Adobe, Acrobat, and Reader are trademarks of Adobe Systems Incorporated. Excel, Microsoft,
Windows, and Windows Vista are trademarks of Microsoft Corporation. EvaGreen is a trademark of
Biotium, Inc. Bio-Rad Laboratories, Inc., is licensed by Biotium, Inc., to sell reagents containing
EvaGreen dye for use in real-time PCR, for research purposes only. FAM, HEX, VIC, and ROX are
trademarks of Applera Corporation. SYBR® is a trademark of Life Technologies Corporation. Bio-Rad
Laboratories, Inc. is licensed by Life Technologies Corporation to sell reagents containing SYBR® Green
for use in real-time PCR, for research purposes only.
LICENSE NOTICE TO PURCHASER
Purchase of this instrument conveys a limited non-transferable immunity from suit for the purchaser's own internal
research and development and for use in human in vitro diagnostics and all other applied fields under one or more of
U.S. Patents Nos. 5,656,493, 5,333,675, 5,475,610 (claims 1, 44, 158, 160-163 and 167 only), and 6,703,236 (claims
1-7 only), or corresponding claims in their non-U.S. counterparts, owned by Applera Corporation. No right is
conveyed expressly, by implication or by estoppel under any other patent claim, such as claims to apparatus,
reagents, kits, or methods such as 5' nuclease methods. Further information on purchasing licenses may be
obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City,
California 94404, USA.
Bio-Rad’s real-time thermal cyclers are licensed real-time thermal cyclers under Applera’s United States Patent No.
6,814,934 B1 for use in research, human in vitro diagnostics, and all other fields except veterinary diagnostics.
This product is covered by one or more of the following U.S. patents, their foreign counterparts, or their foreign
counterparts owned by Eppendorf AG: U.S. Patent Nos. 6,767, 512 and 7,074,367.
Bio-Rad Resources
Table 1 lists Bio-Rad resources and how to locate what you need.
Table 1. Bio-Rad resources
ResourceHow to Contact
Local Bio-Rad Laboratories
representatives
Technical notes and literature Go to the Bio-Rad website (www.bio-rad.com). Type a
Technical specialistsBio-Rad’s Technical Support department is staffed with
Find local information and contacts on the Bio-Rad website
by selecting your country on the home page
(www.bio-rad.com). Find the nearest international office
listed on the back of this manual.
search term in the Search box and select Documents tab to
find links to technical notes, manuals, and other literature.
experienced scientists to provide customers with practical
and expert solutions. To find local technical support on the
phone, contact your nearest Bio-Rad office. For technical
support in the United States and Canada, call 1-800-4246723 (toll-free phone), and select the technical support
option.
Writing Conventions Used in this Manual
This manual uses the writing conventions listed in Table 2.
Table 2. Conventions used in this manual
ConventionMeaning
TIP: Provides helpful information and instructions, including information
explained in further detail elsewhere in this manual.
NOTE:Provides important information, including information explained in
further detail elsewhere in this manual.
WARNING! Explains very important information about something that might
damage the researcher, damage an instrument, or cause data loss.
X > YSelect X and then select Y from a toolbar, menu or software window.
For information about safety labels used in this manual and on the MiniOpticon system, see, “Safety and
Regulatory Compliance” on page iii.
ii
MiniOpticon Instruction Manual
Safety and Regulatory Compliance
For safe operation of the MiniOpticon system, we strongly recommend that you follow the safety
specifications listed in this section and throughout this manual.
Safety Warning Labels
Warning labels posted on the instrument and in this manual warn you about sources of injury or harm.
Refer to Table 3 to review the meaning of each safety warning label.
Table 3. Meaning of safety warning labels
CAUTION: Biohazard! This symbol identifies components that may become contaminated
with biohazardous material.
CAUTION: Risk of danger! This symbol identifies components that pose a risk of personal
injury or damage to the instrument if improperly handled. Wherever this symbol appears,
consult the manual for further information before proceeding.
CAUTION: Hot surface! This symbol identifies components that pose a risk of personal
injury due to excessive heat if improperly handled.
Instrument Safety Warnings
The warning labels shown in Table 4 also display on the instrument, and refer directly to the safe use of
the MiniOpticon real-time PCR detection system.
Table 4. Instrument Safety Warning Labels
IconMeaning
Warning about risk of harm to body or equipment.
