yaskawa MX3 Connecting Manual

INSTRUCT!
YASNAC
CNC
MBNHBHIWW
Before
SYSTEM
operation,
initial
MACHINING
FOR
MANUAL
these
read
instructions
MX3
CENTERS
*
*
.•*3
;TIj
C-
>
7
thoroughly,
f'>»,
and
Fiji
-r
.
r
retain
ii
&
c
>
for
future
%
reference
,
CPS-ION
POWER
OC
I
ITMOÿOVIT
50/60Hz.300VA
SUPPlffsoftCE-
w
-
mw-
+24V
jSSfesss®
!
YASKAWA
JAPAN
jj
EXT
I
YASKAWA
YASNAC
MX3
specifications
external
equipment.
is
a
color
for
connecting
graphic
for
CNC
YASNAC
machining
with
MX3
centers.
machines,
This
manual
machine
describes
interfaces
the
and
Necessary
the
type
connectionsinaccordance units
programmable
The
MX3
LX3/MX3
1.
CONFIGURATION
1
SYSTEM
1
1
2
STANDARD INTEGRATED
2.
ENVIRONMENTAL
3.
CABINET
4.
CABINET
CONFIGURATION
CONSTRUCTION
DESIGN
connections
the
of
CNC
cabinet.
System
PC
CABINETS
UNITS
CONDITIONS
FOR
CNC
controller
AND
DESIGN
HEAT
be
to
provided
cabinet
supplied
with
system
For
details
(TOE-C843-9
FACTORS
by
the
by
the
combination
{hereafter
of
the
PC,
1)
CONTENTS
1 1
1
1
1
3
machine
Yaskawa
for
called
refer
to
12.
CONNECTION
13.
CONNECTION
CONNECTION
14.
GENERATOR
15.
CONNECTION
151 15
2RS-232C
manufacturer
Make
standard
PC)
additions
cabinets
is
installed
Instruction
CONNECTION
INTERFACE
differ
Manual
TO
FEED
SPINDLE
TO
SPINDLE
TO
RS-232C
TO
depending
or
deletions
integrated
and
in
the
for
YASNAC
SERVO
DRIVE
PULSE
INTERFACE
on
of
YASNAC
UNITS
UNIT
12
17
18
18
18 19
4
1
SELECTION
4.2
HEAT
VALUES
5.
CABLE
5.1
5.2
6.
CONNECTION
7.
POWER
7
1 2
7
ENTRANCE
LAYOUT
CLAMPING
CABLE
SUPPLY
POWER TO
CPU
POWER
STANDARD
8.
CONNECTING
CRT
TO
9.
CONNECTION
10.
CONNECTION GENERATOR
11.
CONNECTION
1
1
1
11
2
OPERATOR’S
CONNECTION
DETAILS
OF
OF
CABLE
CABLES,
SHIELD
DIAGRAMS
SUPPLY
MODULE
SUPPLY
CABINETS
POWER
OF
OF
SIGNALS
EXCHANGER
HEAT
OF
UNITS
CONNECTORS
AND
GROUNDING
CONNECTION
CONNECTION
CONNECTION
UNIT
PANEL
REMOTE
OF
MANUAL
OF
INPUT
SEQUENCE
AND
I/O
MODULE
PULSE
TO
PC
BOARD
10
10
11
3
3
4 4
4
5
6
6
6
7
8
9
DIRECT-IN
16.
17.
CONNECTION
I/O
SIGNALS
1711/0
17
17
18.
18.1 18 18
19.
19.1
PORTS
2
1/0
CIRCUITS
3
1/0
SIGNAL
CABLES
OF
LIST
2
LIST
OF
3
SPECIFICATIONS
STANDARD
LISTOFNC
SIGNALS
2
19
DETAILS
APPENDIX APPENDIX
APPENDIX
OF
YASNAC
A
B
C
SIGNAL
CABLES
CONNECTION
TO
GENERAL-PURPOSE
OF
I/O
PORTS
INTERFACE
CONNECTORS
OF
CABLE
I/O
SIGNALS
STANDARD
OF
SIGNALS
DIMENSIONS
I/O
PORT
ADDRESS
STANDARD
WIRING
I/O
in
mm
SETTING
COLORS
21
22
22
22
25 46
46
47
47
50
50
58
83
93
94
INDEX
Subject
Alarm
A
Auxiliary
Axis
Interlock
CABINET
C
CABINET
CABLE
CABLES Canned
CLAMPING
CONFIGURATION CONNECTING
OPERATOR’S
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION CONNECTION
CONNECTION
CONNECTION
CPU
Module
CRT
Operator’s
Output
and
Function
CONSTRUCTION
DESIGN
ENTRANCE
Cycle
External
Inputs
Spindle
CABLES,
POWER
PANEL
DIAGRAMS
OF
OF
OF
TO
TO
TO
TO
TO
Panel
Error
Input
Lock
FOR
HEAT
Control
AND
UNIT
INPUT
MANUAL
REMOTE
SERVO
FEED
GENERAL-PURPOSE
RS-232C
SPINDLE
SPINDLE
Detect
DESIGN
FACTORS
GROUNDING
PC
AND
SEQUENCE
PULSE
I/O
MODULE
UNITS
INTERFACE
DRIVE
UNIT
PULSE
GENERATOR
GENERATOR
Inputs
CABLE
BOARD
I/O
SHIELD
CRT
TO
SIGNALS
Chapter
19
......
......
••
••
......
••
19-
••
•••
19
3
.
..
4.
5
18
19
.....
-5
.....
1
8
11
15
.....
6
••••
11
10
.
••
9
12
17
15
13
14
••ÿ18
18
18
-•••18
Section
2
23
19
2
19
17
19
2
39
19229
5
2
111
15
1
2
1
2 2
Page
-66
••
65
75
1
••
3
4
46 70
4
1
7
10
18
5
10
9
8
12
22
18
17
18
-
47
47
DETAILSOFSIGNALS
D
DETAILSOFSIGNALS
DIMENSION
DIRECT-IN
Display
Dry
Edit
E
Emergency
End-ot-Program
ENVIRONMENTAL
External External
External
External External
F
F1
Feed
Feedrate
Gear
G
Non-Contact
Gear
H
HEAT
I/O I/O
I/O I/O I/O
Reset
Input
Run Lock
Data
Deceleration
Input,
Power
Reset
-Digit
Command
Drive
Override
Selection Shift
VALUES
21
Boards Board Board
CIRCUITS
PORT
in
mm
SIGNAL
Inputs
Stop
Input
Input,
Input
Verify
ON-OFF
Input
Unit
Input
Command
Output
Input
On
OF
Type
JANCD-1021
JANCD-SP20
Type
OF
ADDRESS
I/O
CONNECTION
Rewind
CONDITIONS
Inputs/Outputs
and
and
S5-Digit
or
and
UNITS
PORTS
SETTING
Input,
Output
Input
ON
Reset
and
Feed
Input/Output
Spindle
and
Signals
Output
Override
S4-Digit
Analog
Output
Orientation
Rewind
Cancel
Input'
ON
Input
Outputs
......
11
19
APPENDIX
16
1
9-
1
9-
19
11
19
2-
.....
19-
19
19
11
19 19
18 19
•••
19
19
4
17
17-
17
17
APPENDIX
11
2
19
•19
•19
19
112
19
-19
19
19
11
19 19
18
19
19
19
4
1731
1721
1722
2
A-
2
2 2 2
2 2
2 2
2
2
2 2
2
2
2-
2
B
......
••
.....
.....
•••
11
58
83
21
.....
37
14-
1
2
27-
28-
31
47
3
20
32
4
5
42
43
6
75
-
64
65
•••
11
68
1
68
72
79
11
66
73
47
61
77
78
.....
3
25
22
24
-22
93
I/O I/O
Input
PORTS
SIGNAL
and
INTERFACE
Output
for
Control
Operation
Modes
•17
17
-
1
17
-19
3
2
2
17
......
22
25
58
ii
INDEX
(Cont’d)
Subject
Input
for
Interface
Interface
Interlock
LAYOUT
L
LIST
LIST LISTOFNC
M
M,
Machine
Machine-Ready
Manual
Manual
Manual
Manual
Manual Mirror
NC
N
NC
Optional
O
Overload
Overtravel
Playback
P
Positioning
POWER POWER
POWER
Signals
Cycle
Start
Input
Output
Input
OF
OF
CABLES
OF
CONNECTORS
T
S,
and
Lock
absolute
Feed
Handle/Step
JOG
Rapid
Image
Power
Unit
Block
Input
Input
SUPPLY SUPPLY SUPPLY
Cycle
for
and
Signal
Signals
CABLE
STANDARD
Codes
*B
and
Input
ON/OFF
Axis
Direction
Feedrate
Feeding
and
ON
Delete
Inputs
Completion
CONNECTION
CONNECTION
CONNECTION
and
Start
Feedhold
UI0-UI1
CONNECTORS
SIGNALS
I/O
Inputs/Outputs
Display
Servo
-
Lock
Input
Selection
Multiplication
Selection
Selection(RT)
Power
Input
••
Outputs
Stop,
UO0-UO1
5,
Input
Input
ON
TO
TO
Output
5
Input
Factor
Input
Input
MODULE
CPU
STANDARD
Signals
••
CABINETS
Chapter
19---•19 19
19--
1
9-
5
18
18
....19-
19 19
19
19 19
-.19
--19
...
.19...
19
11-
4
19 19
.....
11
19
..
19-
-19
.
7
.
..
7-
7
Section
19
19
19
•5
1...
18
18
•19
192
•19
19
•19
19
19
......
-19
-
-19
19
• •
11
-421.
•11
•19
19240
--•
-19225
••
-7
1
7
2
2
2
2
2
1
2
1
2
2
2
2
2 2
2
2
21
2
2
2
1
33 34
21
24
13
19 10
4
5
7
3 23
12
4
18
..
Page
58
-
73
••
74
66
4
46
47
50
••
••66
64
-
65
63
•ÿ
60
61
60
•66
11
3
64
11
65
75
67
6
6
6
Program
Program
R
Rapid
Reference
Remote
RS-232C
S
S4-Digit
Command
S5-Digit
SELECTION
Servo Servo
Single
SKIP SP20
SPECIFICATIONS
Spindle
Spindle
STANDARD
STANDARD STANDARD
SYSTEM
Tool
T
Tool Travel
Interrupt
Restart
Feedrate
I/O
Override
Point
Module
INTERFACE
Command
External
Command
OF
OFF
Signal
Unit
Input
Block
Input
Boards
Speed
Override
Reached
Speed
CABINETS
I/O
WIRING
CONFIGURATION
Length
Life
Control
ON,
Offset
Tapping
Input
Input
Return
HEAT
SIGNALS
Input
Control
External
Outputs
Inputs/Outputs
EXCHANGER
CABLE
OF
Inputs
Input
AND
COLORS
Inputs/Outputs
Signals
Canned
and
I/O
Outputs
INTEGRATED
OF
Cycle
Signals
S5-Digit
and
.
-
YASNAC
ON
•••
UNITS
--
Outputs
• •
1
9-
19-
19-
.....
19­18-
15-
19
19
-
4-
-19
-
......
...
-19
-
-
••
4
19 19
19
.17
18
19
19
APPENDIX
1
19-
19
19
19
2
36
19
2
15
19
2
8
19
2
9
3
18
2 2
15
-19246-
19
2
-
.....
-19
1.
4
19
•422"
19
17
18
19 19
1
2
C
1
1
19
9
1
41
2
30
2
11"
2
35-
3
2
3
2
45--
44
2
2
38
2
48-
2
26
75
65
62
• •
62
47
.....
19
79
-
-
76
3
-
72
3
64
74
•••
40
47
78
78
1
-
50 94
1
-75
-81 68
-
-
iii
CONFIGURATION
1.
3.
CABINET
CONSTRUCTION
DESIGN
1.1
The
SYSTEM
system
CONFIGURATION
configuration
below.
