pin 2. For minimum CDMA output power TXI is about 2.26 V.
When TXI equals TXI_REF, the LIM_ADJ line goes logic low to approximately 0.0 V. A way to test CDMA TX Limiting Control is to probe the LIM_ADJ line with an oscilloscope and maximize the gain of the transmitter. When the TX output power reaches the limit the LIM_ADJ line will toggle continuously, appearing as a square wave 3.2 Vpp (read at R840) with an approximate frequency of 400 Hz.
CDMA TX Gain Control
A fundamental requirement for proper CDMA system operation is that received signal power levels reaching the digital demodulators remain constant. This is true for both the mobile unit and the base station. The mobile unit must dynamically adjust the gain of its receiver to ensure that the down converted baseband I & Q signal levels delivered to the CDSB ASIC are always constant. The mobile must also dynamically adjust its transmit output power so that the base station always receives the same signal strength. The amount of gain needed at the mobile unit receiver is used to determine how much gain to provide the mobile unit transmitter, thus they are linked in a loop.
Original 11/97
Page 4–17
NHD–4
Á
Á
Á
Á
Á
Á
Á
Á
System Module
The gain of the CDMA transmitter is controlled by two devices, the CDAGCT IC (N100) and the AT–109 variable attenuator (V106).
The TX_OFFSET voltage will fall somewhere between 0.0 and 3.15 V, read at C703. This circuit can be found on the CDCONT schematic. The resultant voltage is found at the CDCONT IC (N201) at pin 7. The CDCONT IC interprets this voltage and generates the TX_ICT and TX_IREF currents.
The gain of the CDAGCT IC (N100) is controlled by the two incoming currents TX_ICT and TX_IREF. These two signals are currents entering the IC at pins 24 and 25, through R116 and R115 respectively. The gain of the IC is set by the ratio of these two current levels. TX_IREF is the reference current. It stays constant at about 1.0 mA. TX_ICT is the control current. It varies in as a function of the TX_Gain voltage at the CDCONT IC.
To measure these currents directly requires that you break the circuit and input an ammeter. This is impractical in a diagnostics environment. Instead it is suggested that you simply measure the voltage drop across R115 and R116 to determine if these signals are correct. The voltage drop across R115 will remain constant at approximately 100 mV, while the drop across R116 will vary from approximately 0.0 mV to 100 mV, depending upon the level of gain required by the AGC system. Below is a table depicting some sample TX_GAIN and TX_ICT values corresponding to CDMA TX output power levels.
Technical Documentation
CDMA TX Output
БББББ
RF Signal Level
(dBm)
БББББ
TX_GAIN Voltage
БББББ
at C213
БББББ
(V)
TX_ICT Control
БББББ
Current
БББББ
(mA)
TX_ICT
БББББ
(as voltage drop
across R116)
БББББ
(mV) 23 15 10 –5
–20 –35
1.72
1.78
1.80
1.87
1.93
2.00
0.860
0.700
0.560
0.298
0.171
0.093
86.0
70.0
56.0
29.8
17.1
9.3
The Service Software provides a manual control mechanism which provides the ability to test this transmitter control functionality. This mechanism is called CDMA TX Manual Gain Control and is discussed in the Troubleshooting section of this manual.
The amount of attenuation provided by the AT–109 (V106) is controlled by the control voltage VC. VC is a function of the AGC_REF PDM via the circuit centered around the op–amp N202. The N202 op–amp can be found on the CDCONT schematic. VNEG is used at the inverting input of N202. VNEG will remain constant, typically at –4.1 V. For minimum attenuation the AUX AGC PDM voltage is typically 0.75 V, resulting in 3.25 V for VC. For maximum attenuation the AUX AGC PDM voltage is typically 10.0 mV, resulting in 1.50 V for VC.
Page 4–18
Original 11/97
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
NHD–4
Technical Documentation
The auxiliary AGC can be manually adjusted using the AGC_REF PDM controls found in the Service Software. Below is a table detailing typical voltages of the AGC_REF PDM and VC, referenced against CDMA TX output power.
CDMA TX
БББББ
Output Power
(dBm)
БББББ
23 21 19 17 15
The AT–109 is put in its minimum attenuation state for AMPS operation. During AMPS TX operation the AT–109 control voltage VC will be at its maximum, 4.35 V, measured at C214. The AGC_REF PDM will be 1.50 V measured at R222.

AMPS TX Gain Control

AGC_REF PDM
БББББ
(decimal value)
БББББ
0 34 60 79 85
AGC_REF PDM
БББББ
voltage at C716
БББББ
(V)
0.798
0.583
0.456
0.367
0.333
System Module
БББББ
БББББ
VC
at C109
(V)
3.28
2.81
2.53
2.33
2.26
NOTE! Be cautious not to confuse the TXI_REF PDM voltage with the TX_IREF control current. The names are quite similar, but indeed they are two different signals.
The TXI_REF PDM has 6 tuned values corresponding to the 6 AMPS power levels used in mobile operation (2–7). The following is a table of typical values of TXI_REF PDM and TXI voltages, and TX_ICT currents for the 6 AMPS power levels. There will be variations from phone to phone.
AMPS
Power
ÁÁ
Level
ÁÁ
ÁÁ
2 3 4 5 6 7
TXI_REF
PDM Voltage
ÁÁÁÁ
(at R210)
ÁÁÁÁ
(V)
ÁÁÁÁ
1.05
1.56
1.92
2.10
2.20
2.26
TXI_REF
PDM
ÁÁÁÁ
decimal val-
ÁÁÁÁ
ue
ÁÁÁÁ
14 239 187 168 157 152
TXI Detector
Voltage
ÁÁÁ
(at N202,
ÁÁÁ
Pin1)
ÁÁÁ
(V)
1.05
1.56
1.92
2.10
2.20
2.26
TX_ICT
(voltage drop
ÁÁÁÁ
across
ÁÁÁÁ
R116)
ÁÁÁÁ
(mV)
44.2
38.6
30.5
22.3
21.9
17.9
While the phone is in AMPS TX mode the TX_IREF current will remain constant at approximately 1.0 mA. This current can be read indirectly by measuring the voltage drop across R115. This drop will be approximately 100 mV.
Original 11/97
Page 4–19
NHD–4
Á
Á
Á
Á
Á
Á
Á
Á
БББББ
Á
Á
Á
Á
БББББ
System Module

TX PA Bias Control (Dynamic TXB)

The TXB PDM is used to tune the PA bias current. This PDM voltage interacts with, VTXS, VNEG and an op–amp internal to the CDCONT IC (N201) to produce VGG. VGG is the negative voltage supply to the gate of the CLY–10 PA (V113). As VGG changes, so does the bias current., and thus the gain. For minimum bias, the 100 mA case the TXB PDM voltage will be approximately 1.50 V, and VGG will be about –2.35 V. For maximum bias, or the 250 mA case, the TXB bias will be approximately
1.40 V and VGG will be about –2.00 V. A chart better depicts this data. Below are some typical voltages and PDM values for this scenario.
Technical Documentation
Bias Case
CDMA TX
Output Pow-
БББББ
БББББ
ÁÁÁÁ
ÁÁÁÁ
Minimum – 100 mA Maximum – 250 mA
Note: Dynamic TXB is only used in CDMA TX modes. For AMPS operation CLY–10 PA (V113) bias is to draw 100 mA at low output powers. The output power of the AMPS transmitter increases, the CLY–10 self–biases from the input signal at the gate, thus in­creasing the current draw to as much as 320 mA.
The negative voltage generator N200 generates the VNEG voltage. VNEG comes up when VTXS is active. Both VTXS and VNEG maintain constant voltage levels while on, 4.45 V and –4.10 V respectively. The node at R203, R204 and R205 will remain fixed at 2.0 V during the operation of this circuit. This node is an input to the internal op–amp, which is pin 53 of the CDCONT IC (N201). The base voltage of V201 tracks the VGG voltage.

Temperature Compensation

A thermister (R141) is mounted closely to the final PA stage CLY–10 (V113). The thermister measures the temperature of the power amplifier and sends the information to the microprocessor via the RFTEMP1 line.
er
(dBm) <= 10 >= 23
TXB PDB
at C703
ÁÁÁÁ
(V)
ÁÁÁÁ
1.19
1.11
TXB PDM
(decimal val-
ÁÁÁÁ
ue)
ÁÁÁÁ
228 239
VGG
at C202
ÁÁÁ
(V)
ÁÁÁ
–2.35 –2.00
Circuit Description
CDAGCT IC (N100)
The CDMA Automatic Gain Control Transmitter ASIC, or CDAGCT (N100) generates the AMPS & CDMA RF signals.
