Mitsubishi M30201M4T-XXXSP, M30201M4T-XXXFP, M30201M6T-XXXSP, M30201M6T-XXXFP, M30201F6T-XXXSP Datasheet

...
0 (0)

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Description

Description

The M30201 group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core. M30201 group is packaged in a 52-pin plastic molded SDIP, or 56-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed.

The M30201 group includes a wide range of products with different internal memory types and sizes and various package types.

Features

• Basic machine instructions ..................

Compatible with the M16C/60 series

• Memory capacity..................................

ROM/RAM (See figure 1.4. ROM expansion.)

• Shortest instruction execution time ......

100ns (f(XIN)=10MHz)

• Supply voltage .....................................

4.0 to 5.5V (f(XIN)=10MHz) :mask ROM version

 

2.7 to 5.5V (f(XIN)=3.5MHz ):mask ROM version

 

4.0 to 5.5V (f(XIN)=10MHz) :flash memory version

• Interrupts..............................................

13 internal and 3 external interrupt sources, 4 software

 

(including key input interrupt)

• Multifunction 16-bit timer ......................

Timer A x 1, timer B x 2, timer X x 3

• Clock output

 

• Serial I/O ..............................................

1 channel for UART or clock synchronous, 1 for UART

• A-D converter.......................................

10 bits X 8 channels (Expandable up to 13 channels)

• Watchdog timer ....................................

1 line

• Programmable I/O ...............................

43 lines

• LED drive ports ....................................

8 ports

• Clock generating circuit .......................

2 built-in clock generation circuits

 

(built-in feedback resistor, and external ceramic or quartz oscillator)

Applications

Home appliances, Audio, office equipment, Automobiles

------Table of Contents------

Central Processing Unit (CPU) .....................

12

Reset .............................................................

15

Clock Generating Circuit ...............................

19

Protection ......................................................

26

Interrupts .......................................................

27

Watchdog Timer ............................................

45

Timer .............................................................

47

Serial I/O .......................................................

74

A-D Converter ...............................................

88

Programmable I/O Ports ...............................

98

Electric Characteristics ...............................

110

Flash Memory version .................................

124

1

Description

Pin Configuration

Figures 1.1 to 1.2 show the pin configurations (top view).

PIN CONFIGURATION (top view)

AVSS

1

 

 

 

 

P60/AN0

2

 

 

 

VREF

3

 

 

 

 

AVCC

4

 

P54/CKOUT/AN54

 

 

5

 

 

 

 

P53/CLKS/AN53

6

 

 

 

P52/CLK0/AN52

7

 

 

 

 

P51/RXD0/AN51

8

XXXSP-M30201MX M30201F6SP

 

VCC

17

P50/TXD0/AN50

9

 

CNVSS

10

 

P71/TB1IN/XCIN

11

 

P70/TB0IN/XCOUT

12

 

RESET

13

 

 

 

XOUT

14

 

 

 

VSS

15

 

 

 

 

XIN

16

 

 

 

P45/TX2INOUT

 

 

 

 

18

 

P44/INT1/TX1INOUT

 

 

19

 

P43/INT0/TX0INOUT

 

 

20

 

P42/RXD1

 

 

21

 

P41/TA0OUT

 

 

22

 

P40/TA0IN/TXD1

 

 

23

 

P35

 

 

24

 

P34

 

 

25

 

P33

 

 

26

 

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

52 P61/AN1 51 P62/AN2 50 P63/AN3 49 P64/AN4 48 P65/AN5 47 P66/AN6 46 P67/AN7 45 P00/KI0 44 P01/KI1 43 P02/KI2

42 P03/KI3 41 P04/KI4 40 P05/KI5 39 P06/KI6 38 P07/KI7 37 P10(LED0) 36 P11(LED1) 35 P12(LED2) 34 P13(LED3) 33 P14(LED4) 32 P15(LED5) 31 P16(LED6) 30 P17(LED7) 29 P30

28 P31

27 P32

Package: 52P4B

Figure 1.1. Pin configuration for the M30201 group (shrink DIP product) (top view)

2

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Description

PIN CONFIGURATION (top view)

P51/RXD0/AN51 1

P50/TXD0/AN50 2

CNVSS 3

P71/TB1IN/XCIN 4

P70/TB0IN/XCOUT 5

RESET 6

N.C. 7

XOUT 8

VSS 9

XIN

10

VCC 11

P45/TX2INOUT 12

P44/INT1/TX1INOUT 13

P43/INT0/TX0INOUT 14

P52/CLK0/AN52

P53/CLKS/AN53

P54/CKOUT/AN54

 

N.C.

 

AVCC

 

VREF

 

P60/AN0

 

AVSS

 

P61/AN1

 

P62/AN2

 

P63/AN3

 

P64/AN4

 

P65/AN5

 

P66/AN6

 

56

55

54

53

52

51

50

49

48

47

46

45

44

43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P67/AN7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N.C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P00/KI0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P01/KI1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P02/KI2

 

 

 

 

 

M30201MX-XXXFP

 

 

 

 

 

38

 

 

 

 

 

 

 

 

 

 

 

P03/KI3

 

 

 

 

 

 

 

37

 

 

 

 

 

M30201MXT-XXXFP

 

 

 

 

P04/KI4

 

 

 

 

 

 

 

 

36

 

 

 

 

 

M30201F6FP

 

 

 

 

 

 

 

 

 

 

 

 

P05/KI5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

 

 

 

 

M30201F6TFP

 

 

 

 

 

 

 

 

 

 

P06/KI6

 

 

 

 

 

 

 

 

 

 

 

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P07/KI7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P10(LED0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P11(LED1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P12(LED2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P13(LED3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

25

 

26

 

27

 

28

 

 

 

 

P42/RXD1

 

P41/TA0OUT

 

0/TA0IN/TXD1

N.C.

P35

P34

 

P33

 

P32

 

P31

 

P30

 

P17(LED7)

 

P16(LED6)

 

P15(LED5)

 

P14(LED4)

 

 

 

 

 

 

P4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package: 56P6S-A

Figure 1.2. Pin configuration for the M30201 group (QFP product) (top view)

3

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Description

Block Diagram

Figure 1.3 is a block diagram of the M30201 group.

I/O ports

 

 

8

 

8

 

6

 

6

5

8

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port P0

 

Port P1

 

Port P3

 

Port P4

 

Port P5

 

Port P6

 

Port P7

Internal peripheral functions

Timer

Timer TA0 (16 bits) Timer TB0 (16 bits) Timer TB1 (16 bits) Timer TX0 (16 bits) Timer TX1 (16 bits) Timer TX2 (16 bits)

Watchdog timer

(15 bits)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-D converter

 

 

System clock generator

 

 

 

 

 

(10 bits X 8 channels

 

 

 

 

 

XIN-XOUT

 

 

Expandable up to 13 channels)

 

 

 

 

XCIN-XCOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UART/clock synchronous SI/O

 

 

 

 

 

 

 

 

 

 

 

 

(8 bits X 1 channel)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UART

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8 bits X 1 channel)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M16C/60 series16-bit CPU core

 

 

 

 

Memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Registers

 

 

 

 

Program counter

 

 

 

 

ROM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R0H

 

R0L

 

 

 

 

 

PC

 

 

 

 

 

 

 

 

 

 

R0H

 

 

R0L

 

 

 

 

 

 

 

 

 

 

 

 

RAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1H

 

R1L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1H

 

 

R1L

 

 

 

 

 

Vector table

 

 

 

 

(Note 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

INTB

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A0

 

 

 

 

 

 

Stack pointer

 

 

 

 

 

 

 

 

 

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1

 

 

 

 

 

 

 

ISP

 

 

 

 

 

 

 

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FB

 

 

 

 

 

 

 

USP

 

 

 

 

Multiplier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SB

 

 

 

 

 

 

 

FLG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 1: ROM size depends on MCU type.

