Xilinx ML561 User Manual

Virtex-5 FPGA ML561 Memory Interfaces Development Board
User Guide
UG199 (v1.2.1) June 15, 2009
R
R
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.
THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.
© 2007–2009 Xilinx, Inc. All rights reserved.
XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI EXPRESS is a registered trademark of PCI-SIG. All other trademarks are the property of their respective owners.
Revision History
The following table shows the revision history for this document.
Date Version Revision
02/12/07 1.0 Initial Xilinx release.
08/09/07 1.1 Revised Read and Write Strobe in Ta b le 5-4 , pag e 4 9 . Added Chapter 7, “ML561
Hardware-Simulation Correlation.”
04/19/08 1.2 Revised Figure 3-11, page 37 and Table 3-19, page 38. Corrected FPGA driver for Read
Data and Read Strobe in Ta bl e 5- 4, pa ge 49. Updated Data and Strobe entries in Ta bl e 5- 5,
page 49. Updated manufacturers and links in Appendix B, “Bill of Materials.”
06/15/09 1.2.1 Clarified VIH(max) voltage in “Terminology.”
Virtex-5 FPGA ML561 User Guide www.xilinx.com UG199 (v1.2.1) June 15, 2009

Table of Contents

Preface: About This Guide
Guide Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Additional Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Additional Support Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Typographical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Online Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 1: Introduction
About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit . . . . . . . . . . . . . . . . 11
Virtex-5 FPGA ML561 Memory Interfaces Development Board. . . . . . . . . . . . . . . 12
Chapter 2: Getting Started
Documentation and Reference Design CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Initial Board Check Before Applying Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Applying Power to the Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 3: Hardware Description
Hardware Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DDR400 SDRAM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DDR2 DIMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DDR2 SDRAM Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
QDRII SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
RLDRAM II Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Memory Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DDR400 and DDR2 Component Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DDR2 SDRAM DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
QDRII and RLDRAM II Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RS-232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
200 MHz LVPECL Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SMA Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
33 MHz Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
33 MHz System ACE Controller Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
GTP Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
User I/Os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
General-Purpose Headers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Virtex-5 FPGA ML561 User Guide www.xilinx.com 3
UG199 (v1.2.1) June 15, 2009
Seven-Segment Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Light Emitting Diodes (LEDs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Pushbuttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Power On or Off Slide Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Soft Touch Probe Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power Measurement Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Liquid Crystal Display Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Power Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Power Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Board Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 4: Electrical Requirements
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
FPGA Internal Power Budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chapter 5: Signal Integrity Recommendations
Termination and Transmission Line Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
R
Chapter 6: Configuration
Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
JTAG Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
JTAG Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Parallel IV Cable Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
System ACE Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Chapter 7: ML561 Hardware-Simulation Correlation
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Signal Integrity Correlation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DDR2 Component Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
DDR2 Component Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
DDR2 DIMM Write Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DDR2 DIMM Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
QDRII Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
QDRII Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Summary and Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
How to Generate a User-Specific FPGA IBIS Model . . . . . . . . . . . . . . . . . . . . . . . . . 93
Appendix A: FPGA Pinouts
FPGA #1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
FPGA #2 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
FPGA #3 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R
Appendix B: Bill of Materials
Appendix C: LCD Interface
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Display Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Hardware Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Peripheral Device KS0713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Controller – Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Controller – LCD Panel Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Controller – Power Supply Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Operation Example of the 64128EFCBC-3LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Read/Write Characteristics (6800 Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
LCD Panel Used in Full Graphics Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
LCD Panel Used in Character Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Array Connector Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Virtex-5 FPGA ML561 User Guide www.xilinx.com 5
UG199 (v1.2.1) June 15, 2009
R
6 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

About This Guide

This user guide describes the Virtex®-5 FPGA ML561 Memory Interfaces Development Board. Complete and up-to-date documentation of the Virtex-5 family of FPGAs is available on the Xilinx website at http://www.xilinx.com/virtex5

Guide Contents

This manual contains the following chapters:
Chapter 1, “Introduction”
Chapter 2, “Getting Started”
Chapter 3, “Hardware Description”
Chapter 4, “Electrical Requirements”
Chapter 5, “Signal Integrity Recommendations”
Chapter 6, “Configuration”
Chapter 7, “ML561 Hardware-Simulation Correlation”
Appendix A, “FPGA Pinouts”
Appendix B, “Bill of Materials”
Appendix C, “LCD Interface”
Preface
.

Additional Documentation

The following documents are also available for download at
http://www.xilinx.com/virtex5
Virtex-5 Family Overview
The features and product selection of the Virtex-5 family are outlined in this overview.
Virtex-5 FPGA Data Sheet: DC and Switching Characteristics
This data sheet contains the DC and Switching Characteristic specifications for the Virtex-5 family.
Virtex-5 FPGA User Guide
Chapters in this guide cover the following topics:
- Clocking Resources
- Clock Management Technology (CMT)
- Phase-Locked Loops (PLLs)
-Block RAM
Virtex-5 FPGA ML561 User Guide www.xilinx.com 7
UG199 (v1.2.1) June 15, 2009
.
Preface: About This Guide
Virtex-5 FPGA RocketIO GTP Transceiver User Guide
Virtex-5 FPGA RocketIO GTX Transceiver User Guide
Virtex-5 FPGA Embedded Processor Block for PowerPC
Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide
- Configurable Logic Blocks (CLBs)
-SelectIO Resources
- SelectIO Logic Resources
- Advanced SelectIO Logic Resources
This guide describes the RocketIO™ GTP transceivers available in the Virtex-5 LXT and SXT platforms.
This guide describes the RocketIO GTX transceivers available in the Virtex-5 FXT platform.
®
440 Designs
This reference guide is a description of the embedded processor block available in the Virtex-5 FXT platform.
This guide describes the dedicated Tri-Mode Ethernet Media Access Controller available in the Virtex-5 LXT, SXT, and FXT platforms.
R
Virtex-5 FPGA Integrated Endpoint Block User Guide for PCI Express Designs
This guide describes the integrated Endpoint blocks in the Virtex-5 LXT, SXT, and FXT platforms used for PCI Express
®
designs.
Virtex-5 FPGA XtremeDSP Design Considerations User Guide
This guide describes the XtremeDSP™ slice and includes reference designs for using the DSP48E.
Virtex-5 FPGA Configuration Guide
This all-encompassing configuration guide includes chapters on configuration interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG configuration, reconfiguration techniques, and readback through the SelectMAP and JTAG interfaces.
Virtex-5 FPGA System Monitor User Guide
The System Monitor functionality available in all the Virtex-5 devices is outlined in this guide.
Virtex-5 FPGA Packaging and Pinout Specifications
This specification includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications.
Virtex-5 FPGA PCB Designer’s Guide
This guide provides information on PCB design for Virtex-5 devices, with a focus on strategies for making design decisions at the PCB and interface level.