VASNAC
MX3
Fr=
CPU
MODULE
T
I/O
Fig
1
1
STANDARD
1.2
UNITS
The
available
units
cannot
ed
in
turers
Unit
CPU
I/O
CRT
Tape
Feed Machine
Spindle
High-Voltage
O
Note
2.
(1)
During
During
(2)
Relative
10
shown
are
be
installed
cabinets
.
Table
Module
Module
Operator’s
Reader
Servo
Control
Drive
Installed
Contact
ENVIRONMENTAL
Ambient
to
90%
CABINETS
standard
in
manufactured
1
1
Cabinet
Panel
(optional)
Unit
Station
Unit
Unit
Can
machine
Temperature
operation:
storage:
Humidity:
RH(non-condensing)
CRT
OPERA
PANEL
FEED
SERVO
UNIT
[T
SPINDLE
DRIVE
UNIT
MACHINE
CONTROL
t
STATION
-
HIQH
UNIT
HIGH
UNIT
System
YASNAC
cabinets
Table
the
in
Standard
Integrated
Standard
Standing
installed
be
manufacturer
0
-20
of
YASNAC
MX
~
1
TOR'S
&
VOLTAGE
VOLTAGE
Configuration
MX3
AND
1.1.
cabinets
Units
o
o
o
x
for
to
+45°C
to
+
MACHINE
l
FEED
i.
MOTOR
SPINDLE
1
MOTOR
*
MACHINE
EQUIPMENT
EEE3#j
INTEGRATED
and
the
Those
must
machine
by
Cabinets
x x
Cannot
custom
Free-
Type
and
Custom
be
installed
cabinets
CONDITIONS
C
60°
3
is
of
integrated
units
be
install¬
manufac¬
o
shown
*
*
1
I
i
i
I
{
that
Cabinet
Take
the
to
nets
designed
(1)
Make
enclosed
spindle provided
made
(a)
An
air
inlet.
(b)
Forced
directly
may
units
(c)
The
where
heat
units
mal
totally-enclosed
(2)
Design
tween
temperature
for
(3)
Install
to
improve
to
prevent
by
The
greater
printed
not
boards
(4)
Provide
components
of
air.
(5)
Seal
The
voltage
caution
The
quires
(a)
Use
eliminate
to
(b)
Use
and
(6)
Magnetic
CRT
external
generate
reactors,
and
more
distance
circumstance.
layout
following
contain
.
sure
type.
drive
the
:
filter
air
on
cause
and
might
air
discharge
dust
sink
of
can
be
efficiency.
the
the
cabinet
fan
a
circulating
velocity
than
circuit
blow
directly
.
spacing
cable
the
CRT
unit
and
is
cabinet
the
packing
packing
.
doors
Deflection
displays
magnetic
magnetic
fans,
AC
power
than
is
beforehand.
into
CPU
the
that
unit
following
is
provided
used
the
units.
oil
mist
and
the
installed
cabinet
inner-air
is
less
design
inside
internal
the
localized
air
of
2
and
openings,
operates
collects
needed.
for
following
material
gaps.
material
are
cables
300
mm
optimum
Determine
consideration
rack
cabinets
the
The
feed
can
be
considerations
the
or
outlet
mist
inside
Direct
dust
failures.
servo
in
cause
oil
feed
outside
The
cabinets
to
type
that
so
temperature
than
accomodate
to
totally-enclosed
cooling
temperature
inside
the
circulating
on
the
ms
boards.
the
on
more
than walls
doors,
at
of
cabinet
dust
mounting
precautions:
on
m
of
CRT
sometimes
influences.
fields,
solenoid
should
the
from
and
and
are
servo
open
the
at
to
should
do
not
and
for
improve
the
10°C.
the
cabinets.
surfaces
Forced
printed
100
for
a
particularly
the
in
the
mounting
the
cable
the
Display
deflected
such
switches
be
CRT
may
vary
the
when
other
of
a
unit
type
external
is
not
blowing
settle
be
positioned
enter.
spindle
higher
should
reliability.
difference
and
Read
heat.
efficiency
increases
should
air
air
circuit
mm
smooth
etc.
completely.
air.
CRT
unit
openings
Sources
transformers,
as
and
positioned
unit.
for
component
cabi¬
units
totally-
and cabinets
are
air
blown
of
the
on
The
drive
ther¬
of
be
be¬
ambient
par.
cabinets
and
the
of
should
between
flow
high
Special
re¬
surface
due
that
relays,
This
each
are
air
a
4
be
to
(3)
Vibration:
0.5
less
G
or
1
3.
CABINET
(Cont’d)
(7)
To
the
ing
other
should
(a)
Separate
(b)
Separate
of
(8)
The
to
tape
proof
in
splash
around
(9)
Mount
removal
work
(10)
Read
and
Heat
cabinet
This
from
and
Example
prevent
transformers,
the
locations
more
units
VDC
90
components.
be
AC
the
front
panels
cabinet
reader,
type.
them.
on
the
the
units
and
complied
.
the
instruction
spindle
sink
should
to
reduce
increases
an
open
reduces
CONSTRUCTION
malfunction
than
or
greater,
and
DC
primary
line
of
surfaces,
and
PO
However,
where
Be
mounting
so
reinstalling
drive
units
be
the
type
the
capacity
due
mm
100
The
with
cables.
filters,
the
unit
cutting
sure
sections.
as
AC
following
during
and
units
such
should
do
to
allow
from
power
secondary
not
fluid
to
during
manualsofthe
when
installed
internal
thermal
possibilities
to
a
totally-
the
of
to
noise,
wiring:
etc.
that
as
the
install
may
seal
easy
maintenance
mounting
outside
for
enclosed
heat
DESIGN
mount
cables
precautions
are
be
completely
feed¬
lines,
sides
exposed
CRT
dust-
of
a
them
directly
checking,
feed
servo
them. the
losses.
a
change
type
exchanger.
and
unit,
(b)
Allow
inside
directly
boards.
forced
the
on
6
air
unit.
the
&
at
more
Be
surfaces
VENTILATING
DUCT
3
(a)
Good
FORCED BLOWN
than
careful
of
AIR
DIRECTLY
2
not
the
printed
i
lc><51
ms
B
to
to
circulate
blow
circuit
air
(11)
(a)
RADIATOR
FIN
AIR
J
Precautions
Observe
during
Mount
Fig.
3.1.
the
mounting
the
unit
0
n
for
Mounting
following
in
UP
DOWN
0
SERVO
FEED
SPINDLE
Rack
CPU
CPU
direction
particularly
rack:
shown
points
the
of
the
Q
5
g.
3
cr
•5
o
n
DRIVE
in
AND
UNITS
(c)
Provide
upper
of
maintenance.
the
Fig
spacing
section
unit
for
3
2
and
better
(b)
Poor
Mounting
of
more
100
of
than
in
mm
ventilation
Fan
the
50
lower
mm
and
in
the
section
easier
Fig
3
1
Mounting
of
Units
2
4.
CABINET
FACTORS
1
4.
SELECTION
The
cabinets
should
units
inner-air
should
nets
needed
be
may
the
heat
equipment.
ity
1.
2.
follows:
as
AT:
Pv:
:
Cabinet
k
A:
qh:Heat
Calculate
equipment
Pv
Calculate
=
A
The air
are
to
be
temperature
be
less
inside
generated
Determine
Air
temperature
heat
Total
(w)
ment
Calculate
circulating
Effective
exchange
exchanger.
the
.
(Heat
2
=
the
x
(W(width)
2
x
D(depth)
surfaces
ineffective
DESIGN
OF
HEAT
contain
of
heat
based
radiation
total
effective
that
the
a
totally-enclosed
differential
than
the
the
by
the
rise
generated
transmission
on
fan
is
ratio
heat
value
x
2
+
are areas.
FOR
HEAT
EXCHANGER
module
CPU
inside
10°C.
cabinets
installed.
value
of
heat
H(height)}
ID(depth)
not
Heat
installed
heat
exchanger
inside
electric
by
[W/(m2’°C)l
6W/(m2-°C)
cabinet(m2)
of
area
of
necessary
Pv
unit)
each
radiation
exposed
depending
cabinet(°C)
of
and
type.
the
exchangers
electric
equip¬
a
if
heat
the
electric
area
(W(width)
2
+
x
H(height)t
external
to
other The cabi¬
on
capac¬
A.
2
4.
4.2.1
4.2.2
Unit
Note
1
2
3
HEAT
NC
SERVO
Type
CACR*
SR05SB
SR10SB
SR15SB SR20SB
SR30SB
SR44SB
The
servo
80%
The
internal
fin
Is
installed
Heat
value
on
the
VALUES
UNIT
Table
Module
CPU
NC
Operator's
Tape
I/O
Module
Table
unit
heat
created
frequency
4
Unit
Reader
UNIT
4
2
Total
Value
100
110
130
140
220
270
uses
valueisthe
outside
by
of
OF
1
Heat
Heat
(W)
three
regenerative
rapid
Heat
Panel
shafts,
feed
UNITS
Values
Value
Internal
Value
and
heat
value
resistance
starts
its
and
Heat
of
57
61
68
71
95
110
load
remaining
of
Servo
Heat
<W)
stops
NC
Value
70
20
factor
will
Unit
25
5
(W)
Unit
Regenerative
Resistance
10-20
20-40
30-50
60-100 80-120
100-140
should
be
inside
the
if
depending
differ
70
heat
(W)
to
/
/ ////
(FLOOR)
3.
4.
5.
3
/r’/
Note:
bottom
Calculate
ensures
cabinet
Pv'
heat
A
value
heat
A
following
capacity)
heat
value
qh
/ /
50
If
mm
areas
the
the
(AT)
k-A-
=
exchanger
S
Pv
exchanger
heat
qh
Pv1
(Pv-Pv')
=
gg-gq
.
less
or
ineffective.
are
allowable
temperature
be
less
to
(W)
AT
L
10°C
6W(m2.
-
is
allowable
has
exchange
if
total
heat
.
/AT
L
INEFFECTIVE
from
heat
increase
than
°C)
needed
not
heat
to
be
ratio
value
(W/°C)
10°C
AREAS
floor,
the
value
10°C.
value
installed
(heat
Pv
Pv'
within
total
if
Pv'.
with
exchanger
allowable
>
that
heat
the
3
5.
5.
1
CABLE
LAYOUT
ENTRANCE
CABLE
OF
CONNECTORS
y-rwm,R
Fig
V~
s
I
&
£
5
1
ar-
JANCD-MB22
sm
CN«4
l,
c'-
63
CN
gg
ga
CilCMCM
000
sr
su
HO:
CTjajSja]
Cable
I
Entrance
'
1
'f
>
E
CPS
i-
S
ION
I
i
i
-q
!ii
,/7
//
/?
//
I
I
II
i
II
2
CLAMPING
5.
CABLE
Be
sure
YASNAC fixtures
For
the
shield
stripping
SHIELD
to
clamp
MX3
found
shielded
is
grounded
the
CABLES,
the
securely
the
in
cables,
cable
cables
with
control
securely
sheath
AND
clamp
as
GROUNDING
connected
the
cable
panel.
the
cables
to
the
shown
in
the
to
clamping
so
plate
Fig.
that
after
5.2.
GROUND-
PLATE
-E
Note1
cable
CABLE
SHIELD
ENCLOSURE
CABLE
Non-shielded
enclosure
for
cables
clamping.
CABLE
do
not
4
CABLE
require
t-
GROUND
CABLE
4-
V
PLATE
CLAMP
SHIELD
ENCLOSURE
stripping
Fig
5
2
Clamping
of
Shielded
Cables
4
CONNECTION
6.
YASNAC
9
1
:
:
I
f
>
&
.
