ANALOG DEVICES AD5282 Service Manual

Single/Dual, +15 V/±5 V, 256-Position,
A
S
A
www.BDTIC.com/ADI
I2C-Compatible Digital Potentiometer

FEATURES

AD5280: 1 channel AD5282: 2 channels 256 positions 5 V to 15 V single supply; ±5.5 V dual-supply operation Fixed terminal resistance: 20 kΩ, 50 kΩ, 200 kΩ Low temperature coefficient: 30 ppm/°C Power-on midscale preset Programmable reset Operating temperature: −40
2
I
C-compatible interface

APPLICATIONS

Multimedia, video, and audio Communications Mechanical potentiometer replacement Instrumentation: gain, offset adjustment Programmable voltage source Programmable current source Line impedance matching

GENERAL DESCRIPTION

The AD5280/AD5282 are single-channel and dual-channel, 256-position, digitally controlled variable resistors (VRs) The devices perform the same electronic adjustment function as a potentiometer, trimmer, or variable resistor. Each VR offers a completely programmable value of resistance between the A terminal and the wiper or the B terminal and the wiper. The fixed A-to-B terminal resistance of 20 kΩ, 50 kΩ, or 200 kΩ has a 1% channel-to-channel matching tolerance. The nominal temperature coefficient of both parts is 30 parts per million/ degrees centigrade (ppm/°C). Another key feature is that the parts can operate up to +15 V or ±5 V.
Wiper position programming defaults to midscale at system
wer-on. When powered, the VR wiper position is programmed
po
2
by an I
C-compatible, 2-wire serial data interface. The AD5280/ AD5282 feature sleep mode programmability. This allows any level of preset in power-up and is an alternative to a costly EEPROM solution. Both parts have additional programmable
1
Assert shutdown and program the device during power-up, then deassert
the shutdown to achieve the desired preset level.
2
The terms digital potentiometer, VR, and RDAC are used interchangeably.
1
o
C to +85oC
2
.
AD5280/AD5282
logic outputs that enable users to drive digital loads, logic gates, LED drivers, and analog switches in their system.
The AD5280/AD5282 are available in thin, surface-mounted 14-lead TSSOP and 16-lead TSSOP. All parts are guaranteed to operate over the extended industrial temperature range of
−40°C to +85°C. For 3-wire SPI-compatible interface applica­tions, see the
w.analog.com.
ww
SHDN
V
V
DD
DD
V
V
SS
SCL
SDA
GND
AD5260/AD5262 product information on

FUNCTIONAL BLOCK DIAGRAMS

WB O1O
HDN
V
DD
V
L
V
SS
SCL
SDA
GND
L
RDAC REGISTER OUTPUT REG ISTER
ADDRESS
CODE
SERIAL INPUT REGISTER
AD0 AD1
Figure 1. AD5280
1W1B1
RDAC1 REGISTE R RDAC2 REGISTE R
ADDRESS
CODE
SERIAL INPUT REGISTER
AD0 AD1
A2W2B
8
Figure 2. AD5282
PWR ON
8
2
PWR ON
RESET
2
RESET
AD5280
OUTPUT
REGIS TER
AD5282
02929-070
O
1
02929-001
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.
AD5280/AD5282
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagrams............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution.................................................................................. 5
Pin Configurations and Function Descriptions ........................... 6
Typical Performance Characteristics ............................................. 7
Test Circuits..................................................................................... 12
Theory of Operation ...................................................................... 14
Rheostat Operation .................................................................... 14
Potentiometer Operation........................................................... 14
Digital Interface .............................................................................. 16
2-Wire Serial Bus........................................................................ 16
Readback RDAC Value ..............................................................17
Additional Programmable Logic Output ................................ 17
Self-Contained Shutdown Function and Programmable
Preset............................................................................................ 17
Multiple Devices on One Bus ................................................... 17
Level Shift for Bidirectional Interface...................................... 18
Level Shift for Negative Voltage Operation ............................ 18
ESD Protection ........................................................................... 18
Terminal Voltage Operating Range ......................................... 18
Power-Up Sequence................................................................... 18
Layout and Power Supply Bypassing ....................................... 19
Applications Information.............................................................. 20
Bipolar DC or AC Operation from Dual Supplies................. 20
Gain Control Compensation.................................................... 20
15 V, 8-Bit I2C DAC.................................................................... 20
8-Bit Bipolar DAC...................................................................... 21
Bipolar Programmable Gain Amplifier................................... 21
Programmable Voltage Source with Boosted Output ........... 21
Programmable Current Source ................................................ 22
Programmable Bidirectional Current Source......................... 22
Programmable Low-Pass Filter ................................................ 23
Programmable Oscillator.......................................................... 23
RDAC Circuit Simulation Model............................................. 24
Macro Model Net List for RDAC............................................. 24
Outline Dimensions....................................................................... 25
Ordering Guide .......................................................................... 26