Additional Support Resources

To search the database of silicon and software questions and answers, or to create a technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support
8 www.xilinx.com Virtex-5 FPGA ML561 User Guide
.
UG199 (v1.2.1) June 15, 2009
R

Conventions

Typographical

Conventions
This document uses the following conventions. An example illustrates each convention.
This document uses the following typographical conventions. An example illustrates each convention.
Convention Meaning or Use Example
Italic font
Underlined Text

Online Document

The following conventions are used in this document:
Convention Meaning or Use Example
Blue text
Red text
Blue, underlined text
References to other documents
Emphasis in text
Indicates a link to a web page. http://www.xilinx.com/virtex5
Cross-reference link to a location in the current document
Cross-reference link to a location in another document
Hyperlink to a website (URL)
See the Virtex-5 Configuration Guide for more information.
The address (F) is asserted after clock event 2.
See the section “Additional
Documentation” for details.
Refer to “Clock Management
Technology (CMT)” in Chapter 2 for details.
See Figure 5 in the Virtex-5 FPGA
Data Sheet
Go to http://www.xilinx.com for the latest documentation.

Terminology

This section defines terms used in Chapter 7, “ML561 Hardware-Simulation Correlation,” of this document.
DVW is the data valid window opening measured by the VIH and VIL masks. The
Data Valid Window (DVW)
Extrapolation
Virtex-5 FPGA ML561 User Guide www.xilinx.com 9
UG199 (v1.2.1) June 15, 2009
smaller of the two values are listed as absolute time as well as in terms of the percentage of UI (Unit Interval), or bit time.
The ultimate goal of a design is to ascertain quality of signal at the receiver I/O Buffer (IOB). This measurement can only be simulated. When the hardware measurements are correlated with the simulation at the probe point, the extra probe capacitance is removed from the IBIS schematics, and the simulation is repeated at two extreme corners (slow-weak and fast-strong). Removal of probe capacitance is important to represent the actual hardware. If the SI characteristics of these simulations are proved to be within the acceptable range with sufficient margin, then the performance requirements for data signal interface of the corresponding memory operation at the target clock frequency are proved to have been met.
Preface: About This Guide
Hardware Measurements
Inter-Symbol Interference (ISI)
Noise Margin
R
These measurements are the actual real-time measurements of an eye diagram and a segment of the test pattern (PRBS6) waveform captured on ML561 hardware at the designated probe point using an Agilent scope.
As the frequency of operation increases, the signal delay is affected by the data pattern that precedes the current data bit. This is called the inter-symbol interference (ISI) effect. All testing is performed with a pseudo-random bitstream (PRBS) of order 6, that is, PRBS6. ISI is the jitter represented by the eye at all four voltage thresholds. The worst of the following two sum values are listed in this table:
Sum of ISI at VIH(ac)-min and VIH(dc)-min
Sum of ISI at VIL(ac)-max and VIL(dc)-max
This is the noise margin available at the receiver. Measurements are taken at the AC voltage levels as the minimum vertical opening of the eye in the vicinity of the center of the bit period. Ideally, the input voltage needs to remain above the DC voltage specifications. However, by considering the AC voltage specifications for the nominal voltage level for VREF, these measurements are more conservative values that also include the effects of VREF variations.
VIH margin: Difference between the top of the eye opening and VIH(ac)-min
VIL margin: Difference between VIL(ac)-max and the bottom of the eye opening
These measurements are performed in stand-alone fashion for the signal under test. Thus no consideration of crosstalk or Simultaneously Switching Output (SSO) effects are accounted for.
Overshoot / Undershoot Margin
Simulation Correlation
VIH(ac)-min
VIH(dc)-min
VIL(ac)-max
Overshoot margin is the difference between the maximum allowable VIH per JEDEC specification and the maximum amplitude of the measured eye. Similarly, undershoot margin is the difference between the minimum amplitude of the measured eye and the minimum allowable VIL value per JEDEC specification. For both SSTL18 and 1.8V HSTL specifications:
VIH(max) < (VDDQ + 300 mV) = (1.8 + 0.3)V = 2.1V
VIL(min) > -300 mV = 0.3V
Note: VIH(max) must not exceed 1.9V for all Micron Parts.
The BoardSim utility of the HyperLynx simulator is used to extract the IBIS schematics of the same signal net for which hardware measurements are made. To replicate the hardware measurement probe set up at the probe point, a 0.5 pF probe capacitance is added based on Agilent probe loading specifications to the extracted IBIS schematics of the memory signal. For the FPGA devices soldered on the ML561 board under test, the process corner (slow, typical, or fast) is not known. Thus simulation is performed for all three corners (slow-weak, typical, and fast-strong), and the results of the case that best fits with hardware measurement is selected for tabulation.
This term is the minimum input level at which the receiver must recognize input logic High.
When the input signal reaches VIH(ac)-min, the receiver continues to interpret the input as a logic High as long as the signal remains above this voltage. (This parameter is basically the hysteresis for a logic ‘1’.)
This term is the maximum input level at which the receiver must recognize input logic Low.
When the input signal reaches VIL(ac)-max, the receiver continues to interpret the input
VIL(dc)-max
as a logic Low as long as the signal remains below this voltage. (This parameter is basically the hysteresis for logic ‘0’.)
10 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R
Chapter 1

Introduction

This chapter introduces the Virtex®-5 FPGA ML561 reference design. It contains the following sections:
“About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit”
“Virtex-5 FPGA ML561 Memory Interfaces Development Board”