The CDAGCT receives the CDMA baseband I & Q signals from the CDRFI. These two signals exist upon differential lines, TX_I_N/TX_I_P, and TX_Q_N/TX_Q_P entering the CDAGCT IC at pins 16, 15 and 13, 12 respectively. These signals can be probed with an oscilloscope at any of the bypass capacitors in series with these four lines. The level will be approximately 500 mVpp.
Page 4–20
Original 11/97
NHD–4
Technical Documentation
Bias voltage to the CDAGCT IC is critical. The bias voltage at pins 6, 14, 17, 20, 21, 26, and 29 should always be approximately 3.9 to 4.0 V. Should it drop to low, or become to great, the CDAGCT IC will not operate properly. A loss of gain may also occur. The VTXT regulator supplies voltage to the CDAGCT IC. VTXT should stay constant at 5.3 V in both AMPS and CDMA operation. The R103, R104 resistor network together with V115 keep the bias to the CDAGCT IC fixed at about 3.9 V.
AT–109 Variable Attenuator (V106)
The AT–109 (V106) is an attenuation stage in the RF path immediately following the CDAGCT IC (N100). The VC voltage to pin 5 of this device sets the level of attenuation. For minimum attenuation in CDMA mode (maximum output power) VC will be 3.25 V. For maximum attenuation in CDMA mode VC is 1.50 V. In AMPS TX mode VC will be approximately
4.35 V throughout the entire dynamic range of the transmitter output. VTXS biases the AT–109 at pin 4. It should be 4.4 V for both AMPS and CDMA operation.
SAW Filter (Z100)
System Module
This Surface Acoustic Wave (SAW) filter provides rejection in the RX band (869 to 894 MHz).
1st and 2nd Gain Stages (V110, V111)
The first gain stage V111 should be biased with approximately 3.85 V on the collector and 0.73 V on the base. V100 acts as a switch, sourcing current to V111 when the bias voltage on the emitter resistor goes high to approximately 4.7 V. V100 should have approximately 3.85 V on its emitter (pin 3) and 3.30 V on its base (pin 2).
The second gain stage V110 should be biased with approximately 2.70 V on the collector and 0.73 V on the base. V100 acts as a switch, sourcing current to V110 when the bias voltage on the emitter resistor goes high to approximately 4.7 V. V100 should have approximately 2.70 V on its emitter (pin 6) and 3.30 V on its base (pin 5).
SAW Filter (Z101)
This Surface Acoustic Wave (SAW) filter provides rejection in the RX band (869 to 894 MHz).
3rd Stage Amplifier (V112)
The third gain stage (V112) is a BJT amplifier in the common emitter configuration. This stage provides of gain to the TX chain, providing drive power to the final PA stage, V113.
The third gain stage V112 should be biased with approximately 6.0 V on the collector and 0.7 V on the base. The dual transistor package V108 acts as a switch, sourcing current to V112 when the voltage to the emitter resistors goes high to approximately 6.2 V. V108 should have approximately 6.0 V on its pin 6 emitter and 5.5 V on both bases (pins 2 and 5).
Original 11/97
Page 4–21
NHD–4 System Module
CLY–10 Power Amplifier (V113)
For CDMA operation the CLY–10 bias current is increased directly with increasing output power to ensure linear performance. The bias current is controlled by changing the gate voltage. For minimum bias, the 100 mA case, the bias on the gate will be about –2.35 V. For maximum bias, or the 250 mA case, the bias on the gate will be about –2.00 V. The bias voltage on the drain will be approximately 6.2 V under all biasing conditions.
For AMPS The PA bias current is set for 100mA at AMPS power level 7. The PA bias current increases due to self biasing at power level 2 (approximately 27 dBm output). For AMPS TX operation at power level 2 the gate voltage will be approximately –2.7 V and the drain voltage will be
6.2 V.
PA Bias Circuitry
Technical Documentation
The transistor network located at the center of the top of the transmitter schematic is the current bias to the four gain stages. V109 is the source of current, drawing energy directly from the battery voltage, VRFT (VRF). The transistors V102 – V104 serve as switches to control the flow of current to the gain stages by shutting V109 on and off. Both the VNEG and TX_PUNC voltages must be active for the current source V109 to be switched on. TX_PUNC is a logic line from the CDSB ASIC (D704), pin
129. It will be approximately 3.15 V when the transmitter is on. The negative VGG supply is a function of VNEG. VNEG will be approximately –4.1 V when the transmitter is switched on.
The transistor pair V105 regulates the collector voltage at V109 to about
6.3 V, The emitter of V109 is biased by VRF, which will be the battery voltage. When the transistor is on, pin 2 of V104 will be approximately 5.3 V. Pins 3 and 6 will remain fixed at approximately 4.7 V.
Detector (V114)
The PA’s RF output power is sampled by a capacitively coupled schottky dual diode detector. The dectector produces a DC voltage that is exponentially proportional to the PA’s RF output power. The DC output voltage decreases as RF power increases. The typical detector voltage TXI varies from about 2.3 V for minimum RF power to 0.9 V for maximum RF power. In AMPS mode the detector voltage at N202, pin 1 is approximately 1.1 V when the TX is at power level 2. The VTXS supply biases the detector. This DC supply should be approximately 4.40 V in both AMPS and CDMA modes.
Note it is unwise to probe the detector @ C173 to read the TXI signal. Doing so will load it down, providing inaccurate readings. It is better to prove TXI at the buffer amp N202, pin 1 or 2.
Page 4–22
Isolator (V710)
The Isolator isolates the PA from the Duplexor.
Original 11/97
NHD–4
Technical Documentation
Duplexor (Z102)
The Duplexor isolates the transmit signal from the receiver path and permits the phone to transmit and receive signals simultaneously (i.e. Full Duplex operation). The Duplexor is a three terminal, dual frequency (RX and TX) bandpass splitter/filter and provides the common antenna connection to the TX and RX circuits. The transmit signal enters the Duplexor at the “TX” port and exits from the “ANT” port. The duplexor is the largest device on the PCB and can be found on the TX schematic.
Thermister (R141)
The thermister R141 changes resistance as a function of its temperature. The voltage across this device comprises the RFTEMP1 signal to the MCU.
System Module
Original 11/97
Page 4–23
NHD–4 System Module
Receiver Functional Description
Introduction
NHD–4, being a dual mode phone, has essentially two receivers, the analog AMPS and the digital CDMA. These two receivers share a common front end and only become distinct in the IF stage after mixing down to 45 MHz. A diode switch, V10, channels the received signal to the appropriate receiver. It is important to keep in mind that the AMPS and CDMA signals are significantly different. The AMPS signal is a FM modulated carrier with a channel bandwidth of 30 kHz. A CDMA signal is a 1.23 MHz wide spread spectrum carrier pedastal that appears noise–like. This functional description is divided into three major sections, the Front End, the AMPS Receiver and the CDMA Receiver.
Antenna and Coaxial Cable (W400)
Technical Documentation
The receiver chain begins at the antenna. The antenna is impedance matched to the coax with L400 and C400. The coaxial cable, W400, routes the signal down the length of the phone to the bottom connector. When no external RF connection is made at the bottom connector (X701), the received signal is directed back up to the top of the phone via the second, shorter coax length. When the bottom connector is in place, i.e. with the car kit, the coax leading to the antenna is taken out of the circuit and the received RF signal launches in from the external connection. It then proceeds up the shorter length of coax to the top of the phone and into the duplexor.
Duplexor (Z102)
The Duplexor, Z102 serves to isolate the transmit signal from the receiver path, and vice versa. The received signal proceeds from the coaxial cable W400, through C150 into the Duplexor at the point labeled RFOUT. In the case of the receiver RFOUT is actually the RF input. The duplexor is the largest device on the PCB and can be found on the TX schematic. This signal exits the Duplexor on the opposite side that it entered, at the port labeled RX_IN. It then proceeds through C762 into the RF LNA Switch, N702.