:
.
j
I
5
*1
:
8
1
N
5
:
i
i
p
51
4
I
M
5*L
MX3
TJr
PC
BOARD
1
pi-
Tt
BOARD
MAIN
*k
-j
L-
CNA
•t
B
J
CNB
y
a
J-
CNC
't
CND
M
1
ONE
K
ii
CNF
’•
u
;
CNH
1
Br.
f
ADDITIONAL
TYPF
'
1
:
CNH
:
4
rf
i
1
1
1
>
;;
CIIL'ISZXI
DIAGRAMS
CN1
CN
I;-
CN
-T
f
CNrl
K
ih
CNifl
ET
rt*
P
CN&
;
IT
t'r,
CN!4
?ÿ?
r,
CNÿ
S'
i
fcf,
CN
$
:
CN
7]
fWc
:
CN
nr
*
AXIS
BOARD
*-w**
wr*
?1-
Ifi
CN6i
a
62
CN
f.
CN
69
*$»
CN
Jr8*
-ic"
TO
(g)
JANCOSR
t
*
&
e
j
PC20,
h-"
«ÿ
?r
r
..
f
f*
1
t
'
:
•"
*
L
!
-t
K
!
<*
L
t
I
t
e-:
RI/O
OPP
sx
SY
SZ
TU
RS
SD
SPC
S
4
CN21
®
©
©
_
-
@
©
©
©
©
C
232
©
@>
_
_
TO
®
200
-
1021,
TO
(§)
X-AXIS
fp3HiE
KN
Ji
n.rÿTKv:
Y-AXIS
ru
feNlCACR-
Z-AXIS
J
CN1CACR-
yg®
SEQUENCE
TURNING
iR0
©
0
DIRECT-IN
SPINDLE
7H3TZTi!I73c
I
1
4TH-AXIS
5TH-AXIS
"N
%
TO
®
REMOTE
I
1021,
CN13
INPUT
VAC
CN11
DRIVE
1CACR-
SR
;SBCM
DRIVE
DRIVE
TYPE
OF
ON
DRIVE
wwwag
DRIVE
DRIVE
CACR-SR'
1
CPS-10N,
I/O
MODULE
%*&
RESISTOR
STVS
RESISTOR
IT
RESISTOR
?
OPERATION
TYPE
-fFpTH
W,
©
-
RESISTOR
RESISTOR
:SB«o
m
CN12
SSCTSH
CRT
OPERATOR’S
PANEL
|»MMokTO*-«-CRf
}
?
a
i
.ÿ
N
M
ON
JJU
t
m
INPUT
POINTS
16
OUTPUT
32
POINTS
@
@
®
PTR
TAPE
(OPTIONAL)
@
®
®
SE3
3
TYPE
2
I
®”\
<S)
i
READER
SPINDLE
(OPTIONAL)
<§H
®~~\
0-J
JANCD-SP5*®
INPUT
48
POINTS
OPTICAL
OPTIONAL
H
f-
O
ENCODER
MANUAL
OPTICAL ENCODER
Note For
Nos
details,
in
see
circle
par
18
are
cable
1
Nos
•ij
*;
.
OUTPUT
40
-POINTS
INPUT
POINTS,
8
OUTPUT
POINTS
8
Fig
TYPE
INPUT
24
OUTPUT
16
6
JANCD-1021
POINTS.
POINTS POINTS
POINTS
1
i9M
INPUT
40
g.j|
INPUT
40
J11
OUTPUT
4
POINTS
(REED
RELAY)
5
7.
POWER
1
7.
POWER
SUPPLY
SUPPLY
CONNECTION
CONNECTION
MODULE
CPU
TYPE
CPS-10N
w-tjw*
a
s**
n;
CN13
CN13-1X
CN13-3L
i
,*<
CN13*
i
CN13
___
IL:
UISJI
<t~
•Z*
=P!
5
L
>M
4
7'
-
¥=j
1
.
J
TO
CPU
*ÿ»
*
*
«
H
MODULE
R
S
G
EAL1
EAL2
SINGLE
200/220VAC,
POWER
300VA
ALARM
-o
o-j
POWER
(NORMALLY
PHASE,
SUPPLY
DETECTION
UNIT
CAPACITY
INPUT
INSTALLED
USED)
NOT
OF
SEPARATELY
POWER
2
7.
CABINETS
For
details,
SUPPLY
contact
CONNECTION
Yaskawa
your
Fig
1
7
Power
STANDARD
TO
representative.
Power
Unit
Supply
Type
Connection
CPS-10N
to
6
8.
CONNECTING
(TYPE
JANCD-PC20)
POWER
TYPE
JANCD-PC20
ss
1
S
r
s
I
I
1
•i
;n
i
2
i
-
i
TO
CPU
CNZ2-3
CN22-4
CN22-5 CN22-6
CN22-18,
CN22-11
CN22-11
CN22-1
CN22-7
CN22-13
CN22-1 CN22-1
CN22-2 CN22-8 CN22-9
CN22-1-
CN22-15
CN22-li
CN22-1 CN22-:
UNIT
CRT
MODULE
it
S-
fcr
I
C<r
£
£
(TYPE
CPS-10N)AND
OPERATOR’S
DATAP
,
[
-
i
*
DATAP
CKP
*
*
HLGHTO
HSYNCO
CKP
OIJTP
OUTP
INP
INP
0N0
OFFO COMO
VIDEOO
VIDEOO
HLGHTO
VSYNCO
1
*
P
i
P
1
P
1P
1
,
fP1
1
P
p
_L
\
PANEL
OPERATOR'S
CRT
*
9-
*
*
-
4
-
3
i
T
m
*1
/
1
n
m
1
I
1
..
TYPE
CN2-3
CN2-4
CN2-5
CN2-6
CN2-18
CN2-19
CN2-10
CN2-11
CN2-7
CN2-13
JANCD-SP20
CN2-12
CN2-L
CN2-2 CN2-8
CN2-9
CN2-14 CN2-L5
CN2-16
CN2-17
CN2-20
BOARD
PC
(CRT/P)
(CRT/P)
PANEL
*NC
contains
does
Note:
The
1.
Power
2.
and/or
Do
3.
SW5
operator’s
a
power
not
have
shield
on
remote
not
set
mounting
SW5
u
station
to
enclosure
/off
SW5
on
be
can
power
on
with
/off
provided.
be
selected
Nos.
main
switch.
does
on
/off
and
4
board
CPS-10N
TYPE
wax*
ms|
5V
+
08V
12V
+
V
24
+
0,4V
2*2
keyboard
A
not
have
by
(EOF)
6
type
o
1
o
4
10
7
O
10
Factory
before
CNll-l
CN1I-4
CNIi-2
CN11-3
CN11-5
v'
•'
-
: :
*
POWER
ON*
POWER OFF*
on
right
special
to
the
panel
a
by
leave
open.
JANCD-MB22
sws
01
lo
3
o
o
6
O
9
Ol
1Z-
IQ
Ol
set
shipment)
9
:
£
*1
<-
'
'ft
:
-
-
o
Q
o
1
-
on
CRT/
SYSTEM
TO
BE
CRT
of
circuit
outside.
/off
plug.
CRT)
9"
OPERATED)
/
Fig
side
external
be
grounded
power
shorting
(14"
FOR
(NOT
EOF
(INEFFECTIVE/EFFECTIVE)
POF
(
INEFFECTIVE
(POF)
EFFECTIVE
8
1
ON
OFF
COM
)
3
3
2
I
-
Power
On/Oft
Input
SW5
-
CN3-1 CN3-4
CN3-
CN3-3
I
CN3-5
1
s
I
CNB-8
1
S
CNB-15 CNB-14
Grounding
Panel
should
Panel
1
O
4
o
7
to
o
10
2
terminal
Power
On/Off
(POF)
O
o
ol
to
be
grounded
O
o
o
ol
provided
SW5
3
6
9
12
;
I
W.
I
is
i
si
Setting
Remote
On/Off
(EOF)
O O
1
4
O
O
7
|o
10
with
on
O
lo
o)
panel
other
Power
O O
Q|
O
panel
3
6
9
12
located
Panel
Remote
On/Off
O
t
4
o
7
O
o
10
O
o
|Q
|o
closely
and
Power
O
o
Ol
o|
3
6
9
12
7
9.
CONNECTION
Note
:
to
1.
Up
nected.
2,
only
ed
JANCD
-PC20
RpÿN*
tirsL
OPTION
fr
I
2.
Terminator
Plugs
The
terminator
ed
when
JANCD-I021)
or
used
boards.
I/O
OFF
state,
side
as
(When
terminating
I/O
8
remote
3.
Fig
andPCBoard
I/O
board
Logic
Determination
In
YASNAC
determined
spective
where
1
9
Module
remote
four
However,
3
remote
JANCD
H021
i
CN
lz
-1
CN13
;
y|
*•"
ON
one
only
is
signals
When
set
shown
below.
ON
at
this
)
10
MX
by
of
0MV
the
input
Connecting
(Type
(Type
OF
REMOTE
CPU
TYPE
JANCD-PC20
i1
CN21
4
CN
CN21-
CN21-
4
CN
*1
CN21
:
l
CN21-I0
i
CN21-U
v
J
CN
1
CN21-J0
U.
TYPE
CPS-10N
i
v*'V-
-
CM2-
CN
CN
CN
I
4
CN
»
i.
-
boards
1/0
with
type
boards
I/O
JANCD
*1021
fi
CM2
-irryÿH
1
/OFF
Selection
ON
/OFF
state
remote
used
are
all
rÿ~~T5i
jo
4
7
3
series,
shorting
common
contact
Power
JANCD-PC20)
JANCD-1021
or
transferred
selecting
four
circuits
SW3
-o]
;Q|“o!
I°J
is
by
Shorting
I/O
when
12
the
plug
or
is
Unit
MODULE
i
-
21
-
4
5
e
lj
21
1
15
-
$
12
21
*•*>,
j
1
i
4
12 12
2
12-
3
12
5.
nn
can
JANCD-SP20-
can
JANCD
J021_
1
J.
CN|2
»/
%4
by
must
board
two
terminator
3
OFF
(When
b
remote
9
logic
setting,
+24V
closed.
(Type
)
I/O
t
*c
UA1A
•DATA
ft
t
2?
•OUT
-!
&
£
tr
it
?
*“
'
l-
be
be
connect-
Shorting
be
(type
or
to
other
to
the
transferring
board
I/O
Plugs
11
1"
common
CPS-1
to
Remote
CK
•CK
OUT
IN
•IN
ciV
JANCD
-1021
1
ff"
!*
change
more
same
can
irre¬
12
+
4
21V
IUV
con¬
cJ
?r
CNM
remote
ON/
to
)
(R
V
are
other
be
ON
P
p
p
P
1
)
I/O)
REMOTE
(R
I/O)
CN'll-
11
CN
CN11
11-
CN
11
CN
CSNU-H
tgNIMO
n-ii
BN
li
u
[CN
11*12
H
F(JCN11
6
re
k?NH-
ICNU-
H-
[CN
am
CN
1
In
mined
mon same
In
minedatboth
where
shorting though
MODULE
I/O
MODULE
i
CN
12-
3j
CN
4
12-
4l*HATA
gj
CN
12
12-6
CN
18
CN
12-
Is
CN
12
ft
CNl2-fe
CNl2-m
fe
CN
12-13
2d
CN
12
iuj
!
g
£
1
c\
14-
L
1
CN
1-
1
4.
&
CN
2
2
14
a
r
14
CN
5
-
V
CN
Shorting
1
lo
2
3
4
5
6
7
8
the
where
way
Shorting
l
2
3
4
5
6
7
6
the
1-
1
SW2
O
O
o
o
O
o
o
above
at
SW2
o
o
|o
O
o
O
O
above
the
plug
any
%
0
of
O
O
o
o
o
o o
24
as
Plug
o
o
ol
O13O
O
o
O
o
input
1-
.
DATA
CK
*CK
OUT
*QUT
IN
*IN
<>V
FC
y
4-
»>
i)
V
12V
+
24_V
-
OMV
Plug
16
15
14
13
12
n
10
9
setting,
V
common,
the
YASNAC
16
16
14
12
11
10
9
setting,
0
on
SW2
of
TO
10
MODULE
TO
I/O
Setting
input
Setting
2*V
contact
switch
2ND
REMOTE
REMOTE
2ND
MODULE
Logic
contact
Common
02<V
”0"
the
contact
MX2
Logic
coniact
0„V
Common
“1
the
common
Nos.
on
and
on
-
is
SW2
2
SW2
whore
is
+24V
logic
"l"
series.