About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit

The Virtex-5 FPGA ML561 Memory Interfaces Tool Kit provides a complete development platform to interface with external memory devices for designing and verifying applications based on the Virtex-5 LXT FPGA platform. This kit allows designers to implement high-speed applications with extreme flexibility using IP cores and customized modules. The Virtex-5 LXT FPGA, with its column-based architecture, makes it possible to develop highly flexible memory interface applications.
The Virtex-5 FPGA ML561 Memory Interfaces Tool Kit includes the following:
Virtex-5 FPGA ML561 Memory Interfaces Development Board (XC5VLX50T-FFG1136 FPGA)
5V/6.5 A DC power supply
Country-specific power supply line cord
RS-232 serial cable, DB9-F to DB9-F
Documentation and reference design CD-ROM
Optional items that also support development efforts include:
Xilinx
JTAG cable
Xilinx Parallel IV cable
For assistance with any of these items, contact your local Xilinx distributor or visit the Xilinx online store at www.xilinx.com
The heart of the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit is the Virtex-5 FPGA ML561 Development Board. This manual provides comprehensive information on Rev A3 and later revisions of this board.
®
ISE® software
.
Virtex-5 FPGA ML561 User Guide www.xilinx.com 11
UG199 (v1.2.1) June 15, 2009
Chapter 1: Introduction

Virtex-5 FPGA ML561 Memory Interfaces Development Board

A high-level functional block diagram of the Virtex-5 FPGA ML561 Memory Interfaces Development Board is shown in Figure 1-1.
External Interfaces:
System ACE Controller,
USB, RS-232, LCD
SSTL18/SSTL2 SSTL18 HSTL
R
FPGA #1
XC5VLX50T/
FFG1136
FPGA #2
XC5VLX50T/
FFG1136
XC5VLX50T/
72
32
32
DDR2 SDRAM
DDR400 SDRAM
72
DDR2 DIMM
DDR2 DIMM
WIDE
DDR2 DIMM
DDR2 DIMM
DEEP
DDR2 DIMM
36
Figure 1-1: Virtex-5 FPGA ML561 Development Board Block Diagram
The Virtex-5 FPGA ML561 Development Board includes the following major functional blocks:
Three XC5VLX50T-FFG1136 FPGAs (see D
S100, Virtex-5 Family Overview)
DDR400 components: 128 MB (32M x 32 bits) at 200 MHz clock speed. See XAPP851, DDR SDRAM Controller Using Virtex-5 FPGA Devices.
DDR2 DIMM: Five PC2-5300 DIMM sockets for up to 2 GB (128M x 144 bits). See
XAPP85
8, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices.
DDR2-667 components: 64 MB (16M x 32 bits) at 333 MHz clock speed
QDRII memory: 16 MB (2M x 72 bits) at up to 300 MHz clock speed. See XAPP853
QDR II SRAM Interface for Virtex-5 Devices.
RLDRAM II memory: 64 MB (16M x 36 bits) at up to 300 MHz clock speed. See
XAPP852
, RLDRAM II Memory Interface for Virtex-5 FPGAs.
One DB9-M RS-232 port and one USB 2.0 port
A System ACE™ CompactFlash (CF) Configuration Controller that allows storing
and downloading of up to eight FPGA configuration image files
On-board power regulators with ±5% output margin test capabilities
FPGA #3
FFG1136
72
(CIO)
RLDRAM II
UG191_c1_01_020807
72
QDRII SRAM
,
12 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R
144 bits wide
DDR2
SDRAM
DIMM
72 bits wide, up to 4 deep
Virtex-5 FPGA ML561 Memory Interfaces Development Board
Figure 1-2 shows the Virtex-5 FPGA ML561 Development Board and indicates the
locations of the resident memory devices.
32-bit
DDR400
SDRAM
32-bit
DDR2
SDRAM
36-bit
RLDRAM II
72-bit QDRII SRAM
UG199_c1_02_050106
Figure 1-2: Virtex-5 FPGA ML561 Development Board
Virtex-5 FPGA ML561 User Guide www.xilinx.com 13
UG199 (v1.2.1) June 15, 2009
Chapter 1: Introduction
R
14 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

Getting Started

This chapter describes the items needed to configure the Virtex-5 FPGA ML561 Memory Interfaces Development Board. The Virtex-5 FPGA ML561 Development Board is tested at the factory after assembly and should be received in working condition. It is set up to load a bitstream from the CompactFlash card at socket J27 through the System ACE controller (U45).
This chapter contains the following sections:
“Documentation and Reference Design CD”
“Initial Board Check Before Applying Power”
“Applying Power to the Board”
Chapter 2

Documentation and Reference Design CD

The CD included in the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit contains the design files for the Virtex-5 FPGA ML561 Development Board, including schematics, board layout, and reference design files. Open the ReadMe.rtf file on the CD to review the list of contents.

Initial Board Check Before Applying Power

Perform these steps before applying board power:
1. Set up the Configuration Mode jumpers (P27, P46, and P112) for JTAG configuration.
See “Configuration Modes” on page 51 for all available modes for the Virtex-5 FPGA ML561 Development Board.
2. Confirm that the JTAG chain jumpers P38, P44, and P109 are connecting pins 1 to 2 and pins 3 to 4. This way, all three devices are in the chain. Otherwise, the ISE iMPACT software will not find all three devices to configure. For more information see “JTAG
Chain” on page 52.
3. Make sure that no inhibit jumpers are present on any of the power supply regulator modules. For more information, see “Voltage Regulators” on page 34.
4. The Virtex-5 FPGA ML561 Development Board has a 200 MHz on-board oscillator, which provides a copy of a differential LVPECL clock to each of the three FPGAs through a differential clock buffer (ICS853006). There is also a connection to a pair of SMA connectors (J19, J20) to provide a differential LVDS clock from an off-board signal generator. Another differential clock buffer (ICS853006) provides a copy of this clock to each of the three FPGAs. These clocks are available after configuration for the design to use for various system clocks.
Virtex-5 FPGA ML561 User Guide www.xilinx.com 15
UG199 (v1.2.1) June 15, 2009
Chapter 2: Getting Started
5. Insert the CompactFlash card included in the kit into socket J27 on the Virtex-5 FPGA ML561 Development Board. To select the startup file, check that SW8 is set to position
0.