REVISION HISTORY

8/07—Rev. A to Rev. B
Updated Operating Temperature Range Throughout...................1
hanges to the Features Section .......................................................1
C
Changes to the General Description Section..................................1
Changes to Table 2..............................................................................3
Added the Thermal Resistance Section...........................................5
Changes to the Ordering Guide......................................................26
11/05—Rev. 0 to Rev. A
Updated Format................................................................... Universal
Updated Outline Dimensions.........................................................26
Changes to Ordering Guide............................................................27
10/02—Revision 0: Initial Version
Rev. B | Page 2 of 28
AD5280/AD5282
www.BDTIC.com/ADI

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VDD = +15 V, VSS = 0 V or VDD = +5 V, VSS = −5 V; V
= 5 V, VA = +VDD, VB = 0 V; −40°C < TA < +85°C, unless otherwise noted.
LOGIC
Table 1.
Parameter Symbol Conditions Min Typ
DC CHARACTERISTICS–RHEOSTAT MODE
Resistor Differential NL Resistor Nonlinearity Nominal Resistor Tolerance Resistance Temperature
Coefficient
Wiper Resistance R
2
2
R-DNL RWB, VA = NC −1 ±1/4 +1 LSB R-INL RWB, VA = NC −1 ±1/4 +1 LSB
3
ΔR
T
AB
(∆RAB/RAB)/∆T x 10
I
W
DC CHARACTERISTICS–POTENTIOMETER DIVIDER MODE (specifications apply to all VRs)
Resolution N Integral Nonlinearity Differential Nonlinearity Voltage Divider Temperature
4
4
INL DNL (∆V
)/∆T x 106 Code = 0x80
W/VW
= 25°C −30
A
6
VAB = VDD, wiper = no connect
= VDD/R, VDD = 3 V or 5 V
W
30
60 150 Ω
8
−1 ±1/4 +1 LSB
−1 ±1/4 +1 LSB 5
Coefficient Full-Scale Error V Zero-Scale Error V
RESISTOR TERMINALS
Voltage Range Capacitance A, B
Capacitance W
5
6
6
Common-Mode Leakage I Shutdown Current I
DIGITAL INPUTS AND OUTPUTS
Input Logic High V Input Logic Low V Output Logic High (O1, O2) V Output Logic Low (O1, O2) V Input Current I Input Capacitance
6
POWER SUPPLIES
Logic Supply V Power Single-Supply Range V Power Dual-Supply Range V Logic Supply Current I Positive Supply Current I Negative Supply Current I Power Dissipation
7
Power Supply Sensitivity PSS
DYNAMIC CHARACTERISTICS
6, 8 , 9
Bandwidth −3 dB BW_20K RAB = 20 kΩ, Code = 0x80
Code = 0xFF −2 −1 0 LSB
WFSE
Code = 0x00 0 +1 +2 LSB
WZSE
VA, VB, V CA, C
C
CM
SHDN
W
B
W
V
V
f = 5 MHz, measured to GND,
Code = 0x80
f = 1 MHz, measured to GND, Code = 0x80
= VB = V
A
W
SS
25
55
1
IH
IL
IH
IL
V
IL
C
IL
0.7 × VL 0
4.9
= 0 V or 5 V
IN
5
LOGI C
V
DD RANGE
DD/SS RANGE
LOGI C
DD
SS
P
DISS
V
V
= 0 V 4.5
SS
= 5 V
LOGI C
= 5 V or VIL = 0 V
IH
2.7
±4.5
VIH = 5 V or VIL = 0 V, VDD = +5 V, VSS = −5 V
0.1 1 μA
0.1 1 μA
0.2 0.3 mW
0.002 0.01 %/%
310 150 35
BW_50K RAB = 50 kΩ, Code = 0x80 BW_200K RAB = 200 kΩ, Code = 0x80
1
Max Unit
+30 %
V
V
DD
5 μA
VL + 0.5 V
0.3 × VL V
0.4 V ±1 μA
VDD V
16.5 V ±5.5 V 60 μA
ppm/°C
Bits
ppm/°C
pF
pF