SW2
where
Is
+
logic
and
closed.
to
closed
is
closed
24V
No.
8
No.l
the
Common
"
1
0
"
at
closed,
No.
the
Common
1
"
,T1"
+24V
3
are
is
deter¬
"
+24V
in
3
is
deter¬
common
Set
as
standard,
available.
com¬
the
the
10.
CONNECTION
PULSE
(1)
1ST
MANUAL
OPERATOR’S
CRT
PANEL
JANCD-SP20
TYPE
CNl-
A
*1
4ÿ
4<
V
»
>J
S:
V
;
<*•
P
TYPE
,
•i
CRT
PANEL
I
16.
CN
1
III
-
Tv
CNl-
18
CNl-
3*J.
T
iy,
CNl-
-
CNl
4M.
CNl
-
5**J
6ÿ1
1-
CN
si
OPERATOR
a.*
t
A
JANC0-SP20
i
cni-
r’<'<+5ÿ
-
CNl
6*
«
4
CN
1
-
-
CNI CNl
CN
CNl
CN1-
1
-
-
lbÿ
-
-
r
2*
18
3ÿ
?
L
I
L
1
8I
OF
GENERATOR
GENERATOR
P
p
p
p
PAH-
OH
PBH
OH
OH*:
+
+
+
5
6H
5H
r
a
rV
H
m
PULSE
x
v:
«<<
-V
-
S
$
<
\
5
+
r>
+
o
H
PAH'
OH
PBH
OH},
3
-rJi
HI
T
H>
S
b
L
p
p
4
p
P
MANUAL
(HPG)
1ST
MANUAL
PULSE
HPG)
<1
TYPE
r
_
/
*
147
3
V
i
(OPEN
COLLECTOR
MANUAL
1ST
PULSE
(1
HPG)
100-M
f
)
2
i
/
*
7r
3:.:
\r
4
:*
?=
(OPEN
COLLECTOR
GENERATOR
10
MG?-
pc
OUTPUT)
GENERATOR
PREH-2E5T/
PG
13.21
OUTPUT)
-
!
£>
A
i
V
ft
C
V.
'
t:
K
j;
::
I
,
V
h
*
**
F
3
b
Note:
The
1.
2,
Set
the
3.
An
differential
be
type
4.
Shielded
are
Use
are
enclosure
5.
When
using
However,
ground
JANCD-SP20
HPG
power
SW1
on
manual
SW
!
i
0|
[O
4
O
O
7
O
O
10
o o o
Simultaneous
1
control
-axis
manual
generator
for
Used
(
interface
collector
open
for
used
is
not
cables
less
than
twisted-pair
than
more
the
cable
a
ground
plate
the
pulse
)
1
O O
O
pulse
this
output
HPG
provided
1
using
this
in
by
.
supply
SP20
generator
3
6
9
12
)
output.
are
m*
shielded
lm
a
ground
shield
plate,
case,
actual
Fig
(cable
and
a
is
board
as
specifications
length
(cable
length
The
Yaskawa.
by
needed
not
Twisted-pair
cablesifthe
ground
plate.
enclosure
use
connector
execute
wiring
10
1
constant
follows
For
be
Yaskawa
5
differential
if
the
connection
on
+5
depending
(SW
1
0
4
O O
7
O O
o
10
Simultaneous
3-axes
manual
generator
interlaces
used,
m
or
or
5
m
the
cable
cables
cable
cannot
CNl
the
V*
.
)
1
°1
O
O
o
o
control
pulse
to
contact
representative
less)
more)
output
lengths
be
can
cable
shield
be
grounded
No.
with
of
frame
on
b
9
12
or
can
used.
lengths
20
board
pin.
the
CRT
OPERATOR
PANEL
TYPE
JANCD-SP20
CNl
i
CNl
CNl-llH
I
CNl-
I
11
7
7,
4
TNI
-4.
3
1,
~CN1-
d
S
E
-
16
PAH
*5*
-
*PAH
17ÿ
PBH
lÿJ>PBl|:
-
13ÿ1
$L
5.
+5H..
-
2,
3
oH
MANUAL
1ST
GENERATOR
3-
$
u
U
frr)
r
P
p
*"
»
&
3
PULSE
HPG)
(1
i.
7
?—
?
*
I4
6
I
ii
(DIFFERENTIAL
PC
;*P
t
I
1
OUTPUT)
9
11.
CONNECTION
OF
INPUT
SEQUENCE
11.1
CONNECTION
CPU
MODULE
$
%
!|
TYPE
JANCD
70
mA MAX
MB
S
QV
22
CNr>-
CN5-
CNr>-l|
l
1
T24
NCM
1
SVMX
NCMX
SVMX
POWER
NC
SERVO
ON
POWER
ON
ov
INPUT,
EMERGENCY
V:
CN5-1#
'
£
iv
r
P
I
i|l
I
p
-p
P
i
#
P
%
§
x*
2
p
P
P
-Nl: P
£
--y
ife
CN
r>
CN
CN5-
CNT-1I
CN
CN
CN
>;%-
?x~
TFS
*
Si
TOL;
-
%
*
Q-
Q
%
I
-
-
r>
EON
fcCM
12
P
1
-
0
2
-
r)
I
a
p
1
:P
4
1
P
EOF
4.
2
P
m
H
I
FC
.'.O
I:
vi
::
nates*-**
a
h
:
P
<
>
o
O
I
NCMX
SVMX
o
o-
o-
o
MACHINE
<ro-
MACHINE
OVERLOAD
(NORMALLY
EXTERNAL
EXTERNAL
NCM
SVM
TSJ
MAGNETIC
CONTACTOR
STOP
END END
INPUT
NOT
POWER
POWER
LS RELEASE
USED)
ON
OFF
10
Fig
111
Main
Connecting
(Type
Board
Input
Sequence
JANCD-MB22)
to
11.2
11.2.1
POWER
(1)
NCMX:
logic
(2)
SVMX:
servo
unit,
is
outputted
(3)
The
follows
(a)
Close
control
(b)
Either
operator's
EON
the
and
input
(c)
Again
the
between
supply
signals
activated
(d)
When
circuit
becomes
input
played
possible
DETAILS
NC
ON
circuit
unit
turn
power
;
the
and
servo
the
and
'
With
the
sequence
gized
4
make
POWER
With
the
servo
sequence
gized
s
the
of
OF
POWER
(SVMX)
This
of
This
is
energized.
the
on
.
power
.
push
station,
ECM.
control
output
output)
an
external
servo
the
at
EON
is
turned
(servo
.
external
an
the
at
external
between
ready,
the
on
the
.
SIGNALS
ON
output
control
the
output
power
supply
the
control
that
so
output
the
same
ON
and
power
power
that
so
output
SVMX
I/O
CRT,
(NCMX)
turning
supply
POWER
or
Then,
circuit
of
NCMX
is
servo
the
button
ECM)
on,
servo
circuit
the
circ
close
module.
turned
is
is
is
turned
With
supply
main
ON
close
the
signals
activated.
unit,
circuit
circuit
of
NCMX
power
or
Now,
.
and
input
circuit
of
SVMX
ut
closed,
is
the
MRD
and
AND
on
energized.
on
an
external
when
on
sequence
switch
button
the
circuit
logic
both
are
design
power
is
signals.
switching
closing
the
the
output
and
unit,
design
power
is
signals.
is
ready
and
(machine
Then,
operation
SERVO
when
when
this
for
the
on
between
circuit
energized,
(NC
power
the
input
ener-
(pushing
the
circuit
servo
of
output)
input
ener-
after
the
RDY
is
becomes
the
the
servo
signal
is
the
and
power
SVMX
is
control
ready)
dis¬
as
NC
the
11.2.2
When
open,
EMERGENCY
the
the
supply
(+ESPS)
11.2.3
(EON,
The
input
of
station.
is
control
signals,
the
POWER
closed,
EXTERNAL
EOF,
control
EOF
and
power
11.
of
ECM
EON
ECM
EOF
CONTROL
CIRCUIT
SUPPLY
CONTROL
POWER
U
2.
Short-circuit
used.
(Normally
STOP(TESP)
emergency
control
is
turned
of
general
ECM)
can
in
ON
When
the
is
OVERLOAD(*TOLD)
logic
energized.
ECM
is
the
control
CLOSED
OPEN
CLOSED
OPEN
LOGIC
POWER
SERVO
SUPPLY
Fig
113
T24
stops
off,
purpose
POWER
INPUT
be
switched
the
/OFF
the
circuit
circuit
opened,
External
(CN5-10)
this
stop
and
same
is
input
input
totally,
the
I/O
ON-OFF
on
way
buttons
between
or
When
the
the
logic
deenergized.
J
Power
INPUT
if
is
INPUT
circuit
the
servo
emergency
module
and
off
the
as
on
the
NC
EON
servo
power
circuit
circuit
ON-OFF
this
input
used.)
not
(TESP)
power
stop
output
is
opened,
external
by depressing
operator's
ECM
and
the
of
between
or
servo
U~
is
not
is
POWER
PB
NCMX
(OUTPUT)
SVMX
(OUTPUT)
MRD
(INPUT)
Fig
11
CRT
DISPLAY
ALARM
“310"
2
Time
Turning
SCREEN
CODE
Chart
on
CRT
SCREEN
DISPLAY
ALARM
"280'’
of
Power
Sequence
CODE
CRY DISPLAY
“RDY"
Supply
SCREEN
DISPLAY
11
12.
CONNECTION
•The
page
3-PHASE
200
R
1
precautions
17.
/220V
AC
T
SI
1
-;at--vr8y.
LINE
FILTER
TYPE
«
4
1
1
•Si
5
r,
X-AXIS
-
CONTROL
*
5
h
t
l
"
4
r
:
r
8
I’
a
*
tr
f
t*
1
%
‘i
4
%
J
S
<v
a
:::
TO
FEED
on
connection
SVM
NCM
MODULE
CPU
,*v.
«
«
CN CN CN
CN CN CN
CN
CN
CN
CN CN
r*0
-
1
14«
-
1
13<4
-
1
1
-
22<|&
-
1
-
1
23&
2$&
1
-
-43<£
42<£
-4<X»
-
1
18.
1
-
1-39.
-
1
26<
-41&
-
1
I3<t
1
3w
-
-
3S&-
l
7<SF
jpT
f
~
-
-
JANCD-MB22
4
«»ir
*4-
*
CN1-2
CNl CN1
CN1
CN
CN
CN CN1
CN1-36A-
19«-
CN1*
&ÿ
-20
CN
1
1
*
-
CN
1
«
CN
1
-
2"<Sfc
-
3
CN
1
if
CN
1
50<fe-
-
i
i
CN1-S,6ÿ-5V
lOQf
CN1-
-
CN
n
1
47.49<fe-ÿ
32,
CNl-17,
CN1-
at
«
::
%
a-wvrj
r~
ft--.
-a1"
jF~*
»
SERVO
R
vn*i
DAX
1
SGX
24
+
SVONX
TGONX
PC
SRDX
PC
FUX
OLX
££
ALX
C
0
PAX
PAX
*
PBX
PBX4*
*
PCX
PCX
*
ov
0V
PV
VTG
VTG
-
3
r
!
a
r
1
Is-
5
J5J
-
<>
s
*
1
*1
4
*<i
8
c
%
)
:>
*
i
x.