Note 2: RAM size depends on MCU type.

Figure 1.3. Block diagram for the M30201 group

4

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Description

Performance Outline

Table 1.1 is performance outline of M30201 group.

Table 1.1. Performance outline of M30201 group

 

 

 

Item

Performance

 

 

 

 

Number of basic instructions

91 instructions

 

 

 

 

Shortest instruction execution time

100ns (f(XIN)=10MHz

 

 

 

 

 

Memory

 

ROM

(See figure 4. ROM expansion.)

 

 

 

 

 

capacity

 

RAM

(See figure 4. ROM expansion.)

 

 

 

 

 

I/O port

 

P0 to P7

43 lines

 

 

 

 

 

Multifunction

 

TA0

16 bits x 1

 

 

 

 

 

timer

 

TB0, TB1

16 bits x 2

 

 

 

 

 

 

 

 

TX0, TX1, TX2

16 bits x 3

 

 

 

 

 

Serial I/O

 

UART0

(UART or clock synchronous) x 1

 

 

 

UART1

UART x 1

 

 

 

 

 

A-D converter

 

10 bits x 8 channels (Expandable up to 13 channels)

 

 

 

 

Watchdog timer

15 bits x 1 (with prescaler)

 

 

 

 

 

Interrupt

 

13 internal and 3 external sources, 4 software sources

 

 

 

 

Clock generating circuit

2 built-in clock generation circuits

 

 

 

 

(built-in feedback resistor, and external ceramic or

 

 

 

 

quartz oscillator)

 

 

 

 

 

Supply voltage

 

4.0 to 5.5V (f(XIN)=10MHz) :mask ROM version

 

 

 

 

2.7 to 5.5V (f(XIN)=3.5MHz) :mask ROM version

 

 

 

 

4.0 to 5.5V (f(XIN)=10MHz) :flash memory version

 

 

 

 

Power consumption

11mW (f(XIN)=3.5MHz , Vcc=3V) :mask ROM version

 

 

 

 

95mW (f(XIN)=10MHz, Vcc=5V) :flash memory version

 

 

 

 

 

I/O

 

I/O withstand voltage

5V

 

 

 

 

characteristics

 

Output current

5mA (15mA:LED drive port)

 

 

 

 

Device configuration

CMOS silicon gate

 

 

 

 

 

Package

 

52-pin plastic mold SDIP

 

 

 

 

56-pin plastic mold QFP

 

 

 

 

 

5

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Description

Mitsubishi plans to release the following products in the M30201 group:

(1)Support for mask ROM version and flash memory version

(2)ROM capacity

(3)Package

52P4B : Plastic molded SDIP (mask ROM version and flash memory version) 56P6S-A : Plastic molded QFP (mask ROM version and flash memory version)

Apr. 2001

RAM Size

M30201F6SP/FP

(Byte)

M30201F6TFP

2K

M30201M6-XXXFP

 

M30201M6T-XXXFP

 

M30201M4-XXXSP/FP

1K

M30201M4T-XXXFP

512

 

16K

32K

48K

ROM Size

 

 

 

(Byte)

Figure 1.4. ROM expansion

Type No. M 3 0 2 0 1 M 4 T – X X X S P

Package type:

SP : Package 52P4B

FP : Package 56P6S-A

ROM No.

Omitted for flash memory version

Shows difference of characteristics and usage etc:

Nothing : Common

T : Automobiles

ROM capacity: 4 : 32K bytes 6 : 48K bytes

Memory type:

M : Mask ROM version

F : Flash memory version

Shows pin count, etc

(The value itself has no specific meaning)

M30201 Group

M16C Family

Figure 1.5. Type No., memory size, and package

6

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Pin Description

Pin Description

Pin name

Signal name

I/O type

VCC, VSS

Power supply

 

 

input

 

CNVSS

CNVSS

Input

RESET

Reset input

Input

XIN

Clock input

Input

XOUT

Clock output

Output

AVCC

Analog power

 

 

supply input

 

AVSS

Analog power

 

 

supply input

 

VREF

Reference

Input

 

voltage input

 

P00 to P07

I/O port P0

Input/output

P10 to P17

I/O port P1

Input/output

P30 to P35

I/O port P3

Input/output

P40 to P45

I/O port P4

Input/output

Function

Supply 2.7 to 5.5 V to the VCC pin. Supply 0 V to the VSS pin.

Connect it to the VSS pin.

A “L” on this input resets the microcomputer.

These pins are provided for the main clock generating circuit. Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.

This pin is a power supply input for the A-D converter. Connect it to VCC.

This pin is a power supply input for the A-D converter. Connect it to VSS.

This pin is a reference voltage input for the A-D converter.

This is an 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually. When set for input, the user can specify in units of four bits via software whether or not they are tied to a pull-up resistor.

This is an 8-bit I/O port equivalent to P0.

This is a 6-bit I/O port equivalent to P0.

This is a 6-bit I/O port equivalent to P0. The P40 pin is shared with timer A0 input and serial I/O output TxD1. The P41 pin is shared with timer A0 output. The P42 pin is shared with serial I/O input RxD1. The P43 pin is shared with external interrupt INT0 and timer X0 input/output TX0INOUT. The P44 pin is shared with external interrupt INT1 and timer X1 input/output TX1INOUT. The P45 pin is shared with timer X2 input/output TX2INOUT.

P50 to P54

I/O port P5

Input/output

P60 to P67

I/O port P6

Input/output

P70 to P71

I/O port P7

Input/output

This is a 5-bit I/O port equivalent to P0. The P50, P51, P52, and P53 pins are shared with serial I/O pins TxD0, RxD0, CLK0, and CLKS. The P54 pin is shared with clock output CLKOUT. Also, these pins are shared with analog input pins AN50 through AN54.

This is an 8-bit I/O port equivalent to P0. These pins are shared with analog input pins AN0 through AN7.

This is a 2-bit I/O port equivalent to P0 . These pins are used for input/output to and from the oscillator circuit for the clock. Connect a crystal oscillator between the XCIN and the XCOUT pins.

7

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory

Operation of Functional Blocks

The M30201 accommodates certain units in a single chip. These units include ROM and RAM to store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations. Also included are peripheral units such as timers, serial I/O, A-D converter, and I/O ports.

The following explains each unit.

Memory

Figure 1.6 is a memory map of the M30201. The address space extends the 1M bytes from address 0000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30201M4-XXXSP, there is 32K bytes of internal ROM from F800016 to FFFFF16. The vector table for fixed interrupts such as the reset are mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details.

From 0040016 up is RAM. For example, in the M30201M4-XXXSP, there is 1K byte of internal RAM from 0040016 to 007FF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Any part of the SFR area that is not occupied is reserved and cannot be used for other purposes.

The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps.

