Intel 7512, 7510, 7500 Thermal/mechanical Design Manuallines

Intel® 7500, 7510, and 7512 Scalable Memory Buffer
Thermal/Mechanical Design Guidelines
April 2011
Reference Number: 322828-002
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The Intel 7500, 7510, and 7512 Scalable Memory Buffer may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available upon request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained
by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com. Intel, Xeon, Itanium, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. * Other brands and names may be claimed as the property of others. Copyright © 2010, Intel Corporation. All rights reserved.
2 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Contents
1 Introduction ..............................................................................................................7
1.1 Design Flow........................................................................................................7
1.2 Definition of Terms ..............................................................................................8
1.3 Reference Documents ..........................................................................................9
2 Packaging Technology ............................................................................................. 11
2.1 Package Mechanical Requirements.......................................................................13
3 Thermal Specifications ............................................................................................ 15
3.1 Thermal Design Power (TDP) .............................................................................. 15
3.2 Die Case Temperature Specifications.................................................................... 15
4 Thermal Metrology .................................................................................................. 17
4.1 Die Temperature Measurements.......................................................................... 17
4.1.1 Zero Degree Angle Attach Methodology ..................................................... 17
5 Reference Thermal Solution 1.................................................................................. 21
5.1 Operating Environment ...................................................................................... 21
5.1.1 Maximum Fan Speed Assumption ............................................................. 21
5.1.2 Acoustics Fan Speed Assumption.............................................................. 21
5.2 Heatsink Performance........................................................................................ 22
5.3 Mechanical Design Envelope ............................................................................... 23
5.4 Board-Level Components Keepout Dimensions ...................................................... 23
5.5 Tall Torsional Clip Heatsink Thermal Solution Assembly .......................................... 25
5.5.1 Heatsink Orientation............................................................................... 26
5.5.2 Extruded Heatsink Profiles ....................................................................... 26
5.5.3 Mechanical Interface Material................................................................... 27
5.5.4 Thermal Interface Material....................................................................... 27
5.5.5 Heatsink Clip ......................................................................................... 27
5.5.6 Clip Retention Anchors............................................................................ 27
5.6 Reliability Guidelines.......................................................................................... 28
6 Reference Thermal Solution 2.................................................................................. 29
6.1 Operating Environment ...................................................................................... 29
6.1.1 Maximum Fan Speed Assumption ............................................................. 29
6.1.2 Acoustics Fan Speed Assumption.............................................................. 29
6.2 Heatsink Performance........................................................................................ 30
6.3 Mechanical Design Envelope ............................................................................... 31
6.4 Board-Level Components Keepout Dimensions ...................................................... 31
6.5 Short Torsional Clip Heatsink Thermal Solution Assembly........................................ 31
6.5.1 Heatsink Orientation............................................................................... 32
6.5.2 Extruded Heatsink Profiles ....................................................................... 32
6.5.3 Mechanical Interface Material................................................................... 33
6.5.4 Thermal Interface Material....................................................................... 33
6.5.5 Heatsink Clip ......................................................................................... 33
6.5.6 Clip Retention Anchors............................................................................ 33
6.6 Reliability Guidelines.......................................................................................... 33
A Thermal Solution Component Suppliers ................................................................... 35
A.1 Tall Torsional Clip Heatsink Thermal Solution ........................................................ 35
A.2 Short Torsional Clip Heatsink Thermal Solution...................................................... 36
B Mechanical Drawings............................................................................................... 37
Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG 3
Figures
1-1 Thermal Design Process....................................................................................... 8