V
a
tt
&
1
•v
•>
are
R22
(
v
>
«
t
provided
T3
S3
S
(
JZ
IE
IT
IT
IT
>
T
NOTX
POTX
SC
22
9S>CNl-2l
P
P
»CN
»CN
»CN
>>CN
»CN1-
4>CN
>>CN
“©ÿCN
»CNl-20 »CN
SpCNl
vCN
f
»CN1-41
»CN
UNITS
on
REGENERATIVE
RESISTOR
SVX
ja
t
R
s
•T
TYPE
CACR-SR:
-
<!
a
**«
a
*
.*
o
1-14
CN
13
1
-
7
1
-
i
1-8
CN
•CN
22
1
-
-
28
CN
1
--
CN
1-27
-
CN
4
1
CN
1-42
-40
CN
1
!•
2r>
-
CN
1
-
*8
1
-
IS
1
1
12
-
-
i
n
i
K
-
H
1
U
lr;
1
-
-
lb
1
1
-
11
1
1
-
-
2
i
1
1
.
-
2b
1
32
l
-
1-47
it
w11"1,
fc-
-r.
%>
*
(SVX,
1R
,SB
(
5)
+
(Os)
11
i
IT
16«
CN2-
CN
2
I7<fe
13&
CN2-
CN2-
1
CN
2
l&fr
-
-
CN
2
1S«-
CN2-
8<<
-
CN
2
<*«
CN
2
-
lOcfe
CN
2-1
12ÿ
CN2-
-
CN
2
13<&
4-Y
CN2-
CN2-
]CN2ÿj
"
CN2-!
CN2
CN2-j
CN2-
7V
*
CN
2GN»
2
-
%
~
f
SVY,
K
(
V
f
*'<
t*
*t
SNC*
US-
l
1.1
5
1
r<
•*
a
i1
4
4
1
SVZ,
P
IT
IT
IT IT
IT
IT
IT
TP
Note:
When
taken
is
TGFB
or
be
must
5
axes
per
If
the
contact
representative
PA
PA
*
PH_dC
PB
*
PC
PC
»
PU
PW
»
PV
PV
*
PW
PW
*
+
FG
from
100mA
value
SV4,
3
»>£
3
yLF
>>L
JJN
3
3
D
$
linear
at
your
dJ
:w
-
2
•r
|S
a
V
a
ft
IA
jD
:K
/M
•IP
•:•
-ÿ
&
X.
fsj,
5V
V
E
H
the
.
X-AXIS
FEED
MOTOR
C,»»V>tyg*
*
power
20
MB
scale
axis.
per
maximum.
exceeded,
is
YASKAWA
SV5)
SM
1
f
2*
S
**ÿ
#
4
I
a-
tr
f
*
c
f
r
-
I
I
r
h
PCYJ
>*
5
*•£
-
$
&
I!
I
>a.Ar
supply
(21)
FB,
0.5A
a
,
-
as
it
12
Fig
12
Connection
1
to
Feed
Servo
Unit
(SVX)
U-C
TYPE
I
At
i
i
*4
Y-AXIS
CONTROL
I
4
ft
;
4
1
I
$
::
>:
11
4
I
1
%
:W
M
)
%
"I
3
:3
-
3-PHASE
200/220VAC
MODULE
CPU
'
JANCD
MB22
i,~l
Si*
<
CN2-1W
CN
2
CN2-
2
CN CN2-28*»
CN
2
CN2-
CN2-42A
CN
2
CN2-25«
2
CN
CN2
CN
2
CN2­CN
2
CN
2
CN2-
2-3
CN
2-1
CN
CN
2
CN
2
CN
2
CN
2
CN2-
2-5,
CN
CN2-
CN2-
CN2-17
32.47.4
CN2-
-----
m,
*
-
15<3£
7&
23«
-
-
27ÿ£
43<fc
-
4Q«*r
3
-
-
39&
I
r
26<
-
4X*<
-
-
34«-
35<C-
-
20<£
-
1
-
2<«
3«t
'
50«
f
,4
"gVTC
1
>t<sG-
It
j
1
st]
S!
-
,
:
i
R
R22
S
22'
<
•*.
!??•«
DAY
SGY
4-
24
SVONY:
SRDY
C
0
FUY
oc
OLY
OC
ALY
OC
PAY
PAY
PBY
PBY
PCY
PCY
V
0
ov ov
V
5
VTG
V
0
FG
**
<*
*
*;
r
s
r
;
V
«•
f1
I
L
H
l
L
J-
i:
I
-
<<
£ÿ
t,
*:
*
r
s?
?
S*"
V
£
T
.
EP*ÿ
u
E
£>CN1
-
®CN
-
r—
1
»CN
-
»CN
I
-
IP
-
*
-35JCN1
»CN1
E
*NCN1
,
«wCNl
-ScN
T
»CN1
-
*£ÿ
icN
»CN1
-
1
»CN
-
E
*CN
P
Tÿ“
fCNl-lH
»CN
-
*
»CN
-
»-CNl
-
»CN
-
NOTZ
»CN
Sÿ-»CNl
POTZ
»CNl-4l
SG
»CNl-47
SVY
*
S
T
*
>
3
r
'ÿ
>
CN
1
.V.
Tu
i
!
i
1-
N1
1
1
1-
1
1
1
1
1
1
l
1
1
1
1
;
REGENERATIVE
2R
RESISTOR
xa
J
uYr
TYPE
CACR-SR['.]SB
12
-
lr>
-
7
8
-
i
2
-
28
-27
1
4
-42
40
2*»
-
4H
I
»
51
io
U>,)
14
-
H
-
H
-
<4
-
ir'
-
-
20
-
1
-
2
-
i
-
20
«
Y4
CN
CN2-
CN CN2­CN
CN2 CN
CN
CN
CN2-
CN
CN
CN
CN CN2-
*
2
2-
2
2
2
2
2
2-
2
CN2-
CN2-I
CN2-: CN2
CN2-;
2
r
&
wo
6*
!
l
it
I
s
\
4!
1S<*
17«t
l&fe
19ÿ&
!4dE
15&
a
-
-
-
llkK
IKK
-
12&
1
*
4
:•
7
V
20«£
is
>t
L
i
&
'4
3
>ÿ
li
s
_
1
IE
E
IE
]
E
[P
E E
z
p
I
Y-AXIS
MOTOR
FEED
*
SMri
P
t?.
#
i
«
.c
J
i
n>
PA
PA
*
C
PB
jL’u
PB
*
PC
E
[»F
PC
*
*
PU
>
PU
*
PV
XM
PV
«©*
*
PW
*
4ÿ
pw
XH
*
4
5
>y-
c
P9
)
-
FC
&
«<*
g
9
4
...
f
£
-
?
?
I
l
£
PcV-l
5
«•
C-
»»
>a
1;
tj
Uj
?
%
S.
'H
S,
~
:
Fig
12
Connection
2
to
Feed
Servo
Unit
(SVY)
13
12.
CONNECTION
(Cont’d)
CPU
JANCD
TYPE
Z-AXIS
CONTROL
*:
£
CN3-17,32.47,4#»
TO
FEED
3
R
3-PHASE
200/220V
CN3­CN3­CN3-
CN CN CN
CN CN
CN3-4i&
CN
CN3-
CN3-2»&
CN
CN3-
CN
CN
CN
CN
CN
CN3-36&
CNJ-Z»*,PCZ'
CN
CN CN
CN
CN
CN3-l(Wf
CN3-'#fv
CN3-
MODULE
MB22
1 1!
:
3
-
-
3
2»|-
2ÿ
-
3
3
2
-
3
27&
-
3
-
4Z<&
4{HS
3
-
3$fe
3S&
c
-
3
26*
3
-
4X<
-
3
3
£&
3
-
3
-
3
-
3
2j«
-
3
S&
-
3
50
-
2
?
li
5,
3~
6p
AC
L
riiij
Z
»
$
VTC
-
SVON
TGON
5V
R22
S
22
I
I
£
DAZ
scz
|
I
JP
OC
-
SRDZ;
OC
fe
rUZ_ÿ
OC
£
OLZ
3
y
oc
ALZ
£
;
oc
'I
2
h
c
PAZ
i?
.
PAZ
2
PBZ
|
PBZ
_
ov
I
V
I
0
OV
f
-
/i-
s
;
e
VTO1
-
?
%
|
->
t
,
v-
2
:
A-
2
I
SERVO
SVZ
p’
2
'*
i
UNITS
'
-ft
TYPE
CACR-SR:
i
N1
12
IE
I
r.
TF-I™1-28
1
-
F
p
-
;
-
IP
1
-
-
-
IE
IE
J
NOTZ
-
sc
POTZ
cr
-G
*
N
-
l
-
gCNi
JgCNl-
-
1
»CN
)
1-24
|CN
1’27
*|CN
'
-44
yCN
1
•:
N
1
-
N1-4C)
-
1
«CN
*
»CN1
fk
-
3»;CN1
-
-
wCN
1
I
4ÿNI-
-
«>CN
1
9ÿCN
-
1
-
CN
1
-20
»CNl
w*CN
1
-
Jw
-
»CNl-
*r
13
»CN1
-26
R
1
-
»;CN
»CN1
lift
-
1
>>CN
ft
.
15
7
B
22
42
2r>
48
w
14
H
n
44
45
46
1
2
4
42
41
47
(SVX,
REGENERATIVE
RESISTOR
3R
.SB
CN2-
CN2­CN2
CN2-
CN2-1&<
CN2-
CN2­CN2-
CN
CN2-
CN2-
CN2-
CN2-
MS)'
CN2-UL
(0»>
CN2-
CN2-’
CN2
CN2-X
CN
2
rrf
2
CN
w
1#<4
1
1
-
1ÿ
2
l<kSf
-
1|«
12Sÿ
13&
4
-
2<H
f\
a
V
a
;
>
Kf
£
:•
2:
§J
I
-
UJp
ft
SVY,
F
IE
IE
IE
IE
IP
IE
I
SVZ,
w
-
SV4,
Z-AXIS
FEED
SV5)
MOTOR
1
I
3
8
PC\J
*r
fi
I
-
£
;
2
v
2
iv
V
*
:ÿ
(
J
I
PA
PA
*
PB
C
PB
1ÿ.
PC
2E
PC
*
PU
to
5
PU
*
PV
PV
5n
*
pw
vVP
pw
*
4
&
Os
Tc
K
*
FC
3
»
;
v
14
Fig
12
3
Connection
to
Feed
Servo
Unit
(SVZ)
CPU
TYPE
4
A
:
1
I
*
4TH-AXIS
&
‘8
CONTROL
s
n
V
J
*
%
5li
:
§
>
£
A
s
-•>:
"•
3-PHASE
200/220
MODULE
JANCD-SR21
CN63-14*
CN63-15*
CN63-
7/f
8
63-
ON
RL
CN63-22ÿt
-
23>«
CN63
CN63-28«
<!
CN
63-27-
CN63-43A
CN63-42<|e
CN63-4(Sfc
CN63-25<&
:ÿ
CN63-3&
CN63-39*
u“
5
-
CN63
26>
CN63-41<
CN63-3W
34ÿe
CN63
-
CN63-334iF
CN63-3ÿt
CN63
-19<
CN63-2&F
CN63-
lV
CN63-
CN63-
TÿJt-
CN63-5d4&
-
l
%
CN63-5.ÿ«
CN63-10*gt
-
CN63
1H
-<
CN63-1
4*
VAC
DA
SG4
+
SVON4?
TGON
0C
SR04*>
FU4
OL
AL4
PA4
*
PB4
»
PC4
F
ov
5
V
BT
AT
i
V
O
oc
OC
OC
oc
PA
PB4
PC
ov
(J
4
4
R22
S22
4
24
V
R3
T3*
4
4ÿ
k
«
;*
4ÿ
«*
%
fL
r
P
5
r
C
">
C
4
Qt
t>_
i
i
t
T
j
i:
&
*1
?!
i
i
SV4
r**
R
S
fe
T
is
I
::
*
t?
J
*
Kt
?
HCNI
P
*CN1-
tr
T»*t
»CN
»CNl-22
P
jfccN
4pCN
p
#CN1
»CN1
-
l
5pCN
-
-
*p
r
CN
•CN
111
CN
»>CN
£?CNI
II
\y«
»CN
i
-
IT'
«
i
aÿCNi
-
rrÿNi-JD
-
3SHLN1-
ih®
-SÿCNl
k
WcNl-
ipi
icN
)
:
Z
NOT
»CN
CN1-
>*
POTZ
:
b(,
CN
:
R
4
IEY4ÿ>>
-}UfL
TYPE
.