RAM size

Address

YYYYY16

 

1K bytes

007FF16

2K bytes

00BFF16

 

 

 

 

ROM size

Address

XXXXX16

 

32K bytes

F800016

48K bytes

F400016

 

 

0000016

SFR area For details, see Figures 1.7 to 1.8

0040016

Internal RAM area

YYYYY16

XXXXX16

Internal ROM area

FFFFF16

FFE0016

 

Special page

 

 

 

 

 

 

vector table

 

FFFDC16

 

 

 

 

 

Undefined instruction

 

 

 

 

Overflow

 

 

 

BRK instruction

 

 

 

Address match

 

 

 

Single step

 

 

 

Watchdog timer

 

 

 

 

 

 

DBC

FFFFF16

 

Reset

 

 

 

 

Figure 1.6. Memory map

8

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory

000016

000116

000216

000316

000416

000516

000616

000716

000816

000916

000A16

000B16

000C16

000D16

000E16

000F16

001016

001116

001216

001316

001416

001516

001616

001716

001816

001916

001A16

001B16

001C16

001D16

001E16

001F16

002016

002116

002216

002316

002416

002516

002616

002716

002816

002916

002A16

002B16

002C16

002D16

002E16

002F16

003016

003116

003216

003316

003416

003516

003616

003716

003816

003916

003A16

003B16

003C16

003D16

003E16

003F16

Processor mode register 0 (PM0) Processor mode register 1(PM1) System clock control register 0 (CM0) System clock control register 1 (CM1)

Address match interrupt enable register (AIER) Protect register (PRCR)

Watchdog timer start register (WDTS) Watchdog timer control register (WDC)

Address match interrupt register 0 (RMAD0)

Address match interrupt register 1 (RMAD1)

004016

004116

004216

004316

004416

004516

004616

004716

004816

004916

004A16

004B16

004C16

004D16

004E16

004F16

005016

005116

005216

005316

005416

005516

005616

005716

005816

005916

005A16

005B16

005C16

005D16

005E16

005F16

Key input interrupt control register (KUPIC) A-D conversion interrupt control register (ADIC)

UART0 transmit interrupt control register (S0TIC) UART0 receive interrupt control register (S0RIC) UART1 transmit interrupt control register (S1TIC) UART1 receive interrupt control register (S1RIC)

Timer A0 interrupt control register (TA0IC) Timer X0 interrupt control register (TX0IC) Timer X1 interrupt control register (TX1IC) Timer X2 interrupt control register (TX2IC)

Timer B0 interrupt control register (TB0IC) Timer B1 interrupt control register (TB1IC)

INT0 interrupt control register (INT0IC) INT1 interrupt control register (INT1IC)

Note: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.

Figure 1.7. Location of peripheral unit control registers (1)

9

Mitsubishi M30201M4T-XXXSP, M30201M4T-XXXFP, M30201M6T-XXXSP, M30201M6T-XXXFP, M30201F6T-XXXSP Datasheet

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory

038016

Count start flag (TABSR)

038116

Clock prescaler reset flag (CPSRF)

038216

One-shot start flag (ONSF)

038316

Trigger select register (TRGSR)

038416

Up-down flag (UDF)

038516

 

038616

Timer A0 (TA0)

038716

 

038816

Timer X0 (TX0)

038916

 

038A16

Timer X1 (TX1)

038B16

 

038C16

Timer X2 (TX2)

038D16

 

038E16

Clock divided counter (CDC)

038F16

 

039016

Timer B0 (TB0)

039116

 

039216

Timer B1 (TB1)

039316

 

039416

 

039516

 

039616

Timer A0 mode register (TA0MR)

039716

Timer X0 mode register (TX0MR)

039816

Timer X1 mode register (TX1MR)

039916

Timer X2 mode register (TX2MR)

039A16

 

039B16

Timer B0 mode register (TB0MR)

039C16

Timer B1 mode register (TB1MR)

039D16

 

039E16

 

 

039F16

 

03A016

UART0 transmit/receive mode register (U0MR)

03A116

UART0 bit rate generator (U0BRG)

03A216

UART0 transmit buffer register (U0TB)

03A316

 

03A416

UART0 transmit/receive control register 0 (U0C0)

03A516

UART0 transmit/receive control register 1 (U0C1)

03A616

UART0 receive buffer register (U0RB)

03A716

 

03A816

UART1 transmit/receive mode register (U1MR)

03A916

UART1 bit rate generator (U1BRG)

03AA16

UART1 transmit buffer register (U1TB)

03AB16

 

03AC16

UART1 transmit/receive control register 0 (U1C0)

03AD16

UART1 transmit/receive control register 1 (U1C1)

03AE16

UART1 receive buffer register (U1RB)

03AF16

 

03B016

UART transmit/receive control register 2 (UCON)

03B116

 

03B216

 

 

03B316

 

03B416

Flash memory control register 0 (FCON0) (Note1)

03B516

Flash memory control register 1 (FCON1) (Note1)

03B616

Flash command register (FCMD) (Note)

03B716

 

03B816

 

 

03B916

 

03BA16

 

03BB16

 

03BC16

 

 

03BD16

 

03BE16

 

 

03BF16

 

03C016

03C116

03C216

03C316

03C416

03C516

03C616

03C716

03C816

03C916

03CA16

03CB16

03CC16

03CD16

03CE16

03CF16

03D016

03D116

03D216

03D316

03D416

03D516

03D616

03D716

03D816

03D916

03DA16

03DB16

03DC16

03DD16

03DE16

03DF16

03E016

03E116

03E216

03E316

03E416

03E516

03E616

03E716

03E816

03E916

03EA16

03EB16

03EC16

03ED16

03EE16

03EF16

03F016

03F116

03F216

03F316

03F416

03F516

03F616

03F716

03F816

03F916

03FA16

03FB16

03FC16

03FD16

03FE16

03FF16

A-D register 0 (AD0)

A-D register 1 (AD1)

A-D register 2 (AD2)

A-D register 3 (AD3)

A-D register 4 (AD4)

A-D register 5 (AD5)

A-D register 6 (AD6)

A-D register 7 (AD7)

A-D control register 2 (ADCON2)

A-D control register 0 (ADCON0) A-D control register 1 (ADCON1)

Port P0 (P0)

Port P1 (P1)

Port P0 direction register (PD0)

Port P1 direction register (PD1)

Port P2 (P2) (Reserved)

Port P3 (P3)

Port P2 direction register (PD2) (Reserved)

Port P3 direction register (PD3)

Port P4 (P4)

Port P5 (P5)

Port P4 direction register (PD4)

Port P5 direction register (PD5)

Port P6 (P6)

Port P7 (P7)

Port P6 direction register (PD6)

Port P7 direction register (PD7)

Pull-up control register 0 (PUR0) Pull-up control register 1 (PUR1) Port P1 drive control register (DRR)

Note 1: This register is only exist in flash memory version.

Note 2: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.

Figure 1.8. Location of peripheral unit control registers (2)

10

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CPU

Central Processing Unit (CPU)

The CPU has a total of 13 registers shown in Figure 1.9. Seven of these registers (R0, R1, R2, R3, A0, A1, and FB) come in two sets; therefore, these have two register banks.

 

b15

 

b8 b7

 

b0

 

R0(Note)

 

 

H

 

L

 

 

b15

 

b8 b7

 

b0

 

R1(Note)

 

 

H

 

L

 

 

 

 

b15

 

 

 

 

b0

 

R2(Note)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b15

 

 

 

 

b0

 

R3(Note)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b15

 

 

 

 

b0

 

A0(Note)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b15

 

 

 

 

b0

 

A1(Note)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b15

 

 

 

 

b0

 

FB(Note)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b19

 

 

 

 

b0

PC

 

 

 

 

 

 

 

 

Program counter

Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

registers

b19

 

 

 

 

b0

 

 

 

 

 

 

INTB

 

 

 

 

 

 

 

 

 

Interrupt table

 

 

H

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

register

 

 

 

 

b15

 

 

 

 

 

 

 

 

b0

 

 

USP

 

 

 

 

 

 

User stack pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b15

 

b0

 

 

ISP

 

 

 

 

 

 

Interrupt stack

 

 

 

 

 

 

 

 

Address

 

 

 

 

 

 

 

 

pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

registers

 

 

b15

 

b0

 

 

SB

 

 

 

 

 

 

Static base

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

register

 

 

 

 

 

b15

 

 

 

 

 

 

 

 

 

 

b0

Frame base

FLG

 

 

 

 

 

 

Flag register

registers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPL

U

I

O

B

S

Z

D

C

 

 

 

 

 

 

 

 

 

 

Note: These registers consist of two register banks.