2-1 Scalable Memory Buffer Package Dimensions (Top View).........................................11
2-2 Scalable Memory Buffer Package Dimensions (Side View)........................................11
2-3 Scalable Memory Buffer Package Dimensions (Bottom View)....................................12
4-1 Thermal Solution Decision Flowchart ....................................................................18
4-2 Zero Degree Angle Attach Heatsink Modifications ...................................................18
4-3 Zero Degree Angle Attach Methodology (Top View) ................................................19
5-1 Tall Torsional Clip Heatsink Measured Thermal Performance Versus
Approach Velocity ..............................................................................................22
5-2 Tall Torsional Clip Heatsink Volumetric Envelope for the
Intel 7500 Scalable Memory Buffer.......................................................................23
5-3 Tall Torsional Clip Heatsink Board Component Keepout ...........................................24
5-4 Retention Mechanism Component Keepout Zones...................................................25
5-5 Tall Torsional Clip Heatsink Assembly ...................................................................26
5-6 Tall Torsional Clip Heatsink Extrusion Profile..........................................................26
5-7 Anchors for Tall and Short Heatsink Retention .......................................................28
6-1 Short Torsional Clip Heatsink Measured Thermal Performance Versus
Approach Velocity ..............................................................................................30
6-2 Short Torsional Clip Heatsink Volumetric Envelope .................................................31
6-3 Short Torsional Clip Heatsink Assembly.................................................................32
6-4 Short Torsional Clip Heatsink Extrusion Profile .......................................................32
B-1 Tall Torsional Clip Heatsink Assembly Orientation A Drawing....................................38
B-2 Tall Torsional Clip Heatsink Assembly Orientation B Drawing....................................39
B-3 Tall Torsional Clip Heatsink Drawing.....................................................................40
B-4 Tall/Short Torsional Clip Heatsink Clip Drawing ......................................................41
B-5 Short Torsional Clip Heatsink Assembly Orientation A Drawing .................................42
B-6 Short Torsional Clip Heatsink Assembly Orientation B Drawing .................................43
B-7 Short Torsional Clip Heatsink Assembly.................................................................44
Tables
3-1 Intel Scalable Memory Buffer Thermal Design Power...............................................15
3-2 Intel 7500 Scalable Memory Buffer Thermal Specification........................................16
5-1 Honeywell PCM45 F* TIM Performance as a Function of Attach Pressure....................27
5-2 Anchor Bend Angle and Maximum Pullout Force as a Function of Board Thickness.......28
5-3 Reliability Guidelines ..........................................................................................28
B-1 Mechanical Drawing List......................................................................................37
4 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Revision History
Revision Description Date
001 Initial Release April 2010
• Added product specifications for Intel 7510 and 7512 Scalable Memory buffer
• Replaced reference to ‘Intel 7500 Scalable Memory Buffer’ with ‘components’ where guidance also applies to Intel 7510 and 7512 Scalable
002
Memory Buffer. See change bars throughout document.
• Section 2: Revised the figures title
• Section 3.1: Reworded the paragraph
• Table 3-1: Updated the table
• Table 3-2: Added note 6
§
April 2011
Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG 5
6 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Introduction
1 Introduction
As the complexity of computer systems increases, so do the power dissipation requirements. Care must be taken to ensure that the additional power is properly dissipated. Typical methods to improve heat dissipation include selective use of ducting, and/or passive heatsinks.
Note: This document addresses thermal design and specifications for the Intel® 7500, 7510,
and 7512 Scalable Memory Buffer. Information provided in this document is intended only for use with these products. Unless otherwise specified, specification and guidance provided in this document applies to products identified above. In this document the term ‘component’ refer to Intel 7500, 7510, and 7512 Scalable Memory Buffer components unless other wise identified.
The goals of this document are to:
• Outline the mechanical operating limits and specifications for the Intel® 7500, 7510, and 7512 Scalable Memory Buffer (MB).
• Outline reference TDP specifications for the Intel 7500, 7510, and 7512 Scalable Memory Buffer specific to that of Intel® Xeon® processor 7500 series-based platform and Intel® Itanium® processor 9300 series-based platform.
• Describe reference thermal solutions that meet the specifications of the Intel 7500, 7510, and 7512 Scalable Memory Buffer.
Properly designed thermal solutions provide adequate cooling to maintain the component die temperature at or below thermal specifications. This is accomplished by providing a low local-ambient temperature, ensuring adequate local airflow, and minimizing the die to local-ambient thermal resistance. By maintaining the memory buffer component die temperature at or below the specified limits, a system designer can ensure the proper functionality, performance, and reliability of the chipset. Operation outside the functional limits can degrade system performance and may cause permanent changes in the operating characteristics of the component.