RF LNA Switches (N701, N702) and SWAGC/RX_CAL Control Lines
NHD–4 has a low noise amplifier, or LNA that can be switched in and out of RX chain. The LNA is always on during AMPS RX operation. The switching operation is accomplished by two RF GaAs switches N701 and N702.
Page 4–24
Original 11/97
NHD–4
Technical Documentation
For operation with the LNA ”on”, RF is routed into the first switch, N702 at pin 5. It exits at pin 7 and enters the LNA through L22. After amplification the receive signal leaves the LNA through C98 and enters the second RF switch, N701, at pin 7. The signal exits the second switch through pin 5 and proceeds into the UHF RX SAW (Z1) through C771. Switching control is accomplished at pins 8 and 1 for both switches. For operation with the LNA (V12) ”on”, or CDMA Hi–Gain, the RX_CAL line at R783/R6 should be logic ”high” at approximately 2.80 V. The SWAGC line at R830 should be logic level ”low”, approximately 0.00 V. The VCONT2 pins (pin
1) of N701 and N702 should be approximately 3.80 V. The VCONT1 pins (pin 8) should be approximately 0.0 V.
For operation with the LNA ”off”, RF is routed into the first switch, N702 at pin 5. It exits at pin 2 and enters a resistive matching network through C787, consisting of R827, R834, and R828. It leaves this network through C804 and enters the second RF switch, N701, at pin 2. The signal exits the second switch through pin 5 and proceeds into the UHF RX SAW (Z1) through C771. Switching control is accomplished at pins 8 and 1 for both switches. For operation with the LNA ”off”, or CDMA Lo–Gain, the RX_CAL line at R783/R6 should be logic ”low” at approximately 0.00 V. The SWAGC line at R830 should be logic level ”high”, approximately 3.00 V. The VCONT2 pins (pin 1) of N701 and N702 should be approximately
0.00 V. The VCONT1 pins (pin 8) should be approximately 2.90 V.
System Module
The following truth table details the states of the switches and the LNA verse the modes of the phone. This table is also found on the RX schematic.
State
AMPS CDMA Hi–Gain CDMA Lo–Gain RXCAL
RXCAL
1 1 0 0
LNA (V12) and RX SAW Filter (N701)
Current to source this device originates from the V11 network. C98 delivers the amplified UHF RX signal to the second RF switch N701, pin 7. The output of N701 (pin 5) routes the signal to the UHF RX SAW Filter (Z1). The UHF signal leaves the SAW at pin 5 and enters the mixer through C41.
LNA
ON
ON OFF OFF
VCONT1
0 0 1 0
SWAGC
0 0 1 0
VCONT2
1 1 0 1
Original 11/97
Page 4–25
NHD–4 System Module
Mixer (T1)
The mixer is a three port passive Si device. Of the eight pins, five are grounded. The remaining three constitute the RF, LO and IF ports. The received UHF signal enters the mixer at pin 5, the LO port, from C41. The RX_LO signal originates from the UHF synthesizer and enters the mixer at pin 8, the RF port, via a microstrip line which runs within the PCB, under the components on the board. It is 45 MHz greater in frequency than the received signal. These two incoming signals mix within the device and produce a 45 MHz IF signal which leaves the mixer at the IF port, pin 4.
It should be noted that the RF and LO ports on the mixer, pins 5 and 8 are implemented opposite in this circuit to what the device manufacturer has specified. On the schematic it shows the received RF entering the mixer at the LO port and the RX_LO entering the mixer at the RF port. This is not a design flaw. The device works correctly either way.
1st IF AMP (V9) and the Diode Switch (V10)
Technical Documentation
After mixing down to the 45 MHz IF frequency the received signal is again amplified by the 1st IF amplifier, V9. The IF signal leaving the mixer moves through the matching network L701, C77, L13, and R24 and enters the base of the transistor V9, pin 3. It exits the collector, pin 1 and immediately enters the diode switch which routes the signal to either the AMPS or CDMA receiver.
Bias current to the base of this gain stage differs from AMPS to CDMA operation. In CDMA mode the VRXM alone supplies base current to V9 through R13 and L11. The voltage at the base, pin 3 should be 1.85 V in CDMA mode. VRXM should be approximately 4.40 V at R13. In AMPS operation the dual BJT package V4 and neighboring resistors R4, R5, R14, and R15 change this bias current when the VRXAM DC voltage supply comes on. Voltage at the base of V4 (pin 2) is about 2.25 V. The voltage on the base of V9 (pin 3) should be approximately 1.0 V in AMPS mode.
Collector biasing of V9 also varies from AMPS to CDMA mode. The VRXAM DC supply (VRXA from the CDCONT IC) comes on in AMPS mode. The collector of V9 should be approximately 3.40 V in AMPS mode.
The collector of V9 should be approximately 3.50 V in CDMA mode. VRXDM should be about 4.50 V at R23, pin 1.
Page 4–26
Original 11/97
NHD–4
Technical Documentation
AMPS Receiver
Crystal Filter (Z3)
The 45 MHz AMPS RX IF signal routes through the diode switch and is filtered by Z3, the crystal filter. L15, C83, C84 and R29 provide matching and attenuation into the filter. The filtered signal exiting the crystal proceeds through C14 and into the AMPS RX IC, D1 at pin 16.
AMPS RX IC (D1)
The AMPS RX IC, D1 completes the demodulation of the AMPS signal with the help of some peripheral circuitry. VRXAM supplies approximately
4.40 V to this IC at pin 4. The 45 MHz IF signal enters at pin 16, the Mixer In port. The IC supports the active portion of another oscillator circuit used in the second down conversion, or mixing stage. This 2nd LO runs at 44.545 MHz. L16, C6, C7, C9, R1 and crystal B1 make up the resonator circuit of this oscillator. This resonator connects to the IC at pins 1 and 2.
System Module
The 45 MHz 1st IF signal mixes with the 44.545 MHz LO to produce the 2nd IF signal at 455 kHz. This mixing stage is located within the AMPS RX IC. The down converted 2nd IF signal exits the mixer at pin 3 of the IC and is filtered by Z4, the 455 kHz ceramic filter. C5 and C4 help match the input and output of the filter to the IC at pins 5 and 6.
The 455 kHz 2nd IF FM signal is quadrature demodulated by a circuit comprised of L17, C85 and R32, all in parallel across pins 4 and 10. It is important to NOT adjust the tunable inductor L17!!! Doing so will NOT assist in troubleshooting a faulty receiver, it will only make things WORSE!!! This device is tuned by its manufacturer to the proper inductance.
The audio signal remaining exits pin 9 of the IC and proceeds through R2. C1 and C10 provide some filtering before this signal is A/D converted by the CDRFI IC, N700. This audio line is labeled ANARX + DA. This signal may be viewed with an oscilloscope as an audio sine wave of approximately 380 mVpp. The output frequency will depend upon the input frequency deviation of the modulated signal entering the phone.
RSSI Indicator Line
Receive signal strength indication (RSSI) is provided via pin 12 of the AMPS RX IC, D1. As the signal level is increased the voltage at pin 12 or C13 will also increase. This voltage should be approximately 1.78 V for a modulated –75 dBm input signal.
Original 11/97
Page 4–27
NHD–4 System Module
CDMA Receiver
CDMA IF SAW Filter (Z2)
For CDMA RX operation the 45 MHz IF signal exits the 1st IF amplifier (V9) through pin 4 of the diode switch (V10). This signal then enters the CDMA SAW Filter (Z2), passing through an impedance matching network comprised of L8, L9, C71, C72, and C73. R22 and R23 supply current to V9 and V10. R22 also serves to set the Q of L8. The SAW filter itself has a bandwidth of 1.23 MHz. The output at pin 10 is matched to the next stage via C70 and L7. Two of the ten pins of this device serve as the RF input and output, while the other eight are ground. It is extremely important that all ten pins are well soldered to the PCB.
1CDMA IF LNA Stage (V7)
The received CDMA IF signal goes through another stage of amplification before being down converted to baseband by the CDAGCR IC (N1). V7 is this gain stage, a BJT in common base configuration. V8 temperature compensates the base voltage to V7 at the junction of R19, R20 and R21. The IF signal leaves this amplifier through the collector, pin 1. It enters the CDAGCR IC (N1) at pin 8, passing through an impedance matching network L4 and C69. In CDMA RX operation about 0.60 V should be found on the emitter of V7, pins 2 and 4. The collector will have about
1.40 V. The collector and base of V8 will be approximately 0.7 V.
Technical Documentation
CDAGCR – CDMA Receiver IC (N1)
The CDAGCR IC (N1) serves two functions. It controls the gain (AGC) of the received CDMA signal, and it quadrature demodulates the 45 MHz IF signal, and at the same time brings the IF down to baseband frequencies.