Figure 1.9. Central processing unit register

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)

Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations.

Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H, R1H), and low-order bits as (R0L, R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0, R3R1).

(2) Address registers (A0 and A1)

Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data registers. These registers can also be used for address register indirect addressing and address register relative addressing.

In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

11

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CPU

(3) Frame base register (FB)

Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.

(4) Program counter (PC)

Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.

(5) Interrupt table register (INTB)

Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector table.

(6) Stack pointer (USP/ISP)

Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 16 bits.

Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag). This flag is located at the position of bit 7 in the flag register (FLG).

(7) Static base register (SB)

Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.

(8) Flag register (FLG)

Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.10 shows the flag register (FLG). The following explains the function of each flag:

• Bit 0: Carry flag (C flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

• Bit 1: Debug flag (D flag)

This flag enables a single-step interrupt.

When this flag is “1”, a single-step interrupt is generated after instruction execution. This flag is cleared to “0” when the interrupt is acknowledged.

• Bit 2: Zero flag (Z flag)

This flag is set to “1” when an arithmetic operation resulted in 0; otherwise, cleared to “0”.

• Bit 3: Sign flag (S flag)

This flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, cleared to “0”.

• Bit 4: Register bank select flag (B flag)

This flag chooses a register bank. Register bank 0 is selected when this flag is “0” ; register bank 1 is selected when this flag is “1”.

• Bit 5: Overflow flag (O flag)

This flag is set to “1” when an arithmetic operation resulted in overflow; otherwise, cleared to “0”.

Bit 6: Interrupt enable flag (I flag)

This flag enables a maskable interrupt.

An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”. This flag is cleared to “0” when the interrupt is acknowledged.

12

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CPU

• Bit 7: Stack pointer select flag (U flag)

Interrupt stack pointer (ISP) is selected when this flag is “0” ; user stack pointer (USP) is selected when this flag is “1”.

This flag is cleared to “0” when a hardware interrupt is acknowledged or an INT instruction of software interrupt Nos. 0 to 31 is executed.

Bits 8 to 11: Reserved area

Bits 12 to 14: Processor interrupt priority level (IPL)

Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

• Bit 15: Reserved area

The C, Z, S, and O flags are changed when instructions are executed. See the software manual for details.

b15

 

 

 

 

 

 

 

 

b0

 

 

IPL

 

 

U

I

O

B

S

Z

D

C

Flag register (FLG)

 

 

 

 

 

 

 

 

 

 

 

 

Carry flag

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Debug flag

 

 

 

 

 

 

 

 

 

 

 

 

Zero flag

 

 

 

 

 

 

 

 

 

 

 

 

Sign flag

 

 

 

 

 

 

 

 

 

 

 

 

Register bank select flag

 

 

 

 

 

 

 

 

 

 

 

 

Overflow flag

 

 

 

 

 

 

 

 

 

 

 

 

Interrupt enable flag

 

 

 

 

 

 

 

 

 

 

 

 

Stack pointer select flag

 

 

 

 

 

 

 

 

 

 

 

 

Reserved area

 

 

 

 

 

 

 

 

 

 

 

 

Processor interrupt priority level

 

 

 

 

 

 

 

 

 

 

 

 

Reserved area

Figure 1.10. Flag register (FLG)

13

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Reset

Reset

There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See “Software Reset” for details of software resets.) This section explains on hardware resets.

When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the reset pin level “L” (0.2VCC max.) for at least 20 cycles. When the reset pin level is then returned to the “H” level while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table.

Figure 1.11 shows the example reset circuit. Figure 1.12 shows the reset sequence.

 

5V

 

 

 

5V

 

4.0V

 

 

 

4.0V

 

VCC

 

 

 

VCC

RESET

VCC

RESET

VCC

Power source voltage

0V

 

0V

 

 

detection circuit

 

5V

 

 

 

5V

 

RESET

 

 

 

RESET

 

0.8V

 

 

 

 

 

0V

 

 

 

0V

 

Example when VCC = 5V.

 

 

 

 

Figure 1.11. Example reset circuit

XIN

 

 

 

 

More than 20 cycles are needed

 

RESET

BCLK

24cycles

 

 

 

BCLK

 

 

 

(Internal clock)

 

 

 

 

 

 

Content of reset vector

Address

 

FFFFC16

FFFFE16

(Internal address

 

 

 

signal)

 

 

 

Figure 1.12. Reset sequence

14

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Reset

(1)Processor mode register 0

(2)Processor mode register 1

(3)System clock control register 0

(4)System clock control register 1

(5)Address match interrupt enable register

(6)Protect register

(7)Watchdog timer control register

(8)Address match interrupt register 0

(9)Address match interrupt register 1

(000416)···

 

 

 

 

0

0

0

0

(33) Timer B0 mode register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(34) Timer B1 mode register

 

 

 

 

 

 

 

 

 

(000516)···

0

 

 

 

 

 

0

0

 

 

 

 

 

 

 

(000616)···

 

 

 

 

 

 

 

 

(35)

UART0 transmit/receive mode

 

 

 

 

 

 

 

 

0

1

0

0

1

0

0

0

 

register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UART0 transmit/receive control

(000716)···

0

0

1

0

0

0

0

0

(36) register 0

(000916)···

 

 

 

 

 

 

 

 

(37)

UART0 transmit/receive control

 

 

 

 

 

 

0

0

 

register 1

 

 

 

 

 

 

 

 

 

 

(000A16)···

 

 

 

 

 

 

 

 

(38)

UART1 transmit/receive mode

 

 

 

 

 

0

0

0

 

register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UART1 transmit/receive control

(000F16)···

0

0

0

?

?

?

?

?

(39) register 0

 

 

 

 

 

 

 

 

 

(40)

UART1 transmit/receive control

(001016)···

 

 

 

0016

 

 

 

 

 

 

 

 

 

 

register 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(41)

UART transmit/receive control

(001116)···

 

 

 

0016

 

 

 

 

 

 

 

 

 

 

register 2

 

 

 

 

 

 

 

 

 

 

(001216)···

 

 

 

 

 

 

 

 

(42)

Flash memory control register 0

 

 

 

 

0

0

0

0

 

 

 

 

 

 

 

 

 

 

(Note )

(001416)···

 

 

 

 

 

 

 

(43)

Flash memory control register 1

 

 

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note)

(001516)···

 

 

 

 

 

 

 

(44)

Flash command register

 

 

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(001616)···

 

 

 

 

0

0

0

0

(45) A-D control register 2

(10) Key input interrupt control register

(004D16)···

 

 

 

 

 

 

 

 

(46) A-D control register 0

 

 

 

 

 

 

 

 

 

 

 

 

?

0

0

0

A-D conversion interrupt

(004E16)···

 

 

 

 

 

 

 

 

(47) A-D control register 1

 

 

 

 

 

 

 

 

 

 

 

 

?

0

0

0

(11) control register

 

 

 

 

 

(12)UART0 transmit interrupt control

(005116)···

 

 

 

 

(48) Port P0 direction register

 

 

 

 

?

0

0

0

register

 

 

 

 

 

 

 

 

 

 

UART0 receive interrupt control

(005216)···

 

 

 

 

 

 

 

 

(49) Port P1 direction register

 

 

 

 

?