nA
V
pF
kHz kHz kHz
Rev. B | Page 3 of 28
AD5280/AD5282
S
www.BDTIC.com/ADI
Parameter Symbol Conditions Min Typ
Total Harmonic Distortion THD
VW Settling Time t Crosstalk CT
V
W
V
S
= 1 V rms, RAB = 20 kΩ
A
VB = 0 V dc, f = 1 kHz
= 5 V, VB = 5 V, ±1 LSB error band
A
= VDD, VB = 0 V, measure VW1 with
V
A
0.014
5 15
1
Max Unit
%
μs
nV-s adjacent RDAC making full-scale code change
Analog Crosstalk CTA
Measure V 10 kHz
Resistor Noise Voltage e
INTERFACE TIMING CHARACTERISTICS (applies to all parts)
SCL Clock Frequency f t
Bus Free Time Between
BUF
Stop and Start
t
Hold Time (Repeated
HD:STA
Start)
t
Low Period of SCL Clock t3
LOW
t
High Period of SCL Clock t4
HIGH
t
Setup Time for Start
SU:STA
Condition
t
Data Hold Time t6
HD:DAT
t
Data Setup Time t7
SU:DAT
tF Fall Time of Both SDA and
SCL Signals
tR Rise Time of Both SDA and
SCL Signals
t
Setup Time for STOP
SU:STO
Condition
1
Typicals represent average readings at 25°C, VDD = +5 V, VSS = 5 V.
2
Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
3
VAB = VDD, wiper (VW) = no connect.
4
INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits
of ±1 LSB maximum are guaranteed monotonic operating conditions.
5
Resistor Terminal A, Resistor Terminal B, and Wiper Terminal W have no limitations on polarity with respect to each other.
6
Guaranteed by design and not subject to production test.
7
P
is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.
DISS
8
Bandwidth, noise, and settling time are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest
bandwidth. The highest R value results in the minimum overall power consumption.
9
All dynamic characteristics use VDD = 5 V.
10
See timing diagram (Figure 3) for location of measured values.
11
Standard I2C mode operation is guaranteed by design.
R
N_WB
SCL
t
1
t
2
t5
t8
t9
t10
= 20 kΩ, f = 1 kHz
WB
6, 10 , 11
After this period, the first clock pulse is generated
with VW2 = 5 V p-p @ f =
W1
0
1.3
0.6
1.3
0.6
0.6
0
100
0.6
−62
18
dB
nV/√Hz
400 kHz
μs
μs
μs
μs
μs
0.9 μs ns
300 ns
300 ns
μs
t
t
8
t
t
6
9
2
SCL
t
DA
t
1
PS S
t
2
3
t
9
t
8
t
4
Figure 3. Detailed Timing Diagram
Rev. B | Page 4 of 28
t
7
t
5
t
10
02929-042
P
AD5280/AD5282
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 2.
Parameter Rating
VDD to GND −0.3 V to +16.5 V VSS to GND 0 V to −7 V VDD to VSS 16.5 V VA, VB, VW to GND VSS to V AX to BX, AX to WX, BX to W
Intermittent Continuous ±5 mA
V
to GND 0 V to 7 V
LOGI C
Output Voltage to GND 0 V to 7 V Operating Temperature Range −40°C to +85°C Maximum Junction Temperature (T Storage Temperature Range −65°C to +150°C Reflow Soldering
Peak Temperature 260°C Time at Peak Temperature 20 sec to 40 sec
3
Maximum terminal current is bound by the maximum current handling of
the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
3
X
) 150°C
JMAX
±20 mA
DD
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Package power dissipation = (T
JMAX
− TA)/ θ
JA .
Table 3. Thermal Resistance
Package Type θJA Unit
TSSOP-14 206 °C/W TSSOP-16 150 °C/W