Applying Power to the Board

The Virtex-5 FPGA ML561 Development Board is now ready to power on. The Virtex-5 FPGA ML561 Development Board is shipped with a country-specific AC line cord for the universal input 5V desktop power supply. Follow these steps to power up the Virtex-5 FPGA ML561 Development Board:
1. Confirm that the ON-OFF switch, SW5, is in the OFF position.
2. Plug the 5V desktop power supply into the 5V DC input barrel jack J28 on the Virtex-5 FPGA ML561 Development Board. Plug the desktop power supply AC line cord into an electrical outlet supplying the appropriate voltage.
3. Turn SW5 to the ON position. The power indicators for all regulator modules should come on, indicating output from the regulators. The System ACE status LED D37 comes on when the System ACE controller (U45) extracts the BIT configuration file from the CompactFlash card to the FPGA. If no CompactFlash card is installed in the card socket J27 on the Virtex-5 FPGA ML561 Development Board, the red System ACE error LED D38 flashes.
4. If a CompactFlash card is not installed in socket J27, a JTAG cable must be used to configure the FPGAs. To use a Parallel IV cable or other JTAG pod, download the FPGA configuration bitstream into each FPGA. After the DONE LED (D28) comes on, the FPGAs are configured and ready to use.
5. Push the reset button SW4.
R
16 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

Hardware Description

This chapter describes the major hardware blocks on the Virtex-5 FPGA ML561 Development Board and provides useful design consideration. It contains the following sections:
“Hardware Overview”
“Memory Details”
“External Interfaces”
“Power Regulation”
“Board Design Considerations”
Chapter 3

Hardware Overview

The ML561 Development/Evaluation system reference design is implemented with three XC5VLX50T-FFG1136 devices from the Virtex-5 FPGA family to demonstrate high-speed external memory application interfaces. The memory technologies supported by the Virtex-5 FPGA ML561 Development Board are DDR2 SDRAM, DDR400 SDRAM, QDRII SRAM, and RLDRAM II SDRAM.
Figure 3-1 provides a view of all the major components on ML561 board. It shows the
placement of the three Virtex-5 FPGAs, and the position of the associated major interfaces for each FPGA.
Virtex-5 FPGA ML561 User Guide www.xilinx.com 17
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
R
12V Banana
Jacks
ON
OFF
12V Input
Jack
5V Banana
Jacks
ON
OFF
5V Input
Jack
DIMM5
DIMM4
External
12V -> 5V
MGT Connections
DIMM1
DIMM2
DIMM3
Clocks &
Buffers
CLK
HSTL
3.3V
Pwr Measure Header
A1
_M
SSTL18
7SEG2
SPY
RLDRAM II
RLDRAM II
SSTL18
FPGA #2
FPGA #2
Test Header 2
LEDs
SSTL18
V
& V
TT
Config2
DIP2
A1
FPGA #3
LCD Connector
SPY
SPY
REF
DIP1
FPGA #3 LEDs
HSTL
_M
SSTL2
SSTL2
& V
V
TT
REF
DDR
DDR
Test Header 1
AVC
CPLL
VVTTR
XC
V
CCINT
QDRII
QDRII
SPY
Test Header 3
Config3
7SEG3
DDR2
AVTTX
JTAG Test Header
DIP3
PROG
FPGA #1
DDR2
AVTRX
SSTL2
V
CCAUX
V
CCO
HSTL
V
& V
TT
REF
USB
/
FPGA #1
LEDs
FPGA #1
LEDs
A1
Config1
FBD
VCC
7SEG1
Serial Header
JTAG
MGT
RS-232
Driver
RESET
System ACE
Controller
CLK

FPGA

UG199_c3_01_050106
Figure 3-1: ML561 XC5VLX50T-FFG1136 Board Placement Diagram
The ML561 uses three Virtex-5 XC5VLX50T-FFG1136 devices, each in a 1136-pin, 35 mm x 35 mm BGA package. Figure 1-1, page 12 shows the memory devices associated with the three FPGAs. Refer to Appendix A, “FPGA Pinouts,” for a complete pinout of all Virtex-5 devices on the board. Refer to Appendix B, “Bill of Materials,” for a list of major components on the Virtex-5 FPGA ML561 Development Board, including their reference designators and links to their corresponding data sheets.
18 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