0

0

0

(13)register

 

 

 

 

 

(14)UART1 transmit interrupt control

(005316)···

 

 

 

 

(50) Port P2 direction register

 

 

 

 

?

0

0

0

register

 

 

 

 

 

 

 

 

 

 

(15)UART1 receive interrupt control

(005416)···

 

 

 

 

(51) Port P3 direction register

 

 

 

 

?

0

0

0

register

(005516)···

 

 

 

 

 

 

 

 

(52) Port P4 direction register

 

 

 

 

 

 

 

 

(16)Timer A0 interrupt control register

 

 

 

 

?

0

0

0

(17)Timer X0 interrupt control register

(005616)···

 

 

 

 

 

 

 

 

(53) Port P5 direction register

 

 

 

 

 

 

 

 

?

0

0

0

(18)Timer X1 interrupt control register

(005716)···

 

 

 

 

 

 

 

 

(54) Port P6 direction register

 

 

 

 

 

 

 

 

?

0

0

0

 

 

 

 

 

 

 

 

 

 

 

(19)Timer X2 interrupt control register

(005816)···

 

 

 

 

?

0

0

0

(20)Timer B0 interrupt control register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(005A16)···

 

 

 

 

?

0

0

0

(21)Timer B1 interrupt control register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(005B16)···

 

 

 

 

?

0

0

0

(22)INT0 interrupt control register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(005D16)···

 

 

0

0

?

0

0

0

(23)INT1 interrupt control register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(005E16)···

 

 

0

0

?

0

0

0

(24)Count start flag

(038016)···

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0 0

 

0

0

0

0

(25)Clock prescaler reset flag

(038116)···

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(55)Port P7 direction register

(56)Pull-up control register 0

(57)Pull-up control register 1

(58)Port P1 drive capacity control register

(59)Data registers (R0/R1/R2/R3)

(60)Address registers (A0/A1)

(61)Frame base register (FB)

(26)One-shot start flag

(038216)···

 

 

 

 

 

0

0

0

0

 

(62)

Interrupt table register (INTB)

(27)Trigger select flag

(038316)···

 

 

 

 

 

 

 

 

 

 

(63)

User stack pointer (USP)

 

 

 

 

 

 

0016

 

 

 

(28)Up-down flag

(038416)···

 

 

 

 

 

 

(64)

Interrupt stack pointer (ISP)

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

(29)Timer A0 mode register

(039616)···

 

 

 

 

 

 

 

 

 

 

(65)

Static base register (SB)

 

 

 

 

 

 

 

 

 

 

 

0016

 

 

 

 

(30)Timer X0 mode register

(039716)···

 

 

 

 

 

 

(66) Flag register (FLG)

 

 

 

 

 

 

0016

 

 

 

 

(31)Timer X1 mode register

(039816)···

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0016

 

 

 

 

 

 

(32)Timer X2 mode register

(039916)···

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(039B16)··· 0 0 ? 0 0 0 0

(039C16)··· 0 0 ? 0 0 0 0

(03A016)··· 0016

(03A416)··· 0 0 0 0 1 0 0 0

(03A516)··· 0 0 0 0 0 0 1 0

(03A816)··· 0016

(03AC16)··· 0 0 0 0 1 0 0 0

(03AD16)··· 0 0 0 0 0 0 1 0

(03B016)··· 0 0 0 0 0 0

(03B416)··· 0 0 1 0 0 0 0 0

(03B516)··· 0 0

(03B616)··· 0016

(03D416)··· 0 0 0 0

(03D616)··· 0 0 0 0 0 ? ? ?

(03D716)···

 

0016

 

 

 

(03E216)···

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0016

 

 

 

(03E316)···

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

(03E616)···

 

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(03E716)···

 

 

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(03EA16)···

 

 

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

(03EB16)···

 

 

 

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(03EE16)···

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(03EF16)···

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(03FC16)···

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(03FD16)···

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

(03FE16)···

 

0016

 

 

 

 

 

 

 

 

 

 

 

 

 

 

000016

000016

000016

0000016

000016

000016

000016

000016

x : Nothing is mapped to this bit ? : Undefined

The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set.

Note: This register is only exist in flash memory version.

Figure 1.13. Device's internal status after a reset is cleared

15

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Software Reset

Software Reset

Writing “1” to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has almost the same effect as a hardware reset. The contents of internal RAM are preserved.

Figure 1.14 shows the processor mode register 0 and 1.

Processor mode register 0 (Note)

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0

Symbol

Address

When reset

PM0

000416

XXXX00002

 

Bit symbol

Bit name

Function

R W

 

 

 

 

 

 

Reserved bit

 

Must always be set to “0”

 

 

PM03

Software reset bit

The device is reset when this bit

 

 

 

is set to “1”. The value of this bit is “0” when read.

Nothing is assigned.

In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.

Note: Set bit 1 of the protect register (address 000A16) to “1” when writing new values to this register.

Processor mode register 1 (Note)

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0

Symbol

Address

When reset

PM1

000516

0XXXXXX02

Bit symbol

Bit name

Function

R W

Reserved bit

 

Must always be set to “0”

 

 

 

 

 

 

 

 

 

Nothing is assigned.

In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.

Reserved bit

Must always be set to “0”

 

 

Note: Set bit 1 of the protect register (address 000A16) to “1” when writing new values to this register

Figure 1.14. Processor mode register 0 and 1.

16

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Clock Generating Circuit

Clock Generating Circuit

The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the

CPU and internal peripheral units.

Table 1.2. Main clock and sub-clock generating circuits

 

Main clock generating circuit

Sub clock generating circuit

 

 

 

Use of clock

• CPU’s operating clock source

• CPU’s operating clock source

 

• Internal peripheral units’

• Timer A/B/X’s count clock

 

operating clock source

source

 

 

 

Usable oscillator

Ceramic or crystal oscillator

Crystal oscillator

 

 

 

Pins to connect oscillator

XIN, XOUT

XCIN, XCOUT

 

 

 

Oscillation stop/restart function

Available

Available

 

 

 

Oscillator status immediately after reset

Oscillating

Stopped

 

 

 

Other

Externally derived clock can be input

 

 

 

Example of oscillator circuit

Figure 1.15 shows some examples of the main clock circuit, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Figure 1.16 shows some examples of subclock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Circuit constants in Figures 15 and 16 vary with each oscillator used. Use the values recommended by the manufacturer of your oscillator.

 

 

M30201

 

 

 

 

 

 

 

 

M30201

 

 

(Built-in feedback resistor)

 

 

(Built-in feedback resistor)

 

 

XIN

XOUT

 

 

XIN

 

 

 

 

XOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note)

 

 

 

 

 

 

 

 

Open

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Externally derived clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN

 

 

COUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vss

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive capacity setting. Use the value recommended by the maker of the oscillator.

When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XIN and XOUT following the instruction.

Figure 1.15. Examples of main clock

M30201

 

 

 

 

 

 

M30201

 

 

(Built-in feedback resistor)

 

 

(Built-in feedback resistor)

 

 

XCIN

XCOUT

 

 

XCIN

 

 

 

XCOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note)

 

 

 

 

 

 

 

 

Open

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCIN

 

 

CCOUT

 

Externally derived clock

 

 

 

 

 

 

 

 

 

Vcc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vss

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive capacity setting. Use the value recommended by the maker of the oscillator.

When the oscillation drive capacity is set to low, check that oscillation is stable. Also,

if the oscillator manufacturer's data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XCIN and XCOUT following the instruction.

Figure 1.16. Examples of sub-clock

17

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Clock Generating Circuit

Clock Control

Figure 1.17 shows the block diagram of the clock generating circuit.