The dynamic gain of the CDAGCR IC (N1) is controlled by the two incoming signals RX_IREF and RX_ICT. These two signals are currents entering the IC at pins 23 and 24, through R17 and R16 respectively. RX_IREF is the reference current. RX_ICT is the control current. It varies in accordance with the gain required of the IC.
To measure these currents directly requires that you break the circuit and input an ammeter. This is impractical. Instead it is suggested that you simply measure the voltage drop across R17 and R16 to determine if these signals are correct. The voltage drop across R17 will remain constant at approximately 360 mV, while the drop across R16 will vary from approximately 10 mV to 115 mV. A simple test to demonstrate the functionality of the CDMA receiver AGC is found in the Troubleshooting portion of this document. This test also provides a table detailing the voltage drops (currents) generated verse received RF signal levels.
The DC supply VRXD provides bias to this IC. This supply will be approximately 4.40 V when the phone is in CDMA mode. When troubleshooting be sure to check all eight pins.
Page 4–28
The demodulated baseband digital I and Q signals exit the CDAGCR IC at pins 26 and 27 and proceed to the BFILCT IC (N2) through C33 and C57.
Original 11/97
NHD–4
Technical Documentation
Either of these two signals can be viewed with an oscilloscope. With an RF input of 881.62 MHz CW into a CDMA receiver tuned to channel 384, either of these signals will appear as sine waves of approximately 190 mVpp magnitude, 100 kHz in frequency.
BFILCT (N2)
The BFILCT IC, N2 serves to filter the demodulated baseband I & Q signals before delivering them to the CDRFI IC (N700) for A/D conversion. This IC also amplifies the I & Q signals. The I & Q signals enter this IC at pins 13 and 20 via C33 and C57 respectively. During normal operation pin 3 of N2 will be pulsed about every 10 seconds by the RX_FIL_CAL signal. The VBBFILM DC supply should be approximately 3.10 V at C36, C55 or C56. About 3.00 V should exist at the pin 8, R791, R792 node.
System Module
Original 11/97
Page 4–29
NHD–4 System Module
Synthesizer Functional Description
Introduction
The synthesizer module generates the oscillations necessary for the operation of the phone. It provides the clock signal for digital ICs and it creates the UHF and VHF oscillations needed to up convert and down convert the baseband signals to RF frequencies. There are three synthesizers in the NHD–4 phone. Only two will be discussed here, the UHF and 180 MHz VHF. The third, a 9.8304 MHz clock oscillator, is discussed in the CDCONT/AGC Functional Description.
The UHF and 180 MHz VHF oscillations are generated by phase lock loops. The 15.36 MHz VCTCXO (G300) is the reference oscillator for all frequency synthesis.
PLL IC (N300)
Technical Documentation
The core of the NHD–4 synthesizer is the PLL IC (N300). This IC supports two independent PLL circuits, both of which are used in NHD–4. The primary synthesizer is used to generate the tunable UHF LO. The secondary synthesizer generates a constant 180 MHz VHF signal. The IC is programmed by three lines; RX_LE, DATA, and CLK. There are three DC voltage supply pins on this device. Pins 4 and 5 should be approximately 3.15 V, and Pin 18 should be 4.15 V.
The VCTCXO Clock (G300)
A 15.36 MHz VCTCXO (G300) creates the common reference frequency (clock) for the synthesizers, as well as the remainder of the phone. Biasing this device requires 3.60 V on pin 4, V signal is routed to the PLL IC (N300) pin 8, CDRFI IC (N700), and CDCONT IC (N201).
The UHF Synthesizer
The operating frequency range of the UHF synthesizer is 914.01 to
938.97 MHz, or AMPS channels 990 to 799. This synthesizer has two modes of operation, Normal and Fast. Normal mode is the default, while Fast mode allows the synthesizer to lock to frequency faster. Fast mode is activated with the Fast line held active high. The output of the UHF passive loop filter is a DC voltage of 1.0 to 3.0 volts that tunes the VCO (G301) at the “C” pin. The VCO (voltage controlled oscillator) (G301) generates the UHF LO. The “B” pin of the VCO should be biased with approximately 4.25 V, supplied from VRXS via R808. VRXS should be approximately 4.15 V at R808 when the phone is in AMPS mode.
DD. The 15.36 MHz clock
Page 4–30
The output RF power from the VCO is routed to two gain stages and back to the PLL IC pin 6 to close the phase locked loop. The two gain stages amplify the UHF LO signal and provide it to the RX and TX modules respectively.
Original 11/97
NHD–4
Technical Documentation
N704 is biased at pin 3 by approximately 3.40 V, supplied from VRX via R803. VRX should be about 4.40 V. The RX_LO signal is routed to the mixer (Z1) through a SAW filter (Z701).
N705 is biased at pin 3 to approximately 2.70 V, from VTXT through R809 and R815. VTXT should be approximately 4.40 V. The TX_LO signal is delivered to the CDAGCT IC (N100) pin 2, through C795.
The VHF Synthesizer
The second PLL frequency synthesizer is the VHF, generating a constant 180 MHz. The varactor diode also doubles as an FM modulator for AMPS TX operation. The 180 MHz output of the oscillator is amplified by the common base buffer amp (V303).
The voltage at junction of R313 and the cathode of the varactor diode (V301) should always be a constant voltage somewhere between 1.5 V and 3.0d V. The base, emitter and collector of the oscillator transistor (V302) should be 2.32 V, 1.73 V, and 2.56 V respectively. The buffer amplifier (V303) is biased up with 4.30 V at the collector, 3.33 V at the base, and 2.62 V at the emitter. All these voltages originate from VRX90 which ought to be about 4.40 V at R806.
System Module
The ANATX line feeds the AC audio signal from the CDRFI IC (N700) via C341. When active, this signal can be viewed with an oscilloscope. With the ST tone active, the ANATX line will have an amplitude of approximately 250 mVpp at the R317, C341 node. ST (signaling tone) generates 10 kHz of modulation frequency.
Original 11/97
Page 4–31
NHD–4 System Module
AGC Functional Description
Signal Descriptions
Below are descriptions of the signals found within the CDCONT circuitry.
9.8304 MHz
The 9.8304 MHz line is the output of the synthesizer onboard the CDCONT IC (N201). Measured at C217 this signal should be approximately 700 mV when measured with an oscilloscope and a high impedance scope probe. This signal is used to clock the baseband portions of the phone while operating in CDMA mode.
15.36 MHz
The 15.36 MHz line is the reference frequency input to the synthesizer on board the CDCONT IC (N201). Measured at the CDCONT side of R319 this signal should be approximately 540 mV when measured with an oscilloscope and high impedance scope probe. This signal originates from the VCTCXO (G300).
Technical Documentation
AGC_REF
LIM_ADJ
RFEN 0–2
This is a PDM voltage used to control the level of attenuation of the AT–109 (V106). This signal originates at the CDSB ASIC (D704), pin 115. Measured at this pin, this PDM will vary from 0 to 3.15 V when moved over its dynamic range. The ASIC side of R701 would be another good probe point. Be aware that at this node the voltage will still be pulsed AC, however a true RMS meter will average out the current to provide the correct DC voltage.
This control signal is the output of the comparator used in the CDMA TX Gain Limiting control feature. It signals the CDSB ASIC (D704) when the maximum allowed CDMA TX output power has been achieved. This signal can be read at C807. When not at the output power limit, this signal will be logic high at approximately 3.15 V. When the limit has been reached this signal will toggle low (0.0 V) and high (3.15 V) at a frequency of approximately 400 Hz.
The three RFE lines determine the mode of the phone. They originate from the CDSB ASIC (D704) at pins 150, 149, and 134 for RFE0, RFE1 and RFE2 respectively.
RX_GAIN
Page 4–32
RX_Gain originates at pin 7 of the CDRFI, and is used for CDMA RX Gain control.
Original 11/97
NHD–4
Technical Documentation
RX_ICT
RX_ICT is the control current to the CDAGCR IC (N1).
RX_IREF
RX_IREF is the reference control current to the CDAGCR IC (N1).