Memories

Tab le 3 -1 lists the types of memories that the ML561 board supports.
Table 3-1: Summary of ML561 Memory Interfaces
Hardware Overview
Memory Type Maximum Speed Data Rate Data Width I/O Standard
DDR400 SDRAM 200 MHz 400 Mbps 32 SSTL2 8:1
DDR2 DIMM 333 MHz 667 Mbps 144 SSTL18 8:1
DDR2 SDRAM 333 MHz 667 Mbps 32 SSTL18 8:1
QDRII SRAM 300 MHz 1.2 Gbps 72 HSTL18 18:1, 36:1
RLDRAM II 300 MHz 600 Mbps 36 HSTL18 9:1, 18:1
Data/Strobe
Ratios
When a larger data/strobe ratio is implemented, for example, a x36 QDRII device, the smaller configurations can also be demonstrated by programming the FPGA for a smaller data width, such as a 9:1 data/strobe ratio for the QDRII device.
DDR400 SDRAM Components
The Virtex-5 FPGA ML561 Development Board has two 200 MHz Micron MT46V32M16BN-5B (16-bit) DDR400 SDRAM components that provide a 32-bit interface. Each 16-bit device is packaged in a 60-ball FBGA package, with a common address and control bus and separate clocks and DQS/DQ signals.
DDR2 DIMM
The Virtex-5 FPGA ML561 Development Board contains five PC-5300 240-pin DIMM sockets for a maximum data width of 144 bits or a maximum depth of four DIMMs. The sockets are arranged in a row leading away from the FPGA so they can share common address and control signals. DIMM1 through DIMM4 share DQ/DQS signals to form a deep 72-bit memory interface, while DIMM5 has separate DQ/DQS signals.
For the deep DDR2 interface, the sockets are to be populated starting at socket DIMM4.
Tab le 3 -2 illustrates how the sockets should be populated based on the interface wanted.
Table 3-2: Populating DDR2 DIMM Sockets
DIMM Interface
One Deep 5 or 4 72-bit
Two Deep 4 and 3 72-bit
Three Deep 4, 3, and 2 72-bit
Four Deep 4, 3, 2, and 1 72-bit
Two Wide 5 and 4 144-bit
DIMM Sockets
Populated
Interface Width
Populating the DIMMs in this order is necessary due to the placement of the termination on the signals being shared. More detail on termination is given in “Board Design
Considerations,” page 36.
Virtex-5 FPGA ML561 User Guide www.xilinx.com 19
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
Wide
DIMM4 (XP2)
DIMM5 (XP1)
Deep
DIMM2 (XP4)
DIMM3 (XP3)
DIMM1 (XP5)
BY0-BY7, CB0_7
BY8-BY15, CB8_15
R
DQ and DQS
DQ and DQS
Address and Commands
DIMM1 Control DIMM2 Control DIMM3 Control DIMM4 Control DIMM5 Control
UG199_c3_02_050106
Figure 3-2: DDR2 Deep and Wide DIMM Sockets
DDR2 SDRAM Components
The ML561 board contains two 333 MHz Micron MT47H32M16CC-3 (16-bit) DDR2 SDRAM components that provide a 32-bit interface to FPGA #1. Each 16-bit device is packaged in an 84-ball FBGA package, with a common address and control bus and separate clocks and DQS/DQ signals.
QDRII SRAM
The ML561 board contains a 300 MHz QDRII SRAM interface with a 72-bit Read interface and a 72-bit Write interface using two Samsung K7R643684M-FC30 components (x36). They are packaged in a 165-ball FBGA package with a body size of 15 x 17 mm. These two components share the same address/control signals but have separate clock and data signals.
RLDRAM II Devices
The ML561 contains a 300 MHz 36-bit RLDRAM II interface using two Micron MT49H16M18BM-25 devices (x18) packaged in a 144-ball PBGA package. They share a common address and control bus but have separate clocks and DQS/DQ signals.
20 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

Memory Details

DDR400 and DDR2 Component Memories

The FPGA #1 device on the Virtex-5 FPGA ML561 Development Board is connected to DDR and DDR2 component memories, as shown in Figure 3-3.
Figure 3-3 summarizes the distribution of DDR and DDR2 discrete component interface
signals among the different banks of the FPGA #1 device.
BANK 25 (40) BANK 6 (20)
Memory Details
GTP I/O
BANK 126
BANK 21 (40)
BANK 17 (40) BANK 18 (40) BANK 118
BANK 13 (40)
DDR Components
DQ 0, 1, 2
BANK 11 (40)
DDR Components
DQ 3 & Controls
BANK 15 (40)
DDR2 Component
DQ 0, 1
BANK 19 (40)
DDR2 Component
BANK 4 (20)
Global Clock Inputs
BANK 2 (20)
Voltage Control
(Configuration)
BANK 0
BANK 1 (20)
DDR2 Component
Address
BANK 3 (20)
DDR2 Component
BANK 22 (40) BANK 122
BANK 114
BANK 12 (40)
USB Controls
RS232
BANK 112
BANK 116
BANK 120BANK 20 (40)
DQ 2, 3
BANK 23 (40) BANK 124BANK 5 (20)
Controls
Inter-FPGA MII Links
UG199_c3_03_050106
Figure 3-3: FPGA #1 Banks for DDR400 and DDR2 Component (Top View)
Virtex-5 FPGA ML561 User Guide www.xilinx.com 21
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
Tab le 3 -3 describes all signals associated with DDR400 Component memories.
Table 3-3: DDR400 Component Signal Summary
DDR1_A[13:0] 14 DDR400 Component Address
DDR1_CK[2:1]_[P,N] 4 DDR400 Component Differential Clock
R
Board Signal Name(s) Bits Description
DDR1_[RAS,CAS,WE]_N, DDR1_CKE,
12 DDR400 Component Control Signals DDR1_BA[1:0], DDR1_BY[0_1,2_3]_CS_N, DDR1_DM_BY[3:0]
DDR1_DQ_BY0_B[7:0], DDR1_DQS_BY0_P 9 DDR400 Data and Strobe: Byte 0
DDR1_DQ_BY1_B[7:0], DDR1_DQS_BY1_P 9 DDR400 Data and Strobe: Byte 1
DDR1_DQ_BY2_B[7:0], DDR1_DQS_BY2_P 9 DDR400 Data and Strobe: Byte 2
DDR1_DQ_BY3_B[7:0], DDR1_DQS_BY3_P 9 DDR400 Data and Strobe: Byte 3
Notes:
1. DDR1_CKE signal has a weak 4.7KΩ pull-down resistor to meet the memory power-up requirements.
Tab le 3 -4 describes all signals associated with DDR2 Component memories. For a complete
list of FPGA #1 signals and their pin locations, refer to Appendix A, “FPGA Pinouts.”
Table 3-4: DDR2 Component Signal Summary
Board Signal Name(s) Bits Description
DDR2_A[12:0] 13 DDR2 Component Address
DDR2_CK[1:0]_[P,N] 4 DDR2 Component Differential
Clock
DDR2_ODT[1:0], DDR2_[RAS,CAS,WE]_N,
14 DDR2 Component Control Signals DDR2_CKE, DDR2_BA[1:0], DDR2_CS[1:0]_N, DDR2_DM_BY[3:0]
DDR2_DQ_BY0_B[7:0], DDR2_DQS_BY0_[P,N] 10 DDR2 Data and Strobe: Byte 0
DDR2_DQ_BY1_B[7:0], DDR2_DQS_BY1_[P,N] 10 DDR2 Data and Strobe: Byte 1
DDR2_DQ_BY2_B[7:0], DDR2_DQS_BY2_[P,N] 10 DDR2 Data and Strobe: Byte 2
DDR2_DQ_BY3_B[7:0], DDR2_DQS_BY3_[P,N] 10 DDR2 Data and Strobe: Byte 3
Notes:
1. DDR2_CKE and DDR2_ODT[1:0] signals have a weak 4.7KΩ pull-down resistor to meet the memory power-up requirements.
X
APP851, DDR SDRAM Controller Using Virtex-5 FPGA Devices, XAPP858, High-
Performance DDR2 SDRAM Interface in Virtex-5 Devices, and the corresponding demos are included on the CD shipped with the ML561 Tool Kit. For a complete list of FPGA #1 signals and their pin locations, refer to Appendix A, “FPGA Pinouts.”
22 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