 

 

XCIN

XCOUT

 

fC32

 

 

 

 

 

 

 

1/32

 

 

 

 

 

 

 

 

f1

 

 

 

 

CM04

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fAD

 

 

 

 

 

 

 

fC

 

 

 

 

 

 

Sub clock

 

 

 

f8

 

 

 

 

 

 

 

 

 

CM10 “1”

S

Q

 

 

 

 

f32

 

Write signal

 

 

 

 

 

 

 

XIN

XOUT

 

 

 

 

 

 

 

 

b

c

 

 

 

R

 

 

 

d CM07=0

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

Divider

 

 

 

 

 

 

 

 

 

 

Software reset

 

Main clock

 

 

 

fC

BCLK

 

 

 

 

 

 

 

CM05

CM02

 

 

 

CM07=1

 

 

 

 

 

 

Interrupt request level judgment output

S Q

WAIT instruction R

CM0i : Bit i at address 000616 CM1i : Bit i at address 000716 WDCi : Bit i at address 000F16

a

 

 

 

b

c

1/2

1/2

1/2

1/2

1/2

 

 

 

 

CM06=0

 

 

 

 

CM17,CM16=11

 

 

 

CM06=1

 

 

 

CM06=0

 

 

 

 

CM17,CM16=10

d

 

 

 

 

 

CM06=0

 

 

 

 

CM17,CM16=01

 

 

CM06=0

 

 

 

 

CM17,CM16=00

 

 

 

Details of divider

Figure 1.17. Clock generating circuit

18

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Clock Generating Circuit

The following paragraphs describes the clocks generated by the clock generating circuit.

(1) Main clock

The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation. After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716). Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(2) Sub-clock

The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset. After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be selected as BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure that the sub-clock oscillation has fully stabilized before switching.

After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616). Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit changes to “1” when shifting to stop mode and at a reset.

(3) BCLK

The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by 1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset.

The main clock division select bit 0(bit 6 at address 000616) changes to “1” when shifting from high- speed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(4) Peripheral function clock (f1, f8, f32, fAD)

The clock for the peripheral devices is derived from the main clock or by dividing it by 8 or 32. The peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function clock stop bit (bit 2 at 000616) to “1” and then executing a WAIT instruction.

(5) fC32

This clock is derived by dividing the sub-clock by 32. It is used for the timer A, timer B and timer X counts.

(6) fC

This clock has the same frequency as the sub-clock. It is used for BCLK and for the watchdog timer.

19

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Clock Generating Circuit

Figure 1.18 shows the system clock control registers 0 and 1.

System clock control register 0 (Note 1)

b7 b6 b5 b4 b3 b2 b1 b0

 

 

 

 

 

 

 

 

Symbol

Address

When reset

 

 

 

 

 

 

 

 

 

CM0

000616

4816

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit symbol

Bit name

Function

R W

 

 

 

 

 

 

 

 

CM00

Clock output function

b1 b0

 

 

 

 

 

 

 

 

 

0 0 : I/O port P54

 

 

 

 

 

 

 

 

 

 

select bit

 

 

 

 

 

 

 

 

 

 

0 1 : fC output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM01

 

1 0 : f8 output

 

 

 

 

 

 

 

 

 

 

 

1 1 : Clock divide counter output

 

 

 

 

 

 

 

 

 

CM02

WAIT peripheral function 0 : Do not stop peripheral function clock in wait mode

 

 

 

 

 

 

 

 

 

clock stop bit

1 : Stop peripheral function clock in wait mode (Note 8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM03

XCIN-XCOUT drive capacity

0 : LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

select bit (Note 2)

1 : HIGH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM04

Port XC select bit

0 : I/O port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 : XCIN-XCOUT generation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM05

Main clock (XIN-XOUT)

0 : On

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stop bit (Note 3,4,5)

1 : Off

 

 

 

 

 

 

 

 

 

CM06

Main clock division select

0 : CM16 and CM17 valid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit 0 (Note 7)

1 : Division by 8 mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM07

System clock select bit

0 : XIN, XOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note 6)

1 : XCIN, XCOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register. Note 2: Changes to “1” when shifting to stop mode and at a reset.

Note 3: This bit is used to stop the main clock when placing the device in a low-power mode. If you want to operate with XIN after exiting from the stop mode, set this bit to “0”. When operating with a self-excited oscillator, set the system clock select bit (CM07) to “1” before setting this bit to “1”.

Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.

Note 5: If this bit is set to “1”, XOUT turns “H”. The built-in feedback resistor remains being connected, so XIN turns pulled up to XOUT (“H”) via the feedback resistor.

Note 6: Set port Xc select bit (CM04) to “1” and stabilize the sub-clock oscillating before setting to this bit from “0” to “1”.

Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to “0” and stabilize the main clock oscillating before setting this bit from “1” to “0”.

Note 7: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

Note 8: fC32 is not included. Do not set to “1” when using low-speed or low power dissipation mode.

System clock control register 1 (Note 1)

b7

b6

b5

b4

b3

b2

b1

b0

 

 

 

 

 

 

0

 

0

0

 

Symbol

Address

When reset

 

 

 

 

 

 

CM1

000716

2016

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit symbol

Bit name

Function

R W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM10

All clock stop control bit

0 : Clock on

 

 

 

 

 

 

 

 

 

 

(Note 4)

1 : All clocks off (stop mode)

 

 

 

 

 

 

 

 

 

Reserved bit

Always set to “0”

 

 

 

 

 

 

 

 

 

Reserved bit

Always set to “0”

 

 

 

 

 

 

 

 

 

Reserved bit

Always set to “0”

 

 

 

 

 

 

 

 

 

Reserved bit

Always set to “0”

 

 

 

 

 

 

 

 

 

CM15

XIN-XOUT drive capacity

0 : LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

select bit (Note 2)

1 : HIGH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b7 b6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM16

Main clock division

0 0 : No division mode

 

 

 

 

 

 

 

 

 

 

select bit 1 (Note 3)

0 1 : Division by 2 mode

 

 

 

 

 

 

 

 

 

CM17

 

1 0 : Division by 4 mode

 

 

 

 

 

 

 

 

 

 

1 1 : Division by 16 mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.

Note 2: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is “0”. If “1”, division mode is fixed at 8. Note 4: If this bit is set to “1”, XOUT turns “H”, and the built-in feedback resistor is cut off. XCIN and XCOUT turn high-impedance state.

Figure 1.18. Clock control registers 0 and 1

20

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Clock Generating Circuit

Clock Output

The clock output function select bit allows you to choose the clock from f8, fc, or a divide-by-n clock that is output from the P54/CKOUT pin. The clock divide counter is an 8-bit counter whose count source is f32, and its divide ratio can be set in the range of 0016 to FF16. Figure 1.19 shows a block diagram of clock output.

Clock source selection

P54

f8

P54/CKOUT

fC

 

 

 

 

1/2

 

 

 

 

 

f32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock divided couter (8)

 

 

 

 

 

 

 

 

Division n+1 n=0016 to FF16

Example:

 

 

 

 

 

 

 

 

 

 

 

 

Reload register (8)

Address 038E16

When f(XIN)=10MHz

 

 

 

n=0716

:

approx. 19.5kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-order 8 bits

 

n=2616

:

approx. 4.0kHz

 

 

 

 

 

 

 

n=4D16

:

approx. 2.0kHz

 

 

 

 

 

 

n=9B16

:

approx. 1.0kHz

 

 

 

Data bus low-order bits

 

Figure 1.19. Block diagram of clock output

21

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ClStockp Mode,GeneratingWait ModeCircuit

Stop Mode

Writing “1” to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC remains above 2V.