CRCR-SREJSB
-
12
15
7
1
8
-
1
1-23
-
28
1
-
27
-43
-
42
1
1-4(1
25
1
-
(+5)
*8
1
34
1
(Os)
1
-
14
-
1
1
1-31
34
ib
19
-
-
20
1
1
-
2
1
1
-26
1
32
-
47
1
REGENERATIVE
RESISTOR
-
u
V
ft
«e
E
r%
I
*5t
i
*
It
IbA
CN2-
CN2-
CN
CN2-
CN2-
CN2-
CN CN
CN
CN2-
CN2-
CN2-
CN
CN2-1
2
2-8
2
2
2
CN2-3
17«-
-
18<e
19
f
14
I5<fe
9
-
-
1C
1UR-
I2<ÿe
13ÿ
-
4nT
k
CN2-5
CN2-C
CN2ÿ
i*
7
2
CN
-
*
2oi
CN
2
-
i
A
%
*(
V
«.
>
}
?!*
:•
S'
&
<*.
k
P
k
P
UL
k
k
I
4TH-AXIS
MOTOR
FEED
*>JS>
M
V
*>
w
E
*•>
e!
:
:ÿ
s
v"
*'
*<
*
a
£
PA
:*A
PA
*
PB
PR
JLP
*
PC
PC
T
*
PU
PU
d=L
*
PV
M
PV
»
2*14
PW
PW
*
r>
H
*
IU
Jj,
\
'c
c
FC
SMH
PC
'**3*
I
i
J
i
«*
:,.
W
®»:
S
€ÿ
:
?
K
%
%
<
«*
h
?
f
>J
t
5
!i
{ÿ«
I
,
:
©
>’t
‘s*
K
r::
t
,
i-c
Tfry
-y,y,r
Fig
&
8
f
fe
(SV4)
12
Connection
4
to
Feed
Servo
Unit
15
12.
CONNECTION
(Cont’d)
CPU
TYPE
4
:
1
s
5TH-AXIS
CONTROL
T
e
a
#
1
it
9
*
3
>4»
%
:•
;
i
I
9*
1
y,
9
9:
<ÿ164
Il
4
1
%
TO
3-PHASE
200/220VAC
MODULE
JANCD-SR21
-
CN64
CN64-15<<-
CN64­CN64-
CN64-22%
CN64
'2ÿ$E
CN64'2W-
CN
64
-27<£
CN64
-43<K-
CN64-42<«
CN64-4Q&
-
CN64
2S<fe
CN64-3&&
CN64
~39«F
CN64
-26ÿ
CN
64-4
CN64-33&
CN64-34<«
-
CN64
35<fc
-
CN64
36&
CN64-I9<3e
CN64-201&
CN64-
CN64-
CN64-
-
CN
64
50&
CN64-5,6<t
CN64-10lt-
CN
64-1
32,47,
-17,
4ÿk-
CN64-1M&
FEED
14ÿ
£
7*
r/
1ÿ
ljj&
2%
sjfe
c
I:
BT5 AT5
i<k-
FG
A
i.
$
R3
T3*
R22
I
S22
5
DA
SC5
24
4-
VON
S
TGON
oc
SRD5$
FU5
oc
OL5
oc
AL5
oc
5
PA
5
PA
*
5
PB
PB5s®
PCS
PC
5*1
*
ov
ov
ov
5V
ov
*ÿ
I
f.
&
gf
5
!
5l
£
&
r
ft
l
p
I
*
£
s\
'
<5
»
!
Vi
!.
T
t;
t
t*
Jr
S’
"
9
«a
5
f'-i
l
h
f
S'
SERVO
SVÿ
A
5
r
ft
1
*
V
s
9
%
£
»CN1
p
SfcCNl
TP'CN
»CN
IE
4|cN
TS>CN
IE
sfecN
JÿCN
IE
3*CN1
#>CN1
P
3pCN
»CN
IE
4&CN
CN1
V
•3.
-»CN
IE
-»CN
-4ÿCN
In
-*fCN
-»CN
IE
#CN
-»,CN
-*>CN1
-*>CN
[ti
Z
NOT
»CNl-2b
bG
»CN1
P
ft
POTZ
5>CN1
J
UNITS
c
TYPE
CRCR-SR
12
1*)
-
7
-
8
1
-
22
1
2
-
1
*
28
1
-
*
1
27
4
i
1
-
-42
40
25
1
-
38
1
39
-
1
1
14
H
-
33
1
-
34
1
-
-
35
1
-
1
36
19
1
-
20
-
1
1
1
-
2
3
1
-32
-41
1
-47
REGENERATIVE
5A
RESISTOR
1
’SB
CN CN CN
CN2-19ÿ
CN2­CN2­CN
CN CN CN
CN2-
CN CN
(
5)
'
+
CN2-
(05)
CN
CN2-20«:
(SVX,
9
$>
£
Fv
I
I
l
»
9
l
a
i
-
2
16<«
17&-
2-
2-
l£&
I4<3£-
lsSf
2
-
8p&-
2
-
2
K>i
-
&JT
2
1
I<K-
-
«VM
12*$$
-
2
13&
2
-
4ÿp
ir"
fe—
CN2ÿ
CN2-;
CN2ÿ
je
CN2*:
:•
7
2
i
-
a
I
I-
.4
0
i:
!
t
l
iJ
SVY,
3Z
IE
IE
p
p
IE
£
IE
p
i
7ÿ
SVZ,
*R
i
PA
PA
*
PB
*PB_Tp
PC
PC
*
PU
PU
*
PV
PV
»
JrN
Jfep
PW
PW
0
&
v<rc
I
FC
&
u
W
E
;-:V
!S
=-f
?A
SE
CK
31
j;
i
y
9
8
C
SV4,
5TH-AXIS
MOTOR
FEED
SM-h-
pc-yj
SV5)
a
V
1
e
t
5
&
p
*
99
S
&
I
g
h
:
T
?
B
I?
s
&
It*
EM*
&'
l
16
Fig
12
5
Connection
to
Feed
Servo
Unit
(SV5)
(1)
CONNECTION
DIRECTION
Rotation
moving
is
given
of
Direction
Motor
“+"
mand
if
com¬
AND
Forward
©
ccw
MOTOR
Connection
FLANGE
SURFACE
MOTOR
OF
ROTATING
Reverse
Connection
cw
Filter
Line
LF310
320
LF LF
330
LF340
(4)
CONNECTION
SINGLE 100/200
Type
PHASE
VAC
Current
TO
SVMX
per
Phase
MOTOR
Input
of
10
A
max max
A
20
A
max
30
max
40
A
WITH
EMERGENCY
STOP
PUSHBUTTON
Power
BRAKE
MOTOR
Supply
BRAKE
The
connection
tion.
reverse
(2)
Connect
COMBINATION
ERATIVE
Servo
‘Two
(3)
LINE
(a)
A
line
ference
servo
(b)
Select
ing
unit
connection.
CN2-
CN
CN2-
CN2
CN2­CN2-
CN
CN2-
CN2­CN2-
CN
CN
CN
*>)
f
+
1CN2-|T
(05)
|cN2-iC
|CN2-R
CN2
CN2-20&
RESISTOR
Drive
CACR-
SR05SB
SR10SB
SR15SB SR20SB
SR30SB
SR44SB
resistors
FILTER
filter
by
drive
the
the
on
input
diagram
wires
r'
£
16*
JE
<
17
2
1
1
-
1
IE
1$<3
1*
-
8«-
2
10)SE
IE
1USF
-
2
1&
2
-
life
-
2
Tj
IE
CN2-C
7llE
-
Kr
1
Type
connected
INSTALLATION
is
installed
high
unit.
appropriate
current
power
shows
shown
as
.
3Z
|"P
77ÿ"
OF
DRIVE
Regenerative
_
parallel
in
frequency
per
supply.
PA
PA
*
PB
PB
*
PC
PC
»
PU
PU
*
PV
PV
*
PW
PW
*
ITR
0
s
FG
Separately
30SH
MRC12 MRC12 MRC22 MRC22 MRC22
to
filter
phase
forward
below
;ÿ
XgB
n
[F
Xr
JM
M-
R
Xc
-
I
,
5
-
UNIT
Resistor
100k
500K
500K
250K
prevent
generated
follows
as
for
AND
Type
A
250K*
250K*
of
connec¬
PG
REGEN¬
installed
_
radio
by
depend¬
drive
the
inter¬
the
l
BRAKE
Do
Tightly
Protective
tectors
*
The
terminals5and6shall
current
break
(5)
When
less,
Servopack
a
PG
13.
Note
The
1.
CN
The
2.
is
short-circuit
not
fasten
devices
are
not
contact
SETTING
the
select
of
the
contacts.
number
12%
TG
making
OF
ON
disconnection
CONNECTION
DRIVE
TYPE
i
»-
:
i
UNIT
CPU
MODULE
JANCD-SR20
-
CN61
UXDASJ*
-
CN
61
CN61-jqhALS
CN61-39;(
CN61-r>oL
/A
Hr
iris
signals
CN64.
converter
13
Fig
(Type
to
Spindle
u">
:
63and
as
'
r
other
D
follows.
•**>*&?
POWER
OPR109A
TYPE
200/220V
TYPE
(FOR
INPUT),
OPR-109F
100VAC
output
terminal
are
needed.
and
TG
of
to
ON
PG
brake
switch
signal.
detecting
(SDU)
SG
i]
i
-
%
S
PC
l
1
»'»(ÿ
61
CN
of
specification
n
OPERATIONAL
AMPLIFIER
TL072
1
Connecting
JANCD-MB21)
Drive
i>'Ai
SUPPLY
(FOR
INPUT)
board
built-in.
breaking
5
be
be
used.
SIGNAL
pulses
(open
If
TO
are
220
Main
Unit
3?
*>-
:
to
the
n
r
(SDU)
:p
terminals
screws.
10
is
SW4-3)
12%
error
SPINDLE
P
same
on
sc,
Board
3
External
current
the
times
Use
DC
3600
is
not
may
SPINDLE
UNIT(SDU)
DRIVE
_____
i;
SPEED
*
COMMANDlf
INPUT
10V/
RATED
\
2*
ROTATION
IS.
those
as
YASNAC
the
and
pro¬
rated
make-
pulses
for
selected,
occur.
-1
4.
for
or
the
»•
:
of
side
17
14.
CONNECTION
GENERATOR
CPU
MODULE
TYPE
JANCD-SR20
i
CN64-lÿ.f
£
1
CN64*lfI
-
I
CN64-lSL
%
CN64-ljjL
S
%
CN64-1
CN64
£
|
-
|
|
%*k
Note:
grounded
-isL
CN64-4>5,ÿ(
2,M
CN64-1
CN&4
*&***#?&
The
cable
outside.
Fig
ft
s
PAS
*PAS*
r
IPCS|
*PCSÿ
-f
5V*1
7
0V‘i
V
7
K
shield
14
1
Connecting
JANCD-MB21)
(Type
Spindle
to
TO
(SPG)
P
t
:
‘p
t
E
Hi
v
T
enclosure
Pulse
SPINDLE
SPINDLE
PULSE
SL
I
Jt
V
f
does
Mam
Board
Generator
GENERATOR(SPG)
m->»
P(i
have
not
(SPG)
PULSE
y>
t
‘L
n,
*<
J
u
to
be
15.
CONNECTION
INTERFACE
CONNECTION
15.1
CPU
JANCD-MB20
TYPE
:
*
%
f
|
,
£
1
r
*
I
£
x
£
>
.r
MODULE
CNb-
V.
n
CNo-
1
CNb
CNb
1
-
4
CNb
1
F
CNb-
7ÿ
f>*ÿ
CNt>*
CNb
A
CNb
CNb-
2
CNb-
>V
CNb
golÿ
CNb
M
n
CN
lit*
-
1
CNb
LNn
ifjy
CNb
4
Se
1C
*51
<4
6
Se
L.