DDR2 SDRAM DIMM

The FPGA #2 device on the Virtex-5 FPGA ML561 Development Board is connected to DDR2 memories. The DDR2 memory interface includes a 144-bit wide DIMM connection to up to five 240-pin DDR2 DIMM sockets.
For the 144-bit wide DIMM datapath, the data bytes are spread across multiple banks of the FPGA #2 device. Figure 3-4 summarizes the distribution of DDR2 DIMM interface signals among the different banks of the FPGA #2 device.
TX 0, 1
Memory Details
BANK 5 (20) BANK 23 (40)BANK 124
BANK 120
RX 0, 1
BANK 116
GTP CLK
BANK 112
BANK 114
BANK 118
BANK 122 BANK 21 (40)
BANK 20 (40)
DDR2 DIMM
DQ 8, 9, 10
BANK 12 (40)
DDR2 DIMM
DQ 11, 12, CB8_15
BANK 18 (40)
DDR2 DIMM
DQ 14, 15, 13
BANK 22 (40)
DDR2 DIMM
BANK 3 (20)
General I/O
BANK 1 (20)
General I/O
(Configuration)
BANK 0
BANK 2 (20)
Inter-FPGA MII Links
BANK 4 (20)
Global Clock Inputs
BANK 19 (40)
DDR2 DIMM
Controls & DIMM1 Cntl
BANK 15 (40)
DDR2 DIMM
DQ 0, 1, 2
BANK 11 (40)
DDR2 DIMM
DQ 6, 3 CB0_7
BANK 13 (40)
DDR2 DIMM
DQ 5, 7, 4
BANK 17 (40)
DDR2 DIMM
Common Controls
DDR2 DIMM
DIMM 4 & 5 Cntl
DIMM 1, 2, 3 Cntl
BANK 25 (40)BANK 126 BANK 6 (20)
UG199_c3_04_050106
Figure 3-4: FPGA #2 Banks for DDR2 DIMM (SSTL18) Interfaces (Top View)
Virtex-5 FPGA ML561 User Guide www.xilinx.com 23
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
Tab le 3 -5 describes all the signals associated with DDR2 DIMM component memories. For
the Deep DIMM interface to four DIMMs, the individual dedicated control signals are listed at the bottom of Tab le 3- 5.
Table 3-5: DDR2 DIMM Signal Summary
Board Signal Name(s) Bits Description
DDR2_DIMM_A[15:0] 16 DDR2 DIMM Address
DDR2_DIMM[5:1]_CK[2:0]_[P,N] 30 DDR2 DIMM Differential Clocks: Three copies per
DIMM
R
DDR2_DIMM_[RAS,CAS,WE,RESET]_N,
37 DDR2 DIMM Common Control Signals DDR2_DIMM[5:1]_CKE[1:0], DDR2_DIMM_BA[2:0], DDR2_DIMM[5:1]_CS[1:0]_N, DDR2_DIMM[5:1]_ODT[1:0]
DDR2_DIMM[1:5]_CS[1:0]_N,
20 DDR2 DIMM Dedicated Control Signals DDR2_DIMM[1:5]_CKE[1:0], DDR2_DIMM[1:5]_ODT[1:0]
DDR2_DIMM_LB_BK[11,13,15]_[IN,OUT] 6 Deep DIMMs (DIMM1 through DIMM4) Loopback
Signals
DDR2_DIMM_LB_BK[12,18,20] 3 Wide DIMM (DIMM5) Loopback Signals (Total of six
FPGA pins)
DDR2_DIMM[1:5]_CNTL_PAR, DDR2_DIMM[1:5]_CNTL_PAR_ERR,
20 Miscellaneous Place Holder Signals to the Five
DIMMs
DDR2_DIMM[1:5]_NC_019, DDR2_DIMM[1:5]_NC_102
DDR2_DIMM_DQ_BY[0:15]_B[7:0], DDR2_DIMM_DQS_BY[0:15]_L_[P,N],
176 DDR2 DIMM Data, Strobes, and Data Mask: Bytes 0
through 15
DDR2_DIMM_DM_BY[0:15]
DDR2_DIMM_DQ_CB0_7_B[7:0], DDR2_DIMM_DQS_CB0_7_L_[P,N],
11 DDR2 DIMM Data, Strobes, and Data Mask: Check
Byte 0
DDR2_DIMM_DM_CB0_7
DDR2_DIMM_DQ_CB8_15_B[7:0], DDR2_DIMM_DQS_CB8_15_L_[P,N],
11 DDR2 DIMM Data, Strobes, and Data Mask: Check
Byte 1
DDR2_DIMM_DM_CB8_15
DDR2_DIMM[1:5]_SA[2:0] 15 Serial PROM Address
DDR2_DIMM_[SCL,SDA]" 2 Serial PROM interface CLK and Data
Notes:
1. DDR2_DIMM_CKE and DDR2_DIMM_ODT signals are connected to a 4.7KΩ pull-down resistor to meet the memory power-up requirements.
XAPP858
, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices and its
corresponding demo are included on the CD shipped with the ML561 Tool Kit.
24 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