RX_OFFSET
RX_OFFSET is a PDM voltage. CDSB ASIC (D704) pin 123, this PDM will vary from 0 to 3.15 V when moved over its dynamic range. The ASIC side of R712 would be another good probe point.
TX_GAIN
TX_Gain originates at pin 5 of the CDRFI, and is used for CDMA TX Gain control.
TX_ICT
System Module
TX_ICT is the control current to the CDAGCT IC (N100).
TX_IREF
TX_IREF is the reference control current to the CDAGCT IC (N100).
TX_OFFEST
TX_OFFSET is a PDM voltage. Measured at the CDSB ASIC (D704) pin 120, this PDM will vary from 0 to 3.15 V when moved over its dynamic range. The ASIC side of R711 would be another good probe point.
TXB
TXB is a PDM voltage. When measured at its origin, pin 122 of the ASIC, this PDM will vary from 0 to 3.15 V when moved over its dynamic range. The ASIC side of R703 would be another good probe point.
TXI
The TXI signal is a voltage originating from the Detector (V114). TXI will be approximately 1.0 V when the phone is transmitting at maximum power. Note: It is important to never read TXI at the detector, pin 1. Doing so will load this device down. TXI should be read from N202, pin 1 or 2.
TXI_REF
TXI_REF is a PDM voltage. When measured at its origin, pin 126 of the ASIC, this PDM will vary from 0 to 3.15 V when moved over its dynamic range. The ASIC side of R702 would be another good probe point.
VBAT
VBAT is the battery voltage.
Original 11/97
Page 4–33
NHD–4 System Module
VC
VC is the control voltage to the AT–109 variable attenuator. VC will typically be about 3.8 V when signaling the AT–109 for minimum attenuation, as it does in AMPS mode operation.
VCO_EN
VCO_EN is better known as the Reset line. It originates at the CDSB ASIC (D704) pin 128. It terminates at the CDCONT IC (N201) pin 23, the Reset pin.
DC Voltage Supplies
The CDCONT IC (N201) contains the DC voltage regulators, or supplies, used to provide DC bias throughout the RF modules of the phone. There are nine regulators. Voltage regulation is performed within the CDCONT IC for six of these; VRX90, VRX, VRXS, VTXS, VRXD and VRXA. The remaining three, VTX, VBBFIL, and VRXD_R have some additional regulation external to the CDCONT. VBAT, the battery voltage, is the voltage source. These voltage supplies are turned on and off depending upon the mode of the phone. The table below details the active supplies and their approximate voltages for operation in both the AMPS RX/TX mode and the CDMA RX/TX mode. A shaded box indicates that supply is on for the respective mode. Test points for voltage measurement of the respective supplies are also listed.
Technical Documentation
Mode VBBFIL VNEG VRX VRXA VRXD VRXD_R VRXS VRX90 VTX VTXS
Measurement point
AMPS RX/TX CDMA RX/TX
C224 N200
pin 5
~ 0.0 –4.10 4.45 4.45 1.65 ~ 0.0 4.45 4.45 5.30 4.45
3.15 –4.10 4.45 1.20 4.45 4.50 4.45 4.45 5.35 4.45
C206 C219 C218 N706
pin 4
C207 C205 C212 C200
* Values are in volts (V)
VBBFIL
VBBFIL provides bias to the BFILCT2 IC (N2). The VBBFIL voltage supply circuit uses an external PNP transistor (V203) for regulation. This supply is on during CDMA RX/TX operation. When VBBFIL is active the collector of V203 will be approximately 3.15 V, the emitter voltage will be VBAT, the battery voltage, and the base voltage will be approximately 0.7 V less than the emitter voltage.
VNEG
VNEG is created by the negative voltage generator N200. The VTXS supply is used as the positive voltage bias from which to generated the negative voltage. Whenever VTXS is active, VNEG will be present. VNEG is approximately
Page 4–34
– 4.1 V when VTXS is 4.45 V.
Original 11/97
NHD–4
Technical Documentation
VRX
VRX is used to supply the LNA (V12) and the LNA switches (N701, N702). It is also biases the RX_LO gain stage (N704) at the UHF synthesizer module. VRX will be approximately 4.45 V while active in AMPS RX/TX mode.
VRXA
VRXA is used for AMPS RX applications such as bias for the AMPS RX IC (D1) and the 1 approximately 4.45 V when active.
VRXD
VRXD will be approximately 4.45 V while active.
VRXD_R
Both the CDAGCR IC (N1) and the CDMA IF LNA (V7) are biased from this supply. The 1
System Module
st
IF gain stage while in AMPS operation. VRXA will be
st
IF gain stage (V9) is also biased from this supply.
VRXS
VRX90
VTX
N706 is a voltage regulator IC providing 4.50 V at pin 4 when enabled at pin 1.
VRXS is used to bias the PLL IC (N300) and the 15.36 MHz VCTCXO (G300). VRXS should be approximately 4.45 V when active in the AMPS RX/TX mode.
VRX90 is used to bias the 180 MHz VCO and buffer amp. VRX90 should be approximately 4.45 V when active in the AMPS RX/TX mode.
VTX is used in transmitter applications, mainly for biasing the CDAGCT IC (N100).
Just like the VBBFIL, the VTX supply circuit uses an external PNP transistor (V202) for regulation. The resistors R201 and R202 are used as part of this external regulator circuit. This supply is on whenever the transmitter is on. When this supply is active, the collector of V203 will be approximately 5.30 V, the emitter will be VBAT, the battery voltage, and the base of V203 will be approximately 0.7 V down from the emitter.
VTXS
VTXS is used in transmitter applications such as bias for the AT–109 variable attenuator (V106) and bias to the Detector (V114). This supply also biases the negative voltage generator (N200) which creates VNEG. VTXS will be approximately 4.45 V when active in the AMPS RX/TX mode.
Original 11/97
Page 4–35
NHD–4 System Module
9.8304 MHz Synthesizer
The CDCONT IC (N201) contains a PLL frequency synthesizer which generates a 9.8304 MHz oscillation used to clock the baseband modules of the phone. The 15.36 MHz VCTCXO is used as the reference oscillation. VRXD_C (VRXD) supply biases the PLL at pin 29 of N201 via R212, decoupled with C221 and C222. There should be approximately
4.15 V on Pin 29. The loop filter of the PLL is external to the CDCONT IC, comprised of R213, R214, C209, C210, and C211. The internal VCO input, pin 38 should have approximately 1.60 V on it.
In CDMA operation the bias current to the final PA stage (V113) is dynam­ic. Bias current is set such that the CLY–10 (V113) final PA stage will draw 100 mA for up to 10 dBm of CDMA TX output power. Above 10 dBm of output the bias changes, ramping up to a maximum draw of 250 mA achieved at 23 dBm of output power. The slope of this ramp is de­fined as the TXB Slope. The 250 mA current bias is maintained for power output greater than 23 dBm. This feature is referred to as Dynamic TXB. The following graph depicts the dynamic relationship between CDMA out­put power and CLY–10 (V113) bias current.