Because the oscillation of BCLK, f1 to f32, fc, fc32, and fAD stops in stop mode, peripheral functions such as the A-D converter and watchdog timer do not function. However, timer A, timer B and timer X operate provided that the event counter mode is set to an external pulse, and UART0 functions provided an external clock is selected. Table 1.3 shows the status of the ports in stop mode.

Stop mode is cancelled by a hardware reset or an interrupt. If an interrupt is to be used to cancel stop mode, that interrupt must first have been enabled. If returning by an interrupt, that interrupt routine is executed. When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division select bit 0 (bit 6 at address 000616) is set to “1”. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

Table 1.3. Port status during stop mode

 

Pin

States

 

 

 

Port

 

Retains status before stop mode

 

 

 

CLKOUT

When fC selected

“H”

 

 

 

 

When f8, clock devided

Retains status before stop mode

 

counter output selected

 

 

 

 

Wait Mode

When a WAIT instruction is executed, BCLK stops and the microcomputer enters the wait mode. In this mode, oscillation continues but BCLK and watchdog timer stop. Writing “1” to the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions, allowing power dissipation to be reduced. However, peripheral function clock fC32 does not stop so that the peripherals using fC32 do not contribute to the power saving. When the MCU running in lowspeed or low power dissipation mode, do not enter WAIT mode with this bit set to “1”. Table 1.4 shows the status of the ports in wait mode.

Wait mode is cancelled by a hardware reset or interrupt. If an interrupt is used to cancel wait mode, the microcomputer restarts from the interrupt routine using as BCLK, the clock that had been selected when the WAIT instruction was executed.

Table 1.4. Port status during wait mode

 

 

Pin

States

 

 

 

 

 

 

 

Port

 

Retains status before wait mode

 

 

 

 

 

 

 

CLKOUT

When fC selected

Does not stop

 

 

 

 

 

 

 

 

When f8, clock devided

Does not stop when the WAIT

 

 

 

counter output selected

peripheral function clock stop bit is “0”.

 

 

 

 

When the WAIT peripheral function

 

 

 

 

clock stop bit is “1”,the status immedi-

 

 

 

 

ately prior to entering wait mode is

 

 

 

 

maintained.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ClockStatusGeneratingTransition ofCircuitBCLK

Status Transition of BCLK

Power dissipation can be reduced and low-voltage operation achieved by changing the count source for BCLK. Table 1.5 shows the operating modes corresponding to the settings of system clock control registers 0 and 1.

When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address 000616) changes to “1” when shifting from high-speed/medium-speed to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. The following shows the operational modes of BCLK.

(1) Division by 2 mode

The main clock is divided by 2 to obtain the BCLK.

(2) Division by 4 mode

The main clock is divided by 4 to obtain the BCLK.

(3) Division by 8 mode

The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4 mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption mode, make sure the sub-clock is oscillating stably.

(4) Division by 16 mode

The main clock is divided by 16 to obtain the BCLK.

(5) No-division mode

The main clock is divided by 1 to obtain the BCLK.

(6) Low-speed mode

fC is used as BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the subclock starts. Therefore, the program must be written to wait until this clock has stabilized immediately after powering up and after stop mode is cancelled.

(7) Low power dissipation mode

fC is the BCLK and the main clock is stopped.

Note : Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably. Allow a wait time in software for the oscillation to stabilize before switching over the clock.

Table 1.5. Operating modes dictated by settings of system clock control registers 0 and 1

 

CM17

CM16

CM07

CM06

CM05

CM04

Operating mode of BCLK

 

 

0

1

0

0

0

Invalid

Division by 2 mode

 

 

 

 

 

 

 

 

 

 

 

1

0

0

0

0

Invalid

Division by 4 mode

 

 

 

 

 

 

 

 

 

 

 

Invalid

Invalid

0

1

0

Invalid

Division by 8 mode

 

 

 

 

 

 

 

 

 

 

 

1

1

0

0

0

Invalid

Division by 16 mode

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

0

Invalid

No-division mode

 

 

 

 

 

 

 

 

 

 

 

Invalid

Invalid

1

Invalid

0

1

Low-speed mode

 

 

 

 

 

 

 

 

 

 

 

Invalid

Invalid

1

Invalid

1

1

Low power dissipation mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ClockPowerGeneratingSaving Circuit

Power Saving

There are three power save modes.

(1)Normal operating mode

High-speed mode

In this mode, one main clock cycle forms BCLK. The CPU operates on the BCLK. The peripheral functions operate on the clocks specified for each respective function.

• Medium-speed mode

In this mode, the main clock is divided into 2, 4, 8, or 16 to form BCLK. The CPU operates on the BCLK. The peripheral functions operated on the clocks specified for each respective function.

• Low-speed mode

In this mode, fc forms BCLK. The CPU operates on the fc clock. fc is the clock supplied by the subclock. The peripheral functions operate on the clocks specified for each respective function.

• Low power-dissipation mode

This mode is selected when the main clock is stopped from low-speed mode. The CPU operates on the fc clock. fc is the clock supplied by the subclock. Only the peripheral functions for which the subclock was selected as the count source continue to run.

(2) Wait mode

CPU operation is halted in this mode. The oscillator continues to run.

(3) Stop mode

All oscillators stop in this mode. The CPU and internal peripheral functions all stop. Of all 3 power saving modes, power savings are greatest in this mode.

Figure 1.20 shows the transition between each of the three modes, (1), (2), and (3).

24

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PowerClock GeneratingSaving Circuit

Transition of stop mode, wait mode

Reset

All oscillators stopped

CM10 = “1”

Stop mode

Interrupt

All oscillators stopped Interrupt

Stop mode

CM10 = “1”

All oscillators stopped

CM10 = “1”

Stop mode

Interrupt

Transition of normal mode

 

 

 

 

 

 

 

WAIT

 

CPU operation stopped

 

 

 

 

 

 

Medium-speed mode

 

instruction

 

Wait mode

 

 

 

 

(divided-by-8 mode)

 

 

 

 

 

Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WAIT

 

CPU operation stopped

 

 

 

 

 

 

High-speed/medium-

 

instruction

 

Wait mode

 

 

 

 

 

speed mode

 

 

 

 

 

 

Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WAIT

 

CPU operation stopped

 

 

 

 

 

 

Low-speed/low power

 

instruction

 

Wait mode

 

 

 

 

dissipation mode

 

Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal mode

 

 

 

 

 

(Refer to the following for the transition of normal mode.)