ESD CAUTION

Rev. B | Page 5 of 28
AD5280/AD5282
www.BDTIC.com/ADI

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

V
SHDN
SCL
SDA
1
A
2
W
3
B
AD5280
TOP VIEW
4
DD
5
6
7
14
O
1
13
V
L
12
O
2
11
V
SS
10
GND
9
AD1
8
AD0
Figure 4. AD5280 Pin Configuration
Table 4. AD5280 Pin Function Descriptions
Pin No. Mnemonic Description
1 A Resistor Terminal A. 2 W Wiper Terminal W. 3 B Resistor Terminal B. 4 VDD
Positive Power Supply. Specified for operation from 5 V to 15 V (sum of |V + |V
| ≤ 15 V).
SS
5
Active Low, Asynchronous Connection
SHDN
of Wiper W to Terminal B and Open Circuit of Terminal A. RDAC register contents unchanged. SHDN should tie to V
if not used. Can also be used as a
L
programmable preset in power-up. 6 SCL Serial Clock Input. 7 SDA Serial Data Input/Output. 8 AD0
Programmable Address Bit 0 for
ultiple Package Decoding. Bit AD0
M
and Bit AD1 provide four possible
addresses. 9 AD1
Programmable Address Bit 1 for
ultiple Package Decoding. Bit AD0
M
and Bit AD1 provide four possible
addresses. 10 GND Common Ground. 11 VSS
Negative Power Supply. Specified for
operation from 0 V to −5 V (sum of |V
+ |V
| ≤ 15 V).
SS
12 O2 Logic Output Terminal O2. 13 VL
Logic Supply Voltage. Needs to be less
than or equal to V
and at the same
DD
voltage as the digital logic controlling
the AD5280. 14 O1 Logic Output Terminal O1.
1
O
1
2
A
1
3
W
1
AD5282
4
B
1
TOP VIEW
5
V
DD
6
SHDN
7
02929-002
SCL
SDA
8
16
A
2
15
W
2
14
B
2
13
V
L
12
V
SS
11
GND
10
AD1
9
AD0
02929-003
Figure 5. AD5282 Pin Configuration
Table 5. AD5282 Pin Function Descriptions
Pin No. Mnemonic Description
1 O1 Logic Output Terminal O1. 2 A1 Resistor Terminal A1. 3 W1 Wiper Terminal W1. 4 B1 Resistor Terminal B1.
|
DD
5 VDD
6
SHDN
Positive Power Supply. Specified for operation from 5 V to 15 V (sum of |V + |V
| ≤ 15 V).
SS
DD
Active Low, Asynchronous Connection
|
of Wiper W to Terminal B and Open Circuit of Terminal A. RDAC register contents unchanged. SHDN should tie to V
if not used. Can be also used as a
L
programmable preset in power-up. 7 SCL Serial Clock Input. 8 SDA 9 AD0
Serial Data Input/Output.
Programmable Address Bit 0 for
Multiple Package Decoding. Bit AD0
and Bit AD1 provide four possible
addresses. 10 AD1
Programmable Address Bit 1 for
Multiple Package Decoding. Bit AD0
and Bit AD1 provide four possible
addresses. 11 GND
|
DD
12 V
13 V
SS
L
Common Ground.
Negative Power Supply. Specified for
operation from 0 V to −5 V (sum of |V
+ |V
| ≤ 15 V).
SS
Logic Supply Voltage. Needs to be less
than or equal to V
and at the same
DD
|
DD
voltage as the digital logic controlling
the AD5282. 14 B
Resistor Terminal B2.
2
15 W2 Wiper Terminal W2. 16 A2 Resistor Terminal A2.
Rev. B | Page 6 of 28
AD5280/AD5282
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