Operating the MiniOpticon real-time PCR detection system before reading this manual can
constitute a personal injury hazard. For safe use, do not operate this instrument in any
manner unspecified in this manual. Only qualified laboratory personnel trained in the safe
use of electrical equipment should operate this instrument. Always handle all components
of the system with care, and with clean, dry hands.
CAUTION: Biohazard! This symbol identifies components that may become contaminated
with biohazardous material.
Warning about risk of burning.
A thermal cycler generates enough heat to cause serious burns. Wear safety goggles or
other eye protection at all times during operation. Always allow the sample block to return
to idle temperature before opening the lid and removing samples. Always allow maximum
clearance to avoid accidental skin burns.
Warning about risk of explosion.
The sample blocks can become hot enough during the course of normal operation to cause
liquids to boil and explode.
iii
Safe Use Specifications and Compliance
Table 5 lists the safe use specifications for the MiniOpticon system. Shielded cables (supplied) must be
used with this unit to ensure compliance with the Class A FCC limits.
Table 5. Safe Use Specifications
Safe Use RequirementsSpecifications
Indoor use. The system will operate safely when the ambient
temperature is 5 — 40oC and will meet performance
Temperature
AltitudeUp to 2,000 meters above sea level
specifications when the ambient temperature is 15—31oC
with a maximum relative humidity of 80% for temperatures
up to 31oC, decreasing linearly to 50% relative humidity at
40oC
Electrical supply
Installation categories (Overvoltage
Categories) II
Pollution degree 2
100—240 VAC, 50—60 Hz, 400W. Main supply voltage
fluctuations not to exceed +/- 10% of nominal voltage
REGULATORY COMPLIANCE
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesirable operation.
This device has been tested and found to comply with the EMC standards for emissions and
susceptibility established by the European Union at time of manufacture.
This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus
set out in the Radio Interference Regulations of the Canadian Department of Communications.
LE PRESENT APPAREIL NUMERIQUE N’EMET PAS DE BRUITS RADIOELEC¬TRIQUES DEPASSANT
LES LIMITES APPLICABLES AUX APPAREILS NUMERIQUES DE CLASS A PRESCRITES DANS LE
REGLEMENT SUR LE BROUILLAGE RADIOELECTRIQUE EDICTE PAR LE MINISTERE DES
COMMUNICATIONS DU CANADA.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the
user will be required to correct the interference at his own expense.
FCC WARNING
NOTE: Changes or modifications to this unit not expressly approved by the party responsible
for compliance could void the user’s authority to operate the equipment.
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant
to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in which case the user will be
required to correct the interference at his own expense.
iv
MiniOpticon Instruction Manual
Although this design of instrument has been tested and found to comply with Part 15, Subpart B of the
FCC Rules for a Class A digital device, please note that this compliance is voluntary, for the instrument
qualifies as an “Exempted device” under 47 CFR § 15.103(c), in regard to the cited FCC regulations in
effect at the time of manufacture.
Hazards
The MiniOpticon real-time PCR detection system is designed to operate safely when used in the manner
prescribed by the manufacturer. If the MiniOpticon system or any of its associated components are used
in a manner not specified by the manufacturer, the inherent protection provided by the instrument may be
impaired. Bio-Rad Laboratories, Inc. is not liable for any injury or damage caused by the use of this
equipment in any unspecified manner, or by modifications to the instrument not performed by Bio-Rad or
authorized agent. Service of the MiniOpticon system should be performed only by Bio-Rad personnel.
Biohazards
The MiniOpticon system is a laboratory product. However, if biohazardous samples are present, adhere to
the following guidelines and comply with any local guidelines specific to your laboratory and location.
PRECAUTIONS
• Always wear laboratory gloves, coats, and safety glasses with side shields or goggles
• Keep your hands away from your mouth, nose and eyes
• Completely protect any cut or abrasion before working with potentially infectious materials
• Wash your hands thoroughly with soap and water after working with any potentially infectious
material before leaving the laboratory
• Remove wristwatches and jewelry before working at the bench
• Store all infectious or potentially infectious material in unbreakable, leak-proof containers
• Before leaving the laboratory, remove protective clothing
• Do not use a gloved hand to write, answer the telephone, turn on a light switch, or touch
anything that other people may touch without gloves
• Change gloves frequently. Remove gloves immediately when they are visibly contaminated
• Do not expose materials that cannot be properly decontaminated to potentially infectious
material
• Upon completion of the operation involving biohazardous material, decontaminate the work
area with an appropriate disinfectant (for example, a 1:10 dilution of household bleach)
• No biohazardous substances are exhausted during normal operations of this instrument
SURFACE DECONTAMINATION
WARNING! To prevent electrical shock, always turn off and unplug the instrument prior to performing
decontamination procedures.