Technical Documentation
Page 4–36
Original 11/97
NHD–4
Technical Documentation
Parts List GR1_17A
p.n 0200519 EDMS issue 23.0
Item Code Description Value Type
R001 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R002 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R003 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R004 1430740 Chip resistor 330 5 % 0.063 W 0402 R005 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R006 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R013 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R014 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R015 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R016 1430740 Chip resistor 330 5 % 0.063 W 0402 R017 1430740 Chip resistor 330 5 % 0.063 W 0402 R018 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R019 1430700 Chip resistor 10 5 % 0.063 W 0402 R020 1430744 Chip resistor 470 5 % 0.063 W 0402 R021 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R022 1430748 Chip resistor 680 5 % 0.063 W 0402 R023 1430700 Chip resistor 10 5 % 0.063 W 0402 R024 1430726 Chip resistor 100 5 % 0.063 W 0402 R025 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R028 1430724 Chip resistor 82 5 % 0.063 W 0402 R029 1430734 Chip resistor 220 5 % 0.063 W 0402 R030 1430748 Chip resistor 680 5 % 0.063 W 0402 R031 1430700 Chip resistor 10 5 % 0.063 W 0402 R032 1430766 Chip resistor 3.9 k 5 % 0.063 W 0402 R033 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R034 1430710 Chip resistor 22 5 % 0.063 W 0402 R035 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R036 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R100 1430744 Chip resistor 470 5 % 0.063 W 0402 R101 1430700 Chip resistor 10 5 % 0.063 W 0402 R102 1430744 Chip resistor 470 5 % 0.063 W 0402 R103 1430708 Chip resistor 18 5 % 0.063 W 0402 R104 1430726 Chip resistor 100 5 % 0.063 W 0402 R105 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R106 1430734 Chip resistor 220 5 % 0.063 W 0402 R107 1430766 Chip resistor 3.9 k 5 % 0.063 W 0402 R108 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R109 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402
System Module
Original 11/97
Page 4–37
NHD–4 System Module
R110 1430720 Chip resistor 56 5 % 0.063 W 0402 R111 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R112 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R113 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R114 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R115 1430726 Chip resistor 100 5 % 0.063 W 0402 R116 1430726 Chip resistor 100 5 % 0.063 W 0402 R117 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R118 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R119 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R120 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R121 1430718 Chip resistor 47 5 % 0.063 W 0402 R124 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R125 1430732 Chip resistor 180 5 % 0.063 W 0402 R126 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R127 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R128 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R129 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R130 1430700 Chip resistor 10 5 % 0.063 W 0402 R132 1430732 Chip resistor 180 5 % 0.063 W 0402 R133 1430732 Chip resistor 180 5 % 0.063 W 0402 R134 1430714 Chip resistor 33 5 % 0.063 W 0402 R135 1430746 Chip resistor 560 5 % 0.063 W 0402 R136 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R137 1430734 Chip resistor 220 5 % 0.063 W 0402 R138 1430691 Chip resistor 2.2 5 % 0.063 W 0402 R139 1430700 Chip resistor 10 5 % 0.063 W 0402 R140 1430802 Chip resistor 82 k 5 % 0.063 W 0402 R141 1800659 NTC resistor 47 k 10 % 0.12 W 0805 R143 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R201 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R202 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R203 1430794 Chip resistor 39 k 5 % 0.063 W 0402 R204 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R205 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R206 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R207 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R208 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R209 1430726 Chip resistor 100 5 % 0.063 W 0402 R210 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R211 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R212 1430700 Chip resistor 10 5 % 0.063 W 0402 R213 1430784 Chip resistor 15 k 5 % 0.063 W 0402
Technical Documentation
Page 4–38
Original 11/97
NHD–4
Technical Documentation
R214 1430774 Chip resistor 6.8 k 5 % 0.063 W 0402 R215 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R216 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R217 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R218 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R219 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R220 1430700 Chip resistor 10 5 % 0.063 W 0402 R222 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R224 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R225 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R226 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R228 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R229 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R300 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R301 1430808 Chip resistor 150 k 5 % 0.063 W 0402 R302 1430798 Chip resistor 56 k 5 % 0.063 W 0402 R307 1430710 Chip resistor 22 5 % 0.063 W 0402 R308 1430718 Chip resistor 47 5 % 0.063 W 0402 R309 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R310 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R311 1430802 Chip resistor 82 k 5 % 0.063 W 0402 R312 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R313 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R314 1430756 Chip resistor 1.2 k 5 % 0.063 W 0402 R315 1430760 Chip resistor 1.8 k 5 % 0.063 W 0402 R316 1430740 Chip resistor 330 5 % 0.063 W 0402 R317 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R318 1430774 Chip resistor 6.8 k 5 % 0.063 W 0402 R319 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R321 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R322 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R323 1430700 Chip resistor 10 5 % 0.063 W 0402 R324 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R325 1430748 Chip resistor 680 5 % 0.063 W 0402 R326 1800659 NTC resistor 47 k 10 % 0.12 W 0805 R327 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R328 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R329 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R331 1430730 Chip resistor 150 5 % 0.063 W 0402 R400 1430724 Chip resistor 82 5 % 0.063 W 0402 R401 1430716 Chip resistor 39 5 % 0.063 W 0402 R500 1430842 Chip resistor 680 k 1 % 0.063 W 0402
System Module
Original 11/97
Page 4–39
NHD–4 System Module
R501 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R502 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R503 1430840 Chip resistor 220 k 1 % 0.063 W 0402 R504 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R505 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R506 1430801 Chip resistor 2.1 k 1 % 0.063 W 0402 R507 1430844 Chip resistor 3.9 k 1 % 0.063 W 0402 R508 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R510 1430730 Chip resistor 150 5 % 0.063 W 0402 R511 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R512 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R513 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R514 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R515 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R516 1430726 Chip resistor 100 5 % 0.063 W 0402 R600 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R601 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R602 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R603 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R604 1430726 Chip resistor 100 5 % 0.063 W 0402 R605 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R606 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R607 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R700 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R701 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R702 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R703 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R704 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R707 1430726 Chip resistor 100 5 % 0.063 W 0402 R708 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R709 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R711 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R712 1430794 Chip resistor 39 k 5 % 0.063 W 0402 R716 1430726 Chip resistor 100 5 % 0.063 W 0402 R717 1430726 Chip resistor 100 5 % 0.063 W 0402 R718 1430726 Chip resistor 100 5 % 0.063 W 0402 R723 1430726 Chip resistor 100 5 % 0.063 W 0402 R724 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R725 1430726 Chip resistor 100 5 % 0.063 W 0402 R726 1430840 Chip resistor 220 k 1 % 0.063 W 0402 R727 1430840 Chip resistor 220 k 1 % 0.063 W 0402 R728 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R729 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402
Technical Documentation
Page 4–40
Original 11/97
NHD–4
Technical Documentation
R730 1430726 Chip resistor 100 5 % 0.063 W 0402 R731 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R732 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R733 1430726 Chip resistor 100 5 % 0.063 W 0402 R734 1430726 Chip resistor 100 5 % 0.063 W 0402 R735 1430726 Chip resistor 100 5 % 0.063 W 0402 R736 1430726 Chip resistor 100 5 % 0.063 W 0402 R737 1430726 Chip resistor 100 5 % 0.063 W 0402 R738 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R739 1430726 Chip resistor 100 5 % 0.063 W 0402 R740 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R741 1430700 Chip resistor 10 5 % 0.063 W 0402 R751 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R754 1430726 Chip resistor 100 5 % 0.063 W 0402 R755 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R757 1430135 Chip resistor 10 M 5 % 0.063 W 0603 R758 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R759 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R760 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R761 1430145 Chip resistor 100 k 1 % 0.063 W 0402 R762 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R763 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R764 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R765 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R775 1430718 Chip resistor 47 5 % 0.063 W 0402 R777 1430718 Chip resistor 47 5 % 0.063 W 0402 R779 1430718 Chip resistor 47 5 % 0.063 W 0402 R781 1430718 Chip resistor 47 5 % 0.063 W 0402 R782 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R783 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R785 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R786 1430726 Chip resistor 100 5 % 0.063 W 0402 R790 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R791 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R792 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R798 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R799 1430730 Chip resistor 150 5 % 0.063 W 0402 R800 1430730 Chip resistor 150 5 % 0.063 W 0402 R801 1430728 Chip resistor 120 5 % 0.063 W 0402 R803 1430726 Chip resistor 100 5 % 0.063 W 0402 R804 1430724 Chip resistor 82 5 % 0.063 W 0402 R805 1430718 Chip resistor 47 5 % 0.063 W 0402 R806 1430710 Chip resistor 22 5 % 0.063 W 0402
System Module
Original 11/97
Page 4–41
NHD–4 System Module
R807 1430710 Chip resistor 22 5 % 0.063 W 0402 R808 1430710 Chip resistor 22 5 % 0.063 W 0402 R809 1430734 Chip resistor 220 5 % 0.063 W 0402 R810 1430710 Chip resistor 22 5 % 0.063 W 0402 R813 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R814 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R815 1430734 Chip resistor 220 5 % 0.063 W 0402 R816 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R817 1430774 Chip resistor 6.8 k 5 % 0.063 W 0402 R818 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R819 1430690 Chip jumper 0402 R822 1430690 Chip jumper 0402 R825 1430718 Chip resistor 47 5 % 0.063 W 0402 R826 1430718 Chip resistor 47 5 % 0.063 W 0402 R827 1430744 Chip resistor 470 5 % 0.063 W 0402 R828 1430744 Chip resistor 470 5 % 0.063 W 0402 R830 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R831 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R832 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R833 1430700 Chip resistor 10 5 % 0.063 W 0402 R834 1430700 Chip resistor 10 5 % 0.063 W 0402 R835 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R837 1430690 Chip jumper 0402 R838 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R839 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R840 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R841 1430788 Chip resistor 22 k 5 % 0.063 W 0402 C001 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C002 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C003 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C004 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C005 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C006 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C007 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C008 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C009 2320554 Ceramic cap. 56 p 5 % 50 V 0402 C010 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C011 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C012 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C013 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C014 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C015 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C017 2320552 Ceramic cap. 47 p 5 % 50 V 0402