1.0
0.8
0.6
0.4
0.2
0
–0.2
–0.4
RHEOSTAT MO DE R-INL (LSB)
–0.6
–0.8
–1.0
0 32 96 160 22464 128 192 256
+5V
±5V
+15V
CODE (Decimal)
R
T
Figure 6. R-INL vs. Code vs. Supply Voltages
0.5
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
RHEOSTAT MODE R-DNL (LSB)
–0.8
–0.5
0 32 96 160 22464 128 192 256
±5V +15V
+5V
CODE (Decimal)
R
T
Figure 7. R-DNL vs. Code vs. Supply Voltages
1.0
R
DD/VSS
AB
= ±5 V
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
POTENTI OMETER MO DE INL (LSB)
–0.8
–1.0
TA = +85°C
TA = –40°C
TA = +25°C
0 32 96 160 22464 128 192 256
CODE (Decimal)
Figure 8. INL vs. Code, V
AB
= 25°C
A
AB
= 25°C
A
= 20k
= 20k
02929-004
= 20k
02929-005
02929-006
0.5
0.4
0.3
0.2
TA = –40°C TA = +85°C
0.1
0
–0.1
–0.2
–0.3
POTENTI OMETER MO DE DNL (LSB)
–0.4
–0.5
0 32 96 160 22464 128 192 256
CODE (Decimal)
Figure 9. DNL vs. Code, V
1.0
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
POTENTI OMETER MO DE INL (LSB)
–0.8
–1.0
0 32 96 160 22464 128 192 256
±5V
+5V
CODE (Decimal)
DD/VSS
RAB = 20k
= ±5 V
RAB = 20k T
+15V
Figure 10. INL vs. Code vs. Supply Voltages
0.5
+15V
RAB = 20k T
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
POTENTI OMETER MO DE INL (LSB)
–0.4
–0.5
±5V
0 32 96 160 22464 128 192 256
+5V
CODE (Decimal)
Figure 11. DNL vs. Code vs. Supply Voltages
T
= 25°C
A
= 25°C
A
= +25°C
A
02929-007
02929-008
02929-009
Rev. B | Page 7 of 28
AD5280/AD5282
www.BDTIC.com/ADI
1.0
AVG +3
0.5
0
INL (LSB)
–0.5
–1.0
0 5 10 15 20
2.0
1.5
1.0
0.5
0
R-INL (LSB)
–0.5
–1.0
–1.5
AVG
AVG –3
Figure 12. INL Over Supply Voltage
AVG +3
AVG
AVG –3
|VDD– VSS| (V)
RAB = 20k T
= 25°C
A
RAB = 20k T
= 25°C
A
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
ZERO-SCALE ERROR (LSB)
0.4
0.2
02929-010
0
–40 0–20 20 40 60 80 100
VDD/VSS= +5V/0V
VDD/VSS= ±5V
VDD/VSS= +15V/0V
TEMPERATURE (°C)
RAB = 20k
02929-013
Figure 15. Zero-Scale Error
1000
100
|SS@VDD/VSS= +15V/0V
SUPPLY CURRENT (nA)
10
SS
/I
DD
I
|SS@VDD/VSS= ±5V
RAB = 20k V
|DD@VDD/VSS= ±5V