<<
T
r!
*
4
4
bDl
RDI
KM
CM
DR ERl
SOI
FC1
SD2
RU2
RS2
csj
UK
s(
V
5
L2.i.
12V
24
14
1
2
2
V
_
RS-232C
TO
%
%
r
|j
POWER
OUTPUT
I
(FOR
v
READER)
TAPE
RO
1
4f»S
4M
&
RS-232C
INTERFACE
PORT
1
i*
T
6
»
a
-
fc
£’
?
f
s
&
*
tr>\
r
i
i1
rÿ1
t
1;
t:
fe
RO
2
m
!
4
3
>?:
t
IT
>>
2<i|
J|
V?
1$
*4
-4
f
4e
RS-232C
INTERFACE
2
PORT
Note:
Use
1.
reader
Example
18
RS-232C
(PTR).
RS-232C
of
TYPE
JANCD-MB20
046
-
sii
tT.Hu;
cub-
CN6-
cw»-
IT.DHÿ
CN»-
CN*i
-
interface
Connect
f
i
RS:
sc
i;
>"
Port
TYPE
DB-25S
to
connect
the
I
1
RO
FS
il
1
>v«
'»*
;
>n,
<r
24
V
??
:t
P4fs
b
I*-
t
K
a
tape
-FI
TYPE
DB-25P
separate
reader
TAPE
READER
(PTR)
2i
-
&
1
i
t
as
Ts
type
follows.
r
tape
2.
3.
MB22)
RS-232C
The
a
portable
interface
.
user
Connect
shown
as
be
can
is
2
not
The
wiring
3
meters.
your
Fig
to
tape
port
a
portable
in
omitted
used.
and
If
Yaskawa
1
15
Main
interface
reader
can
2
Note
1.
when
distance
reader
tape
distance
the
representative.
Connecting
Board
--
port
(PTR).
be
freely
readermthe
tape
this
In
the
RS-232C
between
(PTR)
exceeds
RS-232C
(Type
1
be
must
the
Only
selected
case,
1RO
interface
board
main
should
3
meters,
Interface
JANCD*MB20)
used
RS-232C
by
same
connector
(type
be
less
to
connect
the
way
port
contact
JANCD-
than
15.
RS-232C
2
INTERFACE
(5)
INTERCONNECTION
(1)
TRANSMISSION
Start-stop
preceded
signal.
stop
ON
--
OFF
FUNCTION
SIGNAL
LOGIC
(2)
CODES
The
following
are
selectively
#6028D5).
ELA
ELA
DC4)
To
codes codes
use
trolled
through
Character
ape
T
DC1
start
Tape
DC2
punching
Tape
DC3
stop
Tape
DC4
release
(3)
TRANSMISSION
Transmission
between
rate
Refer
The the
of
cable
(4)
CABLE
machine
the
to
permissible
machine
length
synchronization
a
start
by
A
SINGLE
DO
D1
START
BIT
CONDITION
USED
two
used
ISO
or
ISO
or
control
be
must
DC4.
reader
reader
reader
punch
o
Baud
50
(7)
in
par.
LENGTH
be
to
builder's
15
is
MODE
signal,
START-STOP
D2
DATA
Table
types
by
codes codes
codes,
able
Codes
Table
7
8
BAUD
rates
and
9600
15.2.
maximum
controlled.
m.)
:
D4
D3
BIT
15
VO
<
OFF
MARK
codes
of
parameters
+
the
discriminate
to
DC1
15
5
6
o
o
o
o
RATE
can
Bauds
cable
manual.
Each
and
followed
CHARACTER
D5
D6
1
V
3
t
are
control
machine
-
DC4
2
4
be
selected
with
length
Refer
(Standard
data
D7
VO
SPACE
used,
(#6026D5,
codes
to
codes
are
as
Feed
Hole
o
parameters.
varies
the
to
bit
STOP
(1
OR
>
ON
0
be
follows.
3
is
a
by
BIT
BITS)
2
3V
+
and
(DC1-
con¬
DC1
1
2
o
o
o o
at
any
with
manual
maximum
Symbol
FG
SD
RD
RS
CS
DR
SG
ER
NC
outputs
stop
control the
machine
data
in
NC
to
When
and
CS
Symbol
FG
SD
RD
RS
CS
DR
SG
ER
Description
FG:
SD;
RD:
15
Table
(DB-25P)
NC
Signal
Frame
Sending
Receiving
Sending
Capable
set
Data
Signal
Data
terminal
machine,
the
codes
time,
halt
the
CS
RS
as
Table
15
NC
Signal
Frame
Sending
Receiving
Sending
Capable
Data
Signal
Data
Safety
Transmission
Received
3
Name
grounding
data
data
data
sending
of
ready
grounding
control
to
under
can
it
data
signals
shown
4
(DB-25P)
Name
grounding
data
data
data
of
ready
set
grounding
terminal
of
grounding
RS-232C
Cable
ready
codes
but
control
control
control
outputting
of
Table
RS-232C
Cable
sending
ready
signals
data
(input)
data
Interface
(A)
Pin
No
1
2
3
4
5
6
7
20
DC
the
the
the
Interface
(B)
Pm
No
1
2
3
4
5
6
7
20
Connecting
Connections
o
a
-
1
DC4
machine
NC.
unable
is
CS
the
of
NC
are
15.4.
Connecting
Connections
-
Q
o o
(output)
o
rO
o
Lo
to
can
However,
to
signals
the
NC.
used,
not
Q
o
rO
L-o
External
Equipment
Symbol
FG
SD
RD
RS CS
DR
SG
IO
BUSY
ER
start
not
output
when
process
of
short
External
Equipment
Symbol
FG
SD
RD
RS
CS
DR
SG
(OR
ER
ALARM)
IO
and
the
I
U
L
11
START
I
II
I
1
1
v:
STOP
19
15.
RS:
CS:
SG
:
ER:
Among
following
DR:
ER:
CD:
However,
CHKDR
interlock
(6)
When
Data and
(a) (b)
(c)
(d)
(e)
(f)
(g)
(h)
When
NC
and
20
2
RS-232C
Request
data,
sion,
For
sending
on,
is
under
time,
the
transmission
characters.
connect
Signal
Data
rewinding
to
an
can
be
Data
Data
Data
SIGNAL
NC
can
timing.
NC
sends
code
At
starts
If
the
sends
At
code
within
NC
again
data.
code
At
succeeds
that
Upon
3.
DC
The
machine
RS
OUTPUT
SD
OUTPUT
RD
INPUT
CS
INPUT
NC
sends
timing
INTERFACE
for
NC
is
and
turned
NC
can
control
can
it
lines
grounding.
terminal
signal
RS-232C
rewound
RS-232C
the
are
normally
set
terminal
receiving
when
(#6021
is
added.
EXCHANGE
receives
received
be
code
DC1,
send
to
NC
can
code
out
DC3,
10
characters.
sends
DC1,
reading
DC1
n
J
sends
out
.
sending
turned
(input)
send
is
turn
When
as
ready
interface.
ready
"1"
D4)
data.
DC1.
the
data
not
DC3.
the
code
the
the
in
stops
_
\
out
data
(output)
on
off
-
data.
unable
off
of
data
this
shown
-
Use
if
a
tape
if
this
NOTE
interface
not
ready
carrier
is
set
,
a
DR
TIMING
the
in
machine
to
process
machine
DC1
machine
previously
the
data,
sending
DC3
n
J\
Fig
15
data
the
in
(Cont’d)
when
when
transmission
When
to
this
signal
from
signal
in
Table
this
reader
The
signal
signals,
used
detection
for
(data
following
under
NC.
data
stops
after
sends
NC
data.
DC1
n
\
10
CHARACTERS
2
following
-
When
starting
this
input
If
the
process
to
NC
is
15,4.
signal
is
tape
is
ON.
the
by
parameter
set
in
sending
processing
out
sent
sends
DC3/
n
/
(ER)
sequence
sending
transmis¬
signal
machine
data
interrupt
within
not
used,
as
connected
reader
the
NC.
ready)
sequence
control
time,
the
one.
out
\
1
MAX
ends.
a
tape
it
data
data
code
(a)
NC
(b)
sends
the
If
the
sends
data
out
data.
out
machine
in
time,
code
under
NC
DC2,
control
stops
and
subsequently
can
CS
at
not
no
process
BUSY
10
signal.
(c)
Upon
completion
machine,
in
2
the data
that
(d)
Upon
code
out
RS
OUTPUT
SD
OUTPUT
CS
INPUT
Code
DC1
when
(7)
PARAMETER
When
using
rates,
stop
specifications
and
15.6
(a)
RS-232C
Select
#6003.
selected
Table
Interface
RS-232C
RS-232C
Note
The
(b)
RS-232C
Baud
shown
is
1
succeeds
completion
DC4.
and
NC
sends
RS-232C,
bit
with
15.7.
interface
RS-232C
the
RS-232C
simultaneously.
15
5
Port Port
above
interface
rate
setting
in
Table
50
#
#
6026
6028
CO
o
>
0)
(T3
tr
m
Input
Output
100
110
150
200
300
600
1200
2400
4800
9600
of
NC
turns
of
DC2
Mr
Fig
NOTE
3
DC
out
SETTING
set
lengths,
the
parameters
ports
RS-232C
1
2
#
#
bit
is
selected
of
Table
15
6
D3
#
D3
#
0 0 0
0
0 0
0
0 0
1 1
1
the
the
data
I
-
1
15
from
data.
data
and
port
interface
Interface
Input
6003
6003
at
port
RS-232C
15.6.
Baud
6026 6028
0
0
0
1
1
1 1
0
0
0
data
on
CS.
previous
sending,
1
[-.CHAR-
ACTERS
MAX
3
RD
is
transmission
control
selection
and
1
Do
Di
parameter
1
Rate
D2
#
D2
#
processing
NC
one.
r
/
not
code
shown
port
2
cannot
Port
setting
interface
Setting
6026
6028
0
0
1 1
0
0
1
1
0
0
1
sends
NC
sends
7-
DC4
_
M
available
sending
in
Tables
by
setting
Selection
Output
6003
#
D4
#6003DS
"
“1
D1
#6026
D1
#6028
by
out
Baud
be
port
DO
DO
0
1
0
1
0
1
0
1
0
0
Stop
#6026 #6028
Setting
#6026
code
#6028
(c)
RS-232C
Baud
2
is
Input
Output
<n
2
>
£
«
CQ
Stop
#6027 #6029
Setting
#6027 #6029
16.
DIRECT-IN
The
following
processing
(type
boards.
I/O
These
NC
main
the
PC.
DIN
DIN1:
DIN DIN
Direct-m
16.
and
1
bit
length
for
D4 D4
D5
of
for
control
for
input
output
input
.
D5
for
output
interface
rate
setting
#
#
length
for
for
of
control
for
for
and
signals
0
:
Spare
2:
Spare
3:
Spare
16.2.
in
6027
6029
input
output
1:
0:
input
are
Skip
signal
shown
50
100
110
150 200
300
600
1200
2400
4800
9600
bit
D4
D4
D5
D5
JANCD-MB20)
processing
setting
Table
D3
D3
0
0
0
0 0
0 0
0
1
1
1
setting
does
Sends
are
input
1:
Sets
0:
Sets
code
sending
Does
1:
0:
Sends
port
RS-232C
of
15.7.
15
Table
#
6027
#602902
0
0
0 0
1
1
1
0
0
0
Sets
1:
0:
Sets
sending
code
not
control
SIGNAL
signals
connected
,
instead
processed
without
unit
Optional
connection
at
bit
stop
bit
stop
not
at
send
control
2
interface
7
D1
6027
D2
#
D1
6029
#
0
0
1
1
0
0
1
1
0
0
1
bit
at
bit
two
at
one
stop
stop
send
control
code.