The following areas can be cleaned with any hospital-grade bactericide, virucide, or fungicide
disinfectant:
• Outer lid and chassis
• Inner reaction block surface and reaction block wells
• Control panel and display
v
To prepare and apply the disinfectant, refer to the instructions provided by the product manufacturer.
Always rinse the reaction block and reaction block wells several time with water after applying a
disinfectant. Thoroughly dry the reaction block and reaction block wells after rinsing with water.
WARNING! Do not use abrasive or corrosive detergents or strong alkaline solutions. These agents can
scratch surfaces and damage the reaction block, resulting in loss of precise thermal control.
DISPOSAL OF BIOHAZARDOUS MATERIAL
The MiniOpticon system contains no potentially hazardous chemical materials. Dispose of the following
potentially contaminated materials in accordance with laboratory local, regional and national regulations:
• Clinical samples
• Reagents
• Used reaction vessels or other consumables that may be contaminated
Chemical Hazards
The MiniOpticon system contains no potentially hazardous chemical materials.
Explosive or Flammability Hazards
The MiniOpticon system poses no uncommon hazard related to flammability or explosion when used in a
proper manner as specified by Bio-Rad Laboratories.
Electrical Hazards
The MiniOpticon system poses no uncommon electrical hazard to operators if installed and operated
properly without physical modification and connected to a power source of proper specification.
Transport
Before moving or shipping the MiniOpticon system, decontamination procedures must be performed.
Always move or ship the MiniOpticon system with the supplied packaging materials that will protect the
instrument from damage. If appropriate containers cannot be found, contact your local Bio-Rad office.
Storage
The MiniOpticon system can be stored under the following conditions:
• Temperature range: –20 to 60oC
• Relative humidity: maximum 80%
Disposal
The MiniOpticon real-time PCR detection system contains electrical or electrical materials; it should be
disposed of as unsorted waste and must be collected separately according to the European Union
Directive 2002/96/CE on waste and electronic equipment —WEEE Directive. Before disposal, contact
your local Bio-Rad representative for country-specific instructions.
Read this chapter for information about setting up the MiniOpticon™ real-time PCR detection
system:
• System overview (page 1)
• System requirements (page 3)
• Setting up the system (page 4)
• Installing CFX Manager™ software (page 4)
• Running experiments (page 8)
System Overview
The MiniOpticon system uses an array of 48 light-emitting diodes (LEDs) to sequentially
illuminate each of the 48 wells in the cycler block. The LEDs efficiently excite fluorescent dyes
with absorption spectra in the 470–505 nm range. The MiniOpticon system uses two filtered
photodiodes for fluorescence detection. The first channel is optimized to detect dyes with
emission spectra in the 523–543 nm range, such as SYBR® Green I and FAM. The second
channel is optimized for dyes with emission spectra of 540–700 nm. The MiniOpticon detector
is calibrated at the factory and requires no further calibration before use.
The MiniOpticon system (Figure 1) includes:
• Optical tower. This tower includes an optical system to collect fluorescent data
NOTE: The serial number of the MiniOpticon system is located on a sticker on the
back of the optical tower.
1
System Installation
• MJ Mini™ thermal cycler base. The MiniOpticon system includes a thermal cycler
block that rapidly heats and cools samples.
Figure 1. Front view of the MiniOpticon system.
When open, the MiniOpticon system includes these features:
• Inner lid with heater plate. The heater lid maintains temperature on the top of the
reaction vessel to prevent sample evaporation. Avoid touching or otherwise
contaminating the heater plate. Never poke anything through the holes, the apical
system can be damaged.
• Block. Load samples in this block before the run
WARNING! Prevent contamination of the instrument by spills, and never run a
reaction with an open or leaking sample lid. For information about general cleaning
and maintenance of the instrument, see “Instrument Maintenance” (page 127).
WARNING! Avoid touching the inner lid or block: These surfaces can be hot.
The back panel of the MiniOpticon system includes these features (Figure 2):
• Power switch. Press the power switch to turn the power on
• Power input. Plug in the power cord here
2
MiniOpticon Instruction Manual
• USB connections. Use these ports to connect the MiniOpticon system to a computer
Figure 2. Back panel of MiniOpticon System.