LOGIC
V
IH
V
IL
= +5V
= 0V
= +5V
–2.0
0 5 10 15 20
|VDD– VSS| (V)
Figure 13. R-INL Over Supply Voltage
0
–0.2
–0.4
–0.6
–0.8
–1.0
–1.2
–1.4
FULL-SCALE ERROR (LSB)
–1.6
–1.8
–2.0
–40 0–20 20 40 60 80 100
VDD/VSS= +15V/0V
VDD/VSS= ±5V
VDD/VSS= +5V/0V
TEMPERATURE (°C)
RAB = 20k
Figure 14. Full-Scale Error
02929-011
1
–40 –7 26 59 85
TEMPERATURE (°C)
02929-014
Figure 16. Supply Current vs. Temperature
26.0
25.5
25.0
(µA)
24.5
LOGIC
I
24.0
23.5
02929-012
23.0 –40 –7 26 59 85
Figure 17. V
TEMPERATURE ( °C)
Supply Current vs. Temperature
LOGIC
RAB = 20k
VDD/VSS= +15V/0V
VDD/VSS= ±5V
02929-015
Rev. B | Page 8 of 28
AD5280/AD5282
A
www.BDTIC.com/ADI
1000
VDD/VSS= 5V/0V V
LOGIC
(µA)
100
LOGIC
I
VDD/VSS= 5V/0V V
= 3V
LOGIC
10
01234
Figure 18. V
700
600
500
400
300
200
T MODE TEMPCO (ppm/°C)
100
0
RHEOST
–100
–200
0 32 64 19296 128 224 256
Supply Current vs. Digital Input Voltage
LOGIC
20k
50k
200k
Figure 19. Rheostat Mode Tempco ΔR
120
100
80
60
40
20
0
–20
POTENTI OMETER MO DE TEMPCO (ppm/° C)
–40
0 32 64 19296 128 224 256
20k
50k
200k
Figure 20. Potentiometer Mode Tempco ΔV
(V)
V
IH
CODE (Decimal)
WB
CODE (Decimal)
= ±5 V
V
DD/VSS
/ΔT vs. Code, VDD/VSS = ±5 V
WB
RAB = 20k T
= 25°C
A
= 5V
TA = 25°C
TA = 25°C
/ΔT vs. Code,
02929-016
5
02929-017
02929-018
0
–6
–12
–18
–24
–30
GAIN (dB)
–36
–42
–48
–54
–60
0 10k 100k 1M
80H
40H
20H
10H
08H
04H
02H
01H
FREQUENCY (Hz)
TA = 25°C V V
Figure 21. Gain vs. Frequency vs. Code, R
0
–6
–12
–18
–24
–30
GAIN (dB)
–36
–42
–48
–54
–60
0 10k 100k 1M
80H
40H
20H
10H
08H
04H
02H
01H
FREQUENCY (Hz)
TA = 25°C V V
Figure 22. Gain vs. Frequency vs. Code, R
0
–6
–12
–18
–24
–30
GAIN (dB)
–36
–42
–48
–54
–60
0 10k 100k 1M
80H
40H
20H
10H
08H
04H
02H
01H
FREQUENCY (Hz)
TA = 25°C V V
Figure 23. Gain vs. Frequency vs. Code, R
= 50mV rms
A
= ±5V
DD/VSS
= 20 kΩ
AB
= 50mV rms
A
= ±5
DD/VSS
= 50 kΩ
AB
= 50mV rms
A
= ±5V
DD/VSS
= 200 kΩ
AB
02929-019
02929-020
02929-021
Rev. B | Page 9 of 28
Loading...
+ 19 hidden pages