QDRII and RLDRAM II Memories

Figure 3-5 summarizes the distribution of QDRII and RLDRAM II component interface
signals among the different banks of the FPGA #3 device.
Memory Details
BANK 5 (20) BANK 23 (40)BANK 124
BANK 120
BANK 116
BANK 112
BANK 114
BANK 118
BANK 20 (40)
RLDII Data
DQ 0, 1 & D0
BANK 12 (40)
RLDII Data
DQ 2, 3 & D1
BANK 18 (40)
RLDII Data
D 2, 3
BANK 3 (20)
General I/O
BANK 1 (20)
System ACE Controls
(Configuration)
BANK 0
BANK 2 (20)
Inter-FPGA MII Links
BANK 19 (40)
QDRII Data
Q1, 3 & D1
BANK 15 (40)
QDRII Data
D7, 2, 3, 0
BANK 11 (40)
QDRII Data
Q0, 2 & D6
BANK 13 (40)
QDRII Data
Q4, 5, 6
BANK 17 (40)
QDRII Data
Q7 & D4, 5
BANK 122 BANK 21 (40)
BANK 22 (40)
RLDII Address
and Control
BANK 4 (20)
Global Clock Inputs
QDRII Address
and Control
BANK 25 (40)BANK 126 BANK 6 (20)
UG199_c3_05_050106
Figure 3-5: FPGA #3 Banks for QDRII SRAM and RLDRAM II Interfaces (Top View)
Virtex-5 FPGA ML561 User Guide www.xilinx.com 25
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
Tab le 3 -6 describes all the signals associated with QDRII component memories.
Table 3-6: QDRII Component Signal Summary
Board Signal Name(s) Bits Description
QDR2_SA[18:0] 19 QDRII Address
R
QDR2_CK_BY0_3_[P,N],
4QDRII Differential Clock
QDR2_CK_BY4_7_[P,N]
QDR2_[R,W,DLL_OFF]_N 3 QDRII Control Signals
QDR2_D_BY[3:0]_B[8:0],
42 QDRII Write Data, Strobes, and Byte Write: Bytes 3:0 QDR2_K_BY0_3_[P,N], QDR2_BW_BY[3:0]
QDR2_Q_BY[3:0]_B[8:0],
38 QDRII Read Data and Strobes: Bytes 3:0 QDR2_CQ_BY0_3_[P,N]
QDR2_D_BY[7:4]_B[8:0],
42 QDRII Write Data, Strobes, and Byte Write: Bytes 7:4 QDR2_K_BY4_7_[P,N], QDR2_BW_BY[3:0]
QDR2_Q_BY[7:4]_B[8:0],
38 QDRII Read Data and Strobes: Bytes 7:4 QDR2_CQ_BY4_7_[P,N]
Notes:
1. QDR2_SA[18] is incorrectly labeled QDR2_NC_A3 in the ML561 schematics and layout file.
APP853: QDR II SRAM Interface for Virtex-5 Devices and its corresponding demo are
X
included on the CD shipped with the ML561 Tool Kit.
For a complete list of FPGA #3 signals and their pin locations, refer to Appendix A, “FPGA
Pinouts.”
Tab le 3 -7 describes all signals associated with RLDRAM II devices.
Table 3-7: RLDRAM II Component Signal Summary
Board Signal Name(s) Bits Description
RLD2_A[19:0], RLD2_BA[2:0] 23 RLDRAM II Address
RLD2_CK_BY0_1 _[P,N] 2 RLDRAM II Differential Clock
RLD2_CK_BY2_3 _[P,N] 2 RLDRAM II Differential Clock
RLD2_CS_BY[0_1,2_3]_N, RLD2_[REF,WE]_N,
8 RLDRAM II Control Signals
RLD2_DM_BY[0_1,2_3]_N, RLD2_QVLD_BY[0_1,2_3]
RLD2_DQ_BY[1:0]_B[8:0], RLD2_DK_BY0_1_[P,N],
24 RLDRAM II Data and Strobes: Bytes 1:0
RLD2_QK_BY[1:0]_[P,N]
RLD2_DQ_BY[3:2]_B[8:0], RLD2_DK_BY0_1_[P,N],
24 RLDRAM II Data and Strobes: Bytes 3:2
RLD2_QK_BY[3:2]_[P,N]
X
APP852, RLDRAM II Memory Interface for Virtex-5 FPGAs and its corresponding demo are
included on the CD shipped with the ML561 Tool Kit.
26 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R

External Interfaces

The external interfaces of the Virtex-5 FPGA ML561 Development Board are described in this section.

RS-232

The ML561 board provides an RS-232 serial interface using a Maxim MAX3316ECUP device. The maximum speed of this device is 460 Kbps.
Hooks are provided to connect and disconnect FPGAs to the RS-232 serial interface, by placing jumpers on headers based on the FPGA involved in the communication. Only one FPGA is allowed in the communication, and others must be dis conne cted b efore operation. The ML561 toolkit CD contains code to implement a UART core in one FPGA for interfacing with a host PC.
The RS-232 interface is accessible through a male DB-9 serial connector (P73).
Table 3-8: RS-232 Jumper Settings
External Interfaces
USB
To Connect FPGA # to
DB-9 (P73)
FPGA #1 P52 Pin 2 -> P52 Pin 1 P53 Pin 2 -> P53 Pin 1
FPGA #2 P52 Pin 2 -> P51 Pin 1 P53 Pin 2 -> P54 Pin 1
FPGA #3 P52 Pin 2 -> P52 Pin 3 P53 Pin 2 -> P53 Pin 3
Full-speed (12 Mbps) USB functionality is proved using a Silicon Laboratories CP2102-GM USB to RS-232 Bridge. RS-232 and USB signals are converted between one another so a RS-232 core needs to be implemented in the FPGA for communication. A level translator is used to convert between the 2.5V I/O of the FPGA and the 3.3V I/O the CP2102 uses.
Hooks are provided to connect and disconnect FPGAs to the USB connection, by placing jumpers on headers based on the FPGA involved in the communication. Only one FPGA is allowed in the communication, and others must be disconnected before operation.
The USB interface is accessible through a female ‘A’ USB connector (J29).
Table 3-9: USB Jumper Settings
To Connect FPGA # to DB-9
(J29)
FPGA #1 P36 Pin 2 -> P36 Pin 1 P22 Pin2 -> P22 Pin 1
TX RX
TX RX
FPGA #2 P36 Pin 2 -> P35 Pin 1 P22 Pin2 -> P23 Pin 1
FPGA #3 P36 Pin 2 -> P36 Pin 3 P22 Pin2 -> P22 Pin 3