WARNING! Avoid contact with the back panel during operation.
System Requirements
To operate the MiniOpticon system, use the following power sources and cables:
• Input power. 100—240 VAC, 50—60 Hz
• Indoor use. Ambient temperature of 15—31oC. Relative humidity maximum of 80%
(non-condensing)
• Air Supply. The MiniOpticon system requires a constant supply of air that is 31°C or
cooler in order to remove heat from the heat sink. Air is taken in from the lower vents
located on the sides and front of the instrument and exhausted from the fan in the back.
If the air supply is inadequate or too hot, the instrument can overheat, causing
performance problems and even automatic shutdowns
WARNING! Do not place the MiniOpticon system on a lab bench covered by bench
paper. The bench paper can prohibit sufficient air circulation.
• USB cable. Control the MiniOpticon system using only the USB cable provided from
Bio-Rad. This cable is sufficiently shielded to help prevent data loss
3
System Installation
Setting Up the system
The MiniOpticon system should be installed on a clean, dry, level surface with sufficient cool
airflow to provide adequate air supply to run properly. The MiniOpticon system requires a
location with power outlets to accommodate the MiniOpticon system and the computer.
NOTE: Only one MiniOpticon system should be connected to a computer at one
time.
Installing the MiniOpticon System
To install the MiniOpticon system:
1. Your MiniOpticon system shipment includes the components listed below. Remove all
packing materials and store them for future use. If any items are missing or damaged,
contact your local Bio-Rad office.
• MiniOpticon system
• USB cable
• CFX ManagerTM software installation CD
• Instruction manual
• CFX Manager software quick guides for protocol, plate, data analysis, and gene
expression analysis
2. Firmly grasp the instrument from beneath to support the weight of the cycler and the
optical tower. Carefully lift the instrument out of the shipping box.
WARNING! Do not lift the instrument by the green handle.
3. Insert the power cord plug into its jack at the back of the instrument.
4. Plug the power cord into a standard 110 V or 220 V electrical outlet. The MiniOpticon
system will accept 220 V automatically. Avoid plugging the MiniOpticon system into a
power outlet that is already being used for other laboratory equipment
NOTE: Turn the system on only after installing CFX Manager software. The power
switch is on the back right-hand side of the MiniOpticon system.
Installing CFX Manager Software
CFX Manager software is run on a personal computer (PC) with either the Windows XP,
Windows Vista, or Windows 7 operating system and is required to run and analyze real-time
PCR data from the MiniOpticon system. Table 6 lists the computer system requirements for
the software.
Table 6. Computer requirements for CFX Manager software.
SystemMinimumRecommended
Operating system Windows XP Professional SP2 and
above, Windows Vista, or Windows
7 Home Premium and above.
DriveCD-ROM driveCD-RW drive
Hard drive10 GB20 GB
Processor speed2.0 GHz2.0 GHz
RAM1 GB RAM (2 GB for Windows
Vista)
Screen resolution1024 x 768 with true-color mode 1280 x 1024 with true-color mode
Windows XP Professional SP3 or
Windows 7.
2 GB RAM
4
MiniOpticon Instruction Manual
Table 6. Computer requirements for CFX Manager software. (continued)
SystemMinimumRecommended
USBUSB 2.0 Hi-Speed portUSB 2.0 Hi-Speed port
WARNING! Running a MiniOpticon system with CFX Manager software on a PC
computer with a Windows 64-bit operating system is not supported due to
incompatible USB drivers. A PC computer with a 64-bit processor (like Intel) on a
32-bit Windows operating system is supported.
WARNING! CFX Manager software can be installed on the same computer that
already has Opticon MonitorTM version 3.1 installed. There may be conflicts
controlling the instrument if both software packages are opened at the same time
with the MiniOpticon turned on.
WARNING! If the computer with the CFX Manager software is running a virus scan
program, make sure scans are performed when the MiniOpticon system is idle.
To install the CFX Manager software:
1. Log in to the computer with administrative privileges, the software must be installed on
the computer by a user with administrative privileges.
2. Place the CFX Manager software CD in the computer’s CD drive.
3. The software launch page should appear automatically. Double-click Install Software on
the software launch page (Figure 3).
Figure 3. Software installation screen.
TIP: Click the Documentation button to find searchable PDF copies of instrument
manuals and other documentation.
4. Accept the terms in the license agreement to continue.
5. Follow the instructions on the screen to complete the installation. When