CONNECTION
require
to
of
high-speed
the
main
general-purpose
directly
coursing
is
shown
two
one
control
code.
port
6027
#
6029
#
0
1
0
1
0
1
0
1
0
1
0
bits.
bit.
code.
board
by
through
in
Figs.
bits.
the
bit.
DO
DO
SKIP
SPARE
|
-
|
c:
|
Fig
SKIP
SPARE
MOOULE
CPU
ssSsSSs
av
+
-S
V
1>
1
COM
DIN»
II
DIN
'1V-'
DIN2
lie
VI
I
I
#CN8-
»>ÿ
o
o
T
O-
O
%
C
t
ii
v
l
i
DIN
j’-CNa-
I
1
V
II
I
y
*<
o-
o
%
£
I
5
—~—
KK55SRSSEHBS
JANCD-MB20
TYPE
:NB-
n
,
N8-
M
18
N8-
CN8-17
9
CN8-
18
>
['.
CN8
-
CNB
ill
-
5
...
in
<•
l
S
1
5
>
r'
1
t
k
16
1
Using
O
Direct-in
V
0
?
ii
$
Signal
Common
24V
+
II
VI
COM
O
DIN
li
v
i
1
DIN
II
VI
Connection
MODULE
CPU
JANCD-MB20
TYPE
*CN«-
14
8
1
NX
-
I
CNB-
N8-
IT
8
N
>o
('ÿ
U
'
i.
i
1
%
!i
r.
v
l
PIN
2
o-
%
f
i
nVl
s
k
DIN
3
v
<i
i
;i
-3
«
Hg
•CN
CN8-
;N8-2I)
NK-
N8-
12
2
8
-
9
8
Fig
16
2
Using
Direct-m
24
Signal
V
Common
Connection
21
17.
CONNECTION
PURPOSE
17.1
(1)
controller allocated
manufacturer
refer
PC
(2)
on
the
shown
I/O
The
to
System
MAIN
NC
PROCESSING
1300
#
1200
*
The
the
remote
SP20
The
in
Table
Baud
Type
JANCD-
1021
SP20-02
YASNAC
Instruction
general-purpose
numbers
PORTS
system
to
its
designs
(TOE-C843-9.
YASNAC
Fig
I/O
board
Table
1
17
Input
Points
112
I/O
MX3
(PC).
I/O
ports
Manual
CPU
MODULE
PROGRAM¬
MABLE
CONTROLLER
SYSTEM
17
System
1
module
of
the
of
I/O
17.1.
Numbers
64
TO
SIGNALS
contains
External
freely
a
built-in
1)
.
cx>
Configuration
I/O
(JANCD-1021)
CRT
operator's
points
of
I/O
Output
Points
68
32
GENERAL-
the
programmable
signals
when
the
For
PC.
for
YASNAC
?
I
are
these
of
Remarks
output
outputs
machine
a
£
£:
panel.
boards
Boards
GENERAL-
PURPOSE
I/O
#
1000
iioo
#
ports
of
Points
Four
contact
relays
For
(option)
can
machine
details,
3
LX
MACHINE SIDE
mounted
and
points
by
panels
/MX
on
are
reed
are
be
3
2
17.
I/O
17.2.1
(HEREAFTER
(1)
Input
-
I/O
MACHINE
SIDE
v-
0ÿ0-
c
MACHINE SIDE
P'1*
G
-oG
CIRCUITS
BOARD
CALLED
Circuits
w*
i4'|
24V
+
H
COM
n
S
1mA4
-Si
I
f
02«
irjK’-sSS
H
24
COM
W
1mA
1ÿ1
$
H.4V
(b)
v
(a)
V
OF
TYPE
*
I?
0
<h4
s
I
+24
I/O
1021}
7kO
4
V
Common
Tkn
-
V
1021
Common
PORTS
JANCD-1021
BOARD
1021
BOARD
sv
>
i
>1
V
ov
V
5
+
1
V
av
I/O
shown
board
APPENDIX
in
and
I/O
A.
ports
mounted
on
are
it
Note:
"Common11
1.
COM20,
or
mentioned
be
By
be
2.
Input
in
COM21
common"
"0V
selected
consumed.
in
turning
voltage
Logic
the
Par.
freely.
on
0
1
Fig
input
.
.
for
the
levels
.
17.3.1
switch
Input
17
total
every
Set
and
2
circuit
9)
by
logics
Voltage
6
9V
2V
19
Input
I/O
as
can
8
or
wiring
shown
max
min
(for
example,
either
be
16
input
signal
on
above,
are
Level
Circuits
"
interface
the
as
follows:
24
+
points
cable
5.
COMIO,
V
common"
as
and
side.
mA
1
can
will
22
(2)
Output
Circuits
1
BOARD
10
21
MACHINE
SIOE
+
24V
IO
21
BOARD
V
24
*
MACHINE
SIDE
I
EXTERNAL
POWER
SUPPLY
-4
24V
I
i-i
;
a
I
(3)
Output
Note:
1,
2.
3.
Circuits
Note
1.
2.
3.
4.
64
All
maximum The
maximum
or
less
The
output
2
:
four
The
Omron
conditions
AND
500
connecting
When
the
with
connecting
When
satisfy
When
a
conditions
(a)
output
70
LEDs,
if
(a)
Tateisi
conditions
V
load
the
lamp
Internal
points
mA
per
current
transistor
1021
i
i
Internal
outputs
Electronics
:
max,
within
conditions
load
under
OV
Power
are
circuit.
consumption
are
etc.
BOARD
24V'
+
i
0„v
Power
of
CN6
(for
mA
200
inductive
20
capacitive
used,
is
Note
i
Supply
transistor
be
to
breakifthe
may
MACHINE
SIDE
I
Supply
are
Co.)
resistive
max,
loads,
centimeters.
under
be
including
1,
driven
contact
20
loads,
Note
sure
openÿcollector
thr
for
using
Fig
17
and
should
load)
max
VA
be
sure
sure
be
1,
including
to
insert
the
entire
input
Output
3
outputs
to
rush
internal
and
be
insert
to
connect
a
preheat
current.
outputs.
output
output
Circuits
by
used
the
i
i:
(b)
reed
a
rush
power
nv
(b)
External
circuit
connector
BOARD
1021
External
relays
under
spark
a
resistor
current.
resistor
The
supply
1
ZA
+
0,.v
0*4\
V
the
killer
Power
current
including
(+
are
MACHINE SIDE
-
1
l
Power
(LAD1U1,
following
in
series
in
satisfy
to
Supply
when
SP20
24V).
connected
EXTERNAL
SUPPLY
24
+
Supply
by
parallel
to
the
OV
ON
V
should
should
incorrectly.
POWER
be
be
0.5A
Fig
17
4
Output
Circuits
2
23
17.2.?
(HEREAFTER
I/O
BOARD
CALLED
TYPE
JANCD-SP20
SP20)
(1)
(2)
Input
Output
Circuits
Circuits
Note:
Note:
1.
2.
+
Output
3.
c
Make
32
All
when
Normally
supply
5V
output
The
output
1)K»0M
(CN5
51mA
(a)
switching
(a)
Internal
output
ON
should
use
.
connector
SP20
w**
V
•24
0
SP20
points
+24V,
0.5
transistor
BOARD
7
V
Common
of
BOARD
+24
'ri
ov
Power
be
A
max
CN
CN1
OV
V
024V
are
maximum
even
including
1
to
to
may
+5
v
£
ov
common
Supply
polarized
70
though
(+5V)
CN7
N
3
1
C
breakifthe
and
Fig
contactless
mA
per
5V
+
150
)
(
1
0
24V
+
17
circuit.
is
also
mA
connectors
common
5
for
available,
HPG
by
Input
Circuits
(transistorized
power
for
mA
(jU
HL
(b)
connector
SP20
;;
0
(b)
External
drive
to
supply
CN4
V
and
:0M
+24
open
SP20
24
+
BOARD
4:5
y
ft
V
i-
024
LEDs,
CN
BOARD
V
Common
(CN5-1)
f
V
Power
collector)
5
are
Supply
etc.
connected
ov
wiring.
-
outputs.
using
;7
+24
0
v
internal
V
The
incorrectly.
current
power
24
Fig
17
6
Output
Circuits
17.
17.3.
3
1
I/O
I/O
SIGNAL
BOARDS
21
INTERFACE
TYPE
JANCD-1021
CONNECTION
EXAMPLE
cr'o
0ÿ0
9*
»
1
»
PIN
1
30-32
?<
a
a
(33)
if
19)
'<
4
h
a
4i
;(
I
1
(5)
31
;<
£(6)
f.
Jt
P
\
(
If
K
,(23)
1
<(
4
,(8)
a
&
t(
’"(1-3)
34
20)
35)
36)
21
22)
37)
38)
24)
V
24
No
)
+
J
ADDRESS
No
#1000
BIT
No
0
q
#1000
)
q
q
l
l—
]
{
#1000
#1000
}
#1000
#1000
#1000
q
#1000
1
2
3
ii
I
4
1
5
6
7
q
#1001
#1001
0
1
q
q
)
7
{
#1001
#1001
q
#1001
q
#1001
q
COM
{
{
30
q
q
4)
#1001
#1001
2
B
3
I
¥
4
f;
I
5
6
I
7
i
a
.
a
?ÿ:
shows
for
layouts
shown
Appendix
1
001
ft
I
0*4
for
module
above
Address
to
7
+24
Refer
connection
for
B(3)
IO
on
common.
V
to
par.
No.
modules
starting
ADDRESS
and
21
Board
1.
Bit
17.2.1.
details.
(#1000.0
Nos.
with
Nos
2
newer
CLASÿ
>a
i
:ÿ
7
Note:
Type
ft
1
example
also
is
JANCD-1021
are
address
The
same
Refer
details.
for
7
Connection
0
000
available.
those
as
to
to
This
1.
2.
1
connection
0
common
V
Board
I/O
The
addresses
#1001.7)
to
to
addresses.
SIFICATION
the
are
4
Fig
17
25
17.3.1
1/0
21
BOARDS
(Cont'd)
CONNECTION
EXAMPLE
0ÿ0
0ÿ0
TYPE
|l
PIN
30
g|(
3
39)
V.
»
Vf
25)
5(
m
I
40
'M
>>
SC
10
Is
I
26)
*
<i
41
sic
k
11
IK
#8
27
!
<
»
*(
42
»
[!
12)
S<
f
*7(
43
%
13)
;(
44
fill
s
?«(
14
»
f
43)
U
A
(28)
Si
§(
1
*
ii
JANCD-1021
No
-
)
32
L-cn-
)
)
q
q
)
q
)
q
)
q
I
U=>-
)
)
q=u-
)
q
-3)
CM4irf
\
*
COM3!
24
V
+
J
ADDRESS
No
#1002
#1002
#1002
#1002
#1002
BIT
No
I
0
I
is
f
1
3
I
2
t
3
H
3
s-
••
r-
3
4
f
3
#1002
#1002
{
{
#1002
#1003
#1003
#1003
}
#1003
#1003
#1003
#1003
#1003
5
-
6
if
Vi
7
i!
0
~
H
l
1
2
if
as
-i
3
5*
3
4
':s
ii
Si
5
f
n
6
V
*
>
:•
7
V_
f
:r
a
%
S
:v
;
•f;
7
m
26
Note:
1.
This
0
V
I/O
2.
The
#1003.7).
2
to
addresses.
SIFICATION
connection
common
Board
addresses
4
are
Fig
17
#
Type
the
8
002
1
is
The
same
Refer
for
example
also
available.
JANCD-1021
those
are
address
shown
as
to
Appendix
details.
Connection
0
to
#1
shows
for
layouts
003
module
above
to
Address
7
on
+24
Refer
for
B(3)
IO
V
common.
to
connection
No.
modules
for
starting
ADDRESS
and
21
par.
1.
Bit
Board
17.2.1,
details.
(#1002.0
Nos.
with
CLAS¬
Nos
to
newer
Loading...
+ 70 hidden pages