Technical Documentation
Page 4–42
Original 11/97
NHD–4
Technical Documentation
C020 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C021 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C022 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C023 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C024 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C025 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C026 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C027 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C028 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C029 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C030 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C031 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C032 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C033 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C034 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C035 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C036 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C037 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C041 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C042 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C043 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C044 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C045 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C046 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C047 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C048 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C049 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C050 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C051 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C052 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C053 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C054 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C055 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C056 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C057 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C058 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C059 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C060 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C061 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C062 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C063 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C064 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C065 2320544 Ceramic cap. 22 p 5 % 50 V 0402
System Module
Original 11/97
Page 4–43
NHD–4 System Module
C066 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C067 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C068 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C069 2320558 Ceramic cap. 82 p 5 % 50 V 0402 C070 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C071 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C072 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C073 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C075 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C076 2320562 Ceramic cap. 120 p 5 % 50 V 0402 C077 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C078 2320572 Ceramic cap. 330 p 5 % 50 V 0402 C080 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C081 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C082 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C083 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C084 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C085 2320572 Ceramic cap. 330 p 5 % 50 V 0402 C088 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C089 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C090 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C091 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C092 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C093 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C094 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C095 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C096 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C098 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C100 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C101 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C102 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C103 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C104 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C105 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C106 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C107 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C108 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C109 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C110 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C111 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C112 2320522 Ceramic cap. 2.7 p 0.25 % 50 V 0402 C113 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C114 2320544 Ceramic cap. 22 p 5 % 50 V 0402
Technical Documentation
Page 4–44
Original 11/97
NHD–4
Technical Documentation
C115 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C116 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C118 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C119 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C120 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C121 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C122 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C123 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C124 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C125 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C126 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C127 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C128 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C129 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C130 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C131 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C132 2320522 Ceramic cap. 2.7 p 0.25 % 50 V 0402 C133 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C134 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C135 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C136 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C137 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C138 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C139 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C140 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C141 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C142 2610027 Tantalum cap. 3.3 u 10 % 16 V 3.2x1.6x1.6 C143 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C144 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C145 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C146 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C147 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C148 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C149 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C150 2320550 Ceramic cap. 39 p 5 % 50 V 0402 C151 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C152 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C153 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C154 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C155 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C156 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C157 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C158 2320544 Ceramic cap. 22 p 5 % 50 V 0402
System Module
Original 11/97
Page 4–45
NHD–4 System Module
C159 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C160 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C161 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C162 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C163 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C164 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C165 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C166 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C167 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C169 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C170 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C171 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C172 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C173 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C174 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C175 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C176 2320522 Ceramic cap. 2.7 p 0.25 % 50 V 0402 C177 2320550 Ceramic cap. 39 p 5 % 50 V 0402 C200 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C201 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C202 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C203 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C204 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C205 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C206 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C207 2312410 Ceramic cap. 1.0 u 10 % 16 V 1206 C208 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C209 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C210 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C211 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C212 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C213 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C214 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C215 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C216 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C217 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C218 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C219 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C220 2312410 Ceramic cap. 1.0 u 10 % 16 V 1206 C221 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C222 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C223 2310784 Ceramic cap. 100 n 10 % 25 V 0805 C224 2310784 Ceramic cap. 100 n 10 % 25 V 0805
Technical Documentation
Page 4–46
Original 11/97
NHD–4
Technical Documentation
C225 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C226 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C227 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C300 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C301 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C302 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C303 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C308 2312410 Ceramic cap. 1.0 u 10 % 16 V 1206 C309 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C310 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C311 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C312 2320558 Ceramic cap. 82 p 5 % 50 V 0402 C313 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C314 2310003 Ceramic cap. 470 n 10 % 16 V 0805 C315 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C316 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C317 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C318 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C319 2320548 Ceramic cap. 33 p 5 % 50 V 0402 C320 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C321 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C322 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C328 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C329 2320550 Ceramic cap. 39 p 5 % 50 V 0402 C330 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C331 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C332 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C333 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C334 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C335 2310780 Ceramic cap. 68 n 10 % 25 V 0805 C336 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C337 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C338 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C339 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C340 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C341 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C400 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C500 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C501 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C502 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C503 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C504 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C505 2320778 Ceramic cap. 10 n 10 % 16 V 0402