The simplest and most cost-effective method to improve the inherent system cooling characteristics is through proper chassis design and placement of fans, vents, and ducts. When additional cooling is required, component thermal solutions may be implemented in conjunction with system thermal solutions. The size of the fan or heatsink can be varied to balance size and space constraints with acoustic noise.
1.1 Design Flow
To develop a reliable, cost-effective thermal solution, several tools have been provided to the system designer. Figure 1-1 illustrates the design process implicit to this document and the tools appropriate for each step.
Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG 7
Figure 1-1. Thermal Design Process
Step 1 : T herm al Sim ulation
The rm al M od el The rm al M od el U se r's G uide
Step 2 : H ea tsink S elec tion
1.2 Definition of Terms
FC-BGA Flip Chip Ball Grid Array. A package type defined by a plastic substrate where
a die is mounted using an underfill C4 (Controlled Collapse Chip Connection) attach style. The primary electrical interface is an array of solder balls attached to the substrate opposite the die. Note that the device arrives at the customer with solder balls attached.
BLT Bond Line Thickness. Final settled thickness of the thermal interface
material after installation of heatsink.
MB Intel 7500 Scalable Memory Buffer. The chipset component responsible for
handling Intel® Scalable Memory Interconnect (Intel®SMI) channel and memory requests to and from the local DIMM. All memory control for the DRAM resides in the host, including memory request initiation, timing, refresh, scrubbing, sparing, configuration access, and power management.
T
case_max
T
case_min
TDP Thermal design power: Thermal solutions should be designed to dissipate
Maximum die operating temperature, and is measured at the geometric center of the top of the die.
Minimum die operating temperature, and is measured at the geometric center of the top of the die.
this target power level. TDP is not the maximum power that the chipset can dissipate.
Introduction
The rm al R eferen ce Me cha nical R efe renc e
S tep 3 : T herm al V alida tion
The rm al T es ting S oftware So ftw a re Us e r's Gu ide
8 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Introduction
1.3 Reference Documents
The reader of this specification should also be familiar with material and concepts presented in the following documents:
• Intel® 7500, 7510, and 7512 Scalable Memory Buffer Datasheet
• Various system thermal design suggestions (http://www.formfactors.org)
§
Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG 9
Introduction
10 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Packaging Technology
19.50mm.
2 Packaging Technology
The Intel 7500, 7510, and 7512 Scalable Memory Buffer components uses a 24.5 mm x
19.5 mm, 12-layer FC-BGA package (see Figure 2-1, Figure 2-2 and Figure 2-3).
Figure 2-1. Scalable Memory Buffer Package Dimensions (Top View)
Handling
Exclusion
Area
5.30mm.
11.30mm.
Die
Keepout
Area
8.50mm.12.50mm.
Die
14.50mm.
18.50mm.
24.50mm.
9.50mm.
13.50mm.
Figure 2-2. Scalable Memory Buffer Package Dimensions (Side View)
Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG 11
Figure 2-3. Scalable Memory Buffer Package Dimensions (Bottom View)
Packaging Technology
Notes:
1. All dimensions are in millimeters.
2. All dimensions are tolerances confirm to ANSI Y14.5M-1994.
12 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Packaging Technology
2.1 Package Mechanical Requirements
The component package has an exposed bare die which is capable of sustaining a maximum static normal load of 15 lbf. The package is NOT capable of sustaining a dynamic or static compressive load applied to any edge of the bare die. These mechanical load limits must not be exceeded during heatsink installation, mechanical stress testing, standard shipping conditions and/or any other use condition.
Notes:
1. The heatsink attach solutions must not include continuous stress onto the chipset package with the exception of a uniform load to maintain the heatsink-to-package thermal interface.
2. These specifications apply to uniform compressive loading in a direction perpendicular to the bare die top surface.
3. These specifications are based on limited testing for design characterization. Loading limits are for the package only.
§
Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG 13
Packaging Technology
14 Intel® 7500, 7510, and 7512 Scalable Memory Buffer TMDG
Loading...
+ 30 hidden pages