Main clock is oscillating Sub clock is stopped

Medium-speed mode (divided-by-8 mode)

CM06 = “1”

BCLK : f(XIN)/8

 

CM07 = “0” CM06 = “1”

Main clock is oscillating

CM04 = “0”

 

CM04 = “1”

 

 

(Notes 1, 3)

Sub clock is oscillating

 

 

 

 

 

 

High-speed mode

Medium-speed mode

(divided-by-2 mode)

BCLK : f(XIN)

BCLK : f(XIN)/2

CM07 = “0” CM06 = “0”

CM07 = “0” CM06 = “0”

CM17 = “0” CM16 = “0”

CM17 = “0” CM16 = “1”

Medium-speed mode

 

Medium-speed mode

(divided-by-4 mode)

 

(divided-by-16 mode)

BCLK : f(XIN)/4

 

BCLK : f(XIN)/16

CM07 = “0” CM06 = “0”

 

CM07 = “0” CM06 = “0”

CM17 = “1” CM16 = “0”

 

CM17 = “1” CM16 = “1”

CM04 = “0”

 

Main clock is oscillating

 

 

 

Sub clock is stopped

Medium-speed mode (divided-by-8 mode)

BCLK : f(XIN)/8

CM07 = “0”

CM06 = “1”

CM04 = “1”

High-speed mode

Medium-speed mode

(divided-by-2 mode)

CM07 = “0” (Note 1)

CM06 = “1”

CM04 = “0”

Main clock is oscillating Sub clock is oscillating

Low-speed mode

CM07 = “0”

(Note 1, 3)

BCLK : f(XCIN)

CM07 = “1” CM07 = “1”

(Note 2)

CM05 = “0”

CM05 = “1”

Main clock is stopped

Sub clock is oscillating

Low power dissipation mode

CM06 = “0” (Notes 1,3)

BCLK : f(XIN) CM07 = “0” CM06 = “0” CM17 = “0” CM16 = “0”

Medium-speed mode (divided-by-4 mode)

BCLK : f(XIN)/2 CM07 = “0” CM06 = “0” CM17 = “0” CM16 = “1”

Medium-speed mode (divided-by-16 mode)

CM07 = “1” (Note 2)

CM05 = “1”

BCLK : f(XCIN)

 

 

CM07 = “1”

CM07 = “0” (Note 1)

 

CM06 = “0” (Note 3)

 

CM04 = “1”

 

BCLK : f(XIN)/4 CM07 = “0” CM06 = “0” CM17 = “1” CM16 = “0”

BCLK : f(XIN)/16 CM07 = “0” CM06 = “0” CM17 = “1” CM16 = “1”

Note 1: Switch clock after oscillation of main clock is sufficiently stable.

Note 2: Switch clock after oscillation of sub clock is sufficiently stable.

Note 3: Change CM06 after changing CM17 and CM16.

Note 4: Transit in accordance with arrow.

Figure 1.20. Clock transition

25

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PrClocktectionGenerating Circuit

Protection

The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 1.21 shows the protect register. The values in the processor mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716) and port P4 direction register (address 03EA16) can only be changed when the respective bit in the protect register is set to “1”. Therefore, important outputs can be allocated to port P4.

If, after “1” (write-enabled) has been written to the port P4 direction register write-enable bit (bit 2 at address 000A16), a value is written to any address, the bit automatically reverts to “0” (write-inhibited). However, the system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and 1 write-enable bit (bit 1 at 000A16) do not automatically return to “0” after a value has been written to an address. The program must therefore be written to return these bits to “0”.

Protect register

b7 b6 b5 b4 b3 b2 b1 b0

 

 

 

 

 

 

 

 

Symbol

Address

When reset

 

 

 

 

 

 

 

 

PRCR

000A16

XXXXX0002

Bit symbol

Bit name

Enables writing to system clock PRC0 control registers 0 and 1 (addresses

000616 and 000716)

Enables writing to processor mode PRC1 registers 0 and 1 (addresses 000416

and 000516)

Function

R W

 

 

0 : Write-inhibited

1 : Write-enabled

0 : Write-inhibited

1 : Write-enabled

PRC2

Enables writing to port P4 direction

0

: Write-inhibited

register (address 03EA16) (Note)

1

: Write-enabled

 

Nothing is assigned.

In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.

Note: Writing a value to an address after “1” is written to this bit returns the bit

to “0” . Other bits do not automatically return to “0” and they must therefore be reset by the program

Figure 1.21. Protect register

26

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Interrupts

Overview of Interrupt

Type of Interrupts

Figure 1.22 lists the types of interrupts.

 

 

 

 

 

 

 

 

 

Undefined instruction (UND instruction)

 

 

Software

 

 

 

 

 

 

Overflow (INTO instruction)

 

 

 

 

 

 

 

 

BRK instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INT instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________

 

 

 

 

 

 

 

 

DBC

 

 

 

 

 

 

Special

 

Watchdog timer

 

 

 

 

 

 

 

 

 

 

 

 

 

Single step

 

 

 

 

 

 

 

 

 

 

Hardware

 

 

 

Address matched

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral I/O*1

 

 

*1 Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.

Figure 1.22. Classification of interrupts

• Maskable interrupt

: An interrupt which can be enabled (disabled) by the interrupt enable flag (I

 

flag) or whose interrupt priority can be changed by priority level.

• Non-maskable interrupt

: An interrupt which cannot be enabled (disabled) by the interrupt enable flag

 

(I flag) or whose interrupt priority cannot be changed by priority level.

27

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Interrupts

Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

• Undefined instruction interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

• Overflow interrupt

An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to “1”. The following are instructions whose O flag changes by arithmetic:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

• BRK interrupt

A BRK interrupt occurs when executing the BRK instruction.

• INT interrupt

An INT interrupt occurs when assigning one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/O interrupt does.

The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is involved.

So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to “0” and select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift.

28

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Interrupts

Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are non-maskable interrupts.

• Reset

Reset occurs if an “L” is input to the RESET pin.

• DBC interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances.

Watchdog timer interrupt

Generated by the watchdog timer.

Single-step interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug flag (D flag) set to “1”, a single-step interrupt occurs after one instruction is executed.

• Address match interrupt

An address match interrupt occurs immediately before the instruction held in the address indicated by the address match interrupt register is executed with the address match interrupt enable bit set to “1”. If an address other than the first address of the instruction in the address match interrupt register is set, no address match interrupt occurs.

(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of built-in peripheral functions. The interrupt vector table is the same as the one for software interrupt numbers 0 through 31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.

• Key-input interrupt

___

A key-input interrupt occurs if an “L” is input to the KI pin.

• A-D conversion interrupt

This is an interrupt that the A-D converter generates.

• UART0 and UART1 transmission interrupt

These are interrupts that the serial I/O transmission generates.

• UART0 and UART1 reception interrupt

These are interrupts that the serial I/O reception generates.

• Timer A0 interrupt

This is an interrupts that timer A0 generates.

• Timer B0 and timer B2 interrupt

These are interrupts that timer B generates.

• Timer X0 to timer X2 interrupt

These are interrupts that timer X generates.

________ ________

• INT0 and INT1 interrupt

______

______

An INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin.

29

Mitsubishi microcomputers

M30201 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Interrupts

Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 1.23 shows format for specifying interrupt vector addresses.

Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.

Vector address + 0 Vector address + 1 Vector address + 2 Vector address + 3

MSB

LSB

Low address

 

 

 

 

 

Mid address

 

 

 

 

0 0 0 0

High address

 

 

 

 

0 0 0 0

0 0 0 0

 

 

 

 

Figure 1.23. Format for specifying interrupt vector addresses

• Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 1.6 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Table 1.6. Interrupt and fixed vector address

Interrupt source

Vector table addresses

Remarks

 

Address (L) to address (H)

 

 

 

 

Undefined instruction

FFFDC16 to FFFDF16

Interrupt on UND instruction

 

 

 

Overflow

FFFE016 to FFFE316

Interrupt on INTO instruction

 

 

 

BRK instruction

FFFE416 to FFFE716

If the vector is filled with FF16, program execution starts from

 

 

the address shown by the vector in the variable vector table

 

 

 

Address match

FFFE816 to FFFEB16

There is an address-matching interrupt enable bit

 

 

 

Single step (Note)

FFFEC16 to FFFEF16

Do not use

 

 

 

Watchdog timer

FFFF016 to FFFF316

 

________

FFFF416 to FFFF716

Do not use

DBC (Note)

 

 

 

-

FFFF816 to FFFFB16

-

 

 

 

Reset

FFFFC16 to FFFFF16

 

 

 

 

Note: Interrupts used for debugging purposes only.

30

Loading...
+ 141 hidden pages