System Module
Original 11/97
Page 4–47
NHD–4 System Module
C506 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C507 2340014 Ceramic cap. 47 n 10 % 25 V 0805 C508 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C509 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C510 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C511 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C512 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C513 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C514 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C515 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C516 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C517 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C518 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C519 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C520 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C600 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C601 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C602 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C603 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C604 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C605 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C606 2310791 Ceramic cap. 33 n 20 % 50 V 0805 C607 2310791 Ceramic cap. 33 n 20 % 50 V 0805 C608 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C609 2310791 Ceramic cap. 33 n 20 % 50 V 0805 C610 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C611 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C612 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C613 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C700 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C701 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C702 2310003 Ceramic cap. 470 n 10 % 16 V 0805 C703 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C704 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C705 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C706 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C707 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C708 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C709 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C710 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C711 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C712 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C713 2307816 Ceramic cap. 47 n 20 % 25 V 0805
Technical Documentation
Page 4–48
Original 11/97
NHD–4
Technical Documentation
C714 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C715 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C716 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C717 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C718 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C719 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C720 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C721 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C722 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C723 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C724 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C725 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C726 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C727 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C728 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C729 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C730 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C731 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C733 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C735 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C736 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C737 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C738 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C739 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C740 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C741 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C742 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C743 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C744 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C745 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C746 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C747 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C748 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C749 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C750 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C751 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C752 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C754 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C756 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C762 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C765 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C768 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C769 2320552 Ceramic cap. 47 p 5 % 50 V 0402
System Module
Original 11/97
Page 4–49
NHD–4 System Module
C771 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C776 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C777 2610200 Tantalum cap. 2.2 u 20 % 2.0x1.3x1.2 C778 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C781 2610100 Tantalum cap. 1 u 20 % 10 V 2.0x1.3x1.2 C782 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C784 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C785 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C786 2320744 Ceramic cap. 1.0 n 10 % 50 V 0402 C787 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C788 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C789 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C790 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C791 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C792 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C793 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C794 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C795 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C796 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C797 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C798 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C800 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C801 2610027 Tantalum cap. 3.3 u 10 % 16 V 3.2x1.6x1.6 C802 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C803 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C804 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C805 2312293 Ceramic cap. Y5 V 1206 C806 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C807 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C808 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 L004 3643053 Chip coil 120 n 2 % Q=25/25 MHz 1008 L005 3641558 Chip coil 8 n 10 % Q=50 0805 L006 3641300 Chip coil 330 n 5 % Q=30/25 MHz 1008 L007 3641407 Chip coil 910 n 2 % Q=33/25 MHz 1008 L008 3641405 Chip coil 220 n 2 % Q=28/25 MHz 1008 L009 3641340 Chip coil 820 n 2 % Q=33/25 MHz 1008 L011 3641306 Chip coil 5 % Q=33/25 MHz 1008 L012 3640007 Chip coil 150 n 2 % Q=25/25 MHz 1008 L013 3641558 Chip coil 8 n 10 % Q=50 0805 L014 3641574 Chip coil 68 n 5 % Q=40/200 MHz 0805 L015 3643057 Chip coil 5 % Q=22/25 MHz 1008 L016 3641302 Chip coil 470 n 5 % Q=30/25 MHz 1008 L017 3660102 Coil adj. 320 u 2 % Q=80 5X5
Technical Documentation
Page 4–50
Original 11/97
NHD–4
Technical Documentation
L020 3641521 Chip coil 6 n 5 % Q=50/250 MHz 0805 L021 3641574 Chip coil 68 n 5 % Q=40/200 MHz 0805 L022 3641521 Chip coil 6 n 5 % Q=50/250 MHz 0805 L100 3640043 Chip coil 4 n 10 % Q=50/1GHZ 0805 L101 3640051 Chip coil 12 n 5 % Q=45/250 MHz 0805 L102 3641572 Chip coil 22 n 5 % Q=45/250 MHz 0805 L103 3641572 Chip coil 22 n 5 % Q=45/250 MHz 0805 L104 3640051 Chip coil 12 n 5 % Q=45/250 MHz 0805 L105 3641572 Chip coil 22 n 5 % Q=45/250 MHz 0805 L106 3641572 Chip coil 22 n 5 % Q=45/250 MHz 0805 L107 3641522 Chip coil 6 n 20 % Q=50/250 MHz 0805 L108 3640045 Chip coil 10 n 5 % Q=55/750 MHz 0805 L109 3640061 Ferrite bead 0r04 26r/100mhz L301 3643051 Chip coil 39 n 5 % Q=55/500 MHz 0805 L302 3641558 Chip coil 8 n 10 % Q=50 0805 L303 3641572 Chip coil 22 n 5 % Q=45/250 MHz 0805 L305 3641308 Chip coil 5 % Q=20/7.9 MHz 1008 L400 3641522 Chip coil 6 n 20 % Q=50/250 MHz 0805 L500 3641262 Ferrite bead 30r/100mhz 2a L700 3641262 Ferrite bead 30r/100mhz 2a L701 3641574 Chip coil 68 n 5 % Q=40/200 MHz 0805 B001 4510016 Crystal 44.545M B700 4510003 Crystal 32.768k +–20PPM G300 4510143 VCTCXO 15.36M +–1.5PPM 3V G301 4350081 Vco 914–939mhz 4.5v 8ma Z001 4510121 Saw filter 881.5+–12.5M Z002 4511019 Saw filter 45.0+–0.615M Z003 4510129 XTAL filter 45M +–15KHZ Z004 4556910 Cer.filt 455+–15khz Z100 4510123 Saw filter 836.5+–12.5M Z101 4510123 Saw filter 836.5+–12.5M Z102 4512012 Dupl 824–849/869–894mhz Z701 4510125 Saw filter 934.5+–20.5M T001 4340157 Emd40–900l 2bal mixer 900mhz V001 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V004 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V007 4210090 Transistor BFG540/X npn 15 V 129 mA SOT143 V008 4210090 Transistor BFG540/X npn 15 V 129 mA SOT143 V009 4210090 Transistor BFG540/X npn 15 V 129 mA SOT143 V010 4112461 Pindix3 bar60 100v 140ma V011 4219908 Transistor x 2 UMT1 pnp 40 V SOT363 V012 4210165 Transistor NE68518 npn 6V V 30 mA SOT343 V100 4219908 Transistor x 2 UMT1 pnp 40 V SOT363
System Module
Original 11/97
Page 4–51
NHD–4 System Module
V101 4210100 Transistor BC848W npn 30 V SOT323 V102 4210052 Transistor DTC114EE npn RB V EM3 V103 4210052 Transistor DTC114EE npn RB V EM3 V104 4210100 Transistor BC848W npn 30 V SOT323 V105 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V106 4340319 At109 var attn 0.5–2ghz 35db so8s SO8S V107 4210100 Transistor BC848W npn 30 V SOT323 V108 4219908 Transistor x 2 UMT1 pnp 40 V SOT363 V109 4210075 Transistor SOT223 V110 4210251 Transistor BFP196 npn 12 V SOT143 V111 4210010 Transistor BFP183 npn 12 V 65 mA SOT143 V112 4210251 Transistor BFP196 npn 12 V SOT143 V113 4210342 MosFet GaAs CLY10 SOT223 V114 4115802 Sch. diode x 2 4V 30 mA SOT23 V115 4210100 Transistor BC848W npn 30 V SOT323 V200 4210100 Transistor BC848W npn 30 V SOT323 V201 4210102 Transistor BC858W pnp 30V 100mA V202 4200877 Transistor BCX51–16 pnp 45V 1.5A V203 4210054 Transistor FMMT589 pnp 30V 1A V301 4110026 Cap. diode 1SV229 2/10V V302 4210066 Transistor BFR93AW npn 12 V 35 mA V303 4210066 Transistor BFR93AW npn 12 V 35 mA V304 4210052 Transistor DTC114EE npn RB V EM3 V500 4200877 Transistor BCX51–16 pnp 45V 1.5A V501 4200877 Transistor BCX51–16 pnp 45V 1.5A V502 4200877 Transistor BCX51–16 pnp 45V 1.5A V503 4110074 Schottky diode STPS340U 40V 3A V504 4210075 Transistor V505 4200226 Darl. transistor BCV27 npn 30V 300mA V506 4200226 Darl. transistor BCV27 npn 30V 300mA V507 4210102 Transistor BC858W pnp 30V 100mA 200MW V508 4113828 Trans. supr. SMBJ28A DO214AA V509 4116536 Zener diode BZX84 5 % 2.4 V 0.3 W SOT23 V510 4111824 DiodeBAS16 75 V 250 mA 6 ns SOT23 V701 4210050 Transistor DTA114EE pnp RBV EM3 V702 4210052 Transistor DTC114EE npn RBV EM3 V703 4210100 Transistor BC848W npn 30V SOT323 V704 4110078 Schdix2 bas70–05w 70v 70ma V705 4110078 Schdix2 bas70–05w 70v 70ma V706 4210050 Transistor DTA114EE pnp RBV EM3 V707 4219904 Transistor x 2 UMX1 npn 40V V708 4219904 Transistor x 2 UMX1 npn 40V V710 4510119 Isolator 836.5+–12.5mhz 13DB
Technical Documentation
Page 4–52
Original 11/97
NHD–4
Technical Documentation
V713 4210052 Transistor DTC114EE npn RB V EM3 V714 4210052 Transistor DTC114EE npn RB V EM3 V715 4210052 Transistor DTC114EE npn RB V EM3 V716 4210100 Transistor BC848W npn 30 V SOT323 V717 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V718 4210052 Transistor DTC114EE npn RB V EM3 D001 4349694 IC, if amp+fm detector TA31136 SSO16 D500 4340164 IC, regulator TK11247 4.75 V 180 mA SSO6 D700 4340323 IC, SRAM TSO28 D703 4340151 IC, EEPROM TSOP28 D704 4370195 Nrdbtf cdma cdsb iv.5 TQFP176 D705 4370153 IC, tms320lc541–50 ci5DSP PQFP100 D706 4370083 IC, MCU QFP80A D707 4340007 IC, SRAM TSO44 D709 4340219 IC, flash1024x8 90ns tso E28F008BVB TSO40 D710 4340187 IC, 1xor 2input 1vTC7SL32FU SOT353 D712 4340183 IC, 1xand 2input 1v TC7SL08FU SOT353 N001 4370187 Cdagcr3 cdma rx agc rf ic tqfp32 TQFP32 N002 4370291 Bfilct2 baseband filter SSOP–20 N100 4370191 Cdagct4 cdma tx agc rf ic TQFP32 N200 4349576 IC, v.conv+1.5–12vto neg ICL7660 SO8 N201 4370197 Wf50c asic cdcont5 rev–cTQFP64 N202 4340041 IC, 2 x op.amp. TC75W51FU SSO8 N300 4340005 IC, 2xsynth 1.2ghz 3v UMA1018M SSO20 N500 4370055 IC, PSL+ power supply SO24 N600 4340013 St5090 audio codec N700 4370189 Cdma rf frnt–end cdrfi 6.0 N701 4340169 IC, l–band spdt mmic 3v PG132G N702 4340169 IC, l–band spdt mmic 3v PG132G N704 4340233 Mrfic0916 rf amp 2500mhz N705 4340233 Mrfic0916 rf amp 2500mhz N706 4340139 IC, regulator TK11245AM 0.22A X400 9510277 Antenna clip 4D25006 X700 5431718 Flexfoil connect X701 5469792 Syst.conn.4DC+JACK+16AF+1RF W400 9780168 Semi–rigid coax cable dmd00192
9854105 PCB GR1
System Module
Original 11/97
Page 4–53
NHD–4 System Module
Technical Documentation
This page intentionally left blank
Page 4–54
Original 11/97
Loading...