Clocks

The ML561 board contains a 200 MHz LVPECL clock oscillator and connectors for external clock inputs for use as system clocks (J19 and J20). The GTP transceivers use their own clock source that can be provided through SMA connectors on the board (J16 and J21).
Virtex-5 FPGA ML561 User Guide www.xilinx.com 27
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
200 MHz LVPECL Clock
The 200 MHz LVPECL clock source is an Epson EG-2121CA200M-PCHS oscillator (Y1) with a differential output. The oscillator runs at 200 MHz ± 100 PPM with an operating voltage of 2.5V ±5%. This output is fed into an ICS853006 LVPECL buffer for generating a separate differential copy for each FPGA as well as a test point (P59).
Table 3-10: FPGA 200 MHz IDELAY Reference Clock Source
FPGA # Signal Name
1 DIRECT_CLK_TO_FPGA1_P
1 DIRECT_CLK_TO_FPGA1_N
2 DIRECT_CLK_TO_FPGA2_P
2 DIRECT_CLK_TO_FPGA2_N
3 DIRECT_CLK_TO_FPGA3_P
3 DIRECT_CLK_TO_FPGA3_N
R
SMA Clock
Two SMA connectors are provided for the input of an off-board differential clock (J19 and J20). A differential clock buffer (ICS853006) is used on the board (U17 and U18) to generate four LVPECL copies of the differential clock signal, one for each FPGA along with a probe point (P40) for testing. The traces from the buffer are routed as a differential pair to each FPGA where they are terminated with 100Ω differential termination.
Table 3-11: FPGA External Clock Sources
FPGA # Signal Name
1 EXT_CLK_TO_FPGA1_P
1 EXT_CLK_TO_FPGA1_N
2 EXT_CLK_TO_FPGA2_P
2 EXT_CLK_TO_FPGA2_N
3 EXT_CLK_TO_FPGA3_P
3 EXT_CLK_TO_FPGA3_N
33 MHz Clock
A single-ended 33 MHz Epson SG-8002CA oscillator is provided on the board (Y2) for testing purposes. Four copies of this clock are generated using a clock buffer (ICS8304) on the board, one per FPGA along with a probe point for testing (P41).
The application using this clock source as an input to the PLL on the Virtex-5 device has not yet been fully verified.
28 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
R
Table 3-12: FPGA Slow Clock Sources
FPGA Signal Name
1 FPGA1_LOW_FREQ_CLK
2 FPGA2_LOW_FREQ_CLK
3 FPGA3_LOW_FREQ_CLK
33 MHz System ACE Controller Oscillator
A single-ended 33 MHz Epson SG-8002CA oscillator is provided on the board (Y3) as a clock source for System ACE functionality.
GTP Clocks
Two SMA connectors are provided for the input of an off-board differential clock (J16 and J21). A differential clock buffer (ICS8543BG) is used on the board (U20) to generate four LVDS copies of the differential clock signal, two for FPGA #1, one for FPGA #2, and one for FPGA #3.
External Interfaces

User I/Os

General-Purpose Headers
A header is used to select between a clock forwarded by the GTP or from the external clock source used to provide a clock to the FPGA logic.
This subsection describes the devices that connect to the User I/Os of the ML561 board. These I/Os are provided to ease hardware development using the ML561.
The 16-pin test headers are surface mounted, one per FPGA. Of the two bytes of test signals, traces are matched for signals within a byte.
Table 3-13: Test Headers
Header Signal Description Location Header Pin #
FPGA1_TEST_HDR_BY0_B[0:7] P20 (TEST1) Odd pins: 1, 3, 5, 7, 9, 11, 13, 15
FPGA1_TEST_HDR_BY1_B[0:7] P20 (TEST1) Even pins: 2, 4, 6, 8, 10, 12, 14, 16
FPGA2_TEST_HDR_BY0_B[0:7] P21 (TEST2) Odd pins: 1, 3, 5, 7, 9, 11, 13, 15
FPGA2_TEST_HDR_BY1_B[0:7] P21 (TEST2) Even pins: 2, 4, 6, 8, 10, 12, 14, 16
FPGA3_TEST_HDR_BY0_B[0:7] P93 (TEST3) Odd pins: 1, 3, 5, 7, 9, 11, 13, 15
FPGA3_TEST_HDR_BY1_B[0:7] P93 (TEST3) Even pins: 2, 4, 6, 8, 10, 12, 14, 16
DIP Switch
One four-position DIP switch per FPGA (for a total of three) is available to externally pull up or pull down a signal on the FPGA. This can be used to manually set values used by the design running on the FPGA.
Virtex-5 FPGA ML561 User Guide www.xilinx.com 29
UG199 (v1.2.1) June 15, 2009
Chapter 3: Hardware Description
Seven-Segment Displays
One seven-segment display per FPGA (for a total of three) is available for use. The red Stanley-Electric NAR131SB displays are active Low, using seven inputs to display a character or number plus another input for a decimal point.
R
7SEG_0_N
7SEG_5_N 7SEG_1_N
7SEG_6_N
7SEG_4_N 7SEG_2_N
7SEG_3_N
7SEG_DP_N
UG199_c3_06_050106
Figure 3-6: Seven-Segment Display Signal Mapping
Light Emitting Diodes (LEDs)
Each FPGA is able to control four active-high green LEDs. The green is used to distinguish the User LEDs from the blue system LEDs on the Virtex-5 FPGA ML561 Development Board.
Pushbuttons
The ML561 board contains two momentary pushbuttons. Their functions and locations are described in Tabl e 3 -1 4.
Table 3-14: User Pushbuttons
Button Description Pin Connection
SW7 PROG_B: Configure FPGA System ACE Controller: Pin 33
SW4 RESET_N: Reset the FPGA designs FPGA #1: AH14
FPGA #2: AH14
FPGA #3: AH14
The Reset signal goes to a buffer (U32) that provides a separate copy of Reset to each FPGA.
30 www.xilinx.com Virtex-5 FPGA ML561 User Guide
UG199 (v1.2.1) June 15, 2009
Loading...
+ 110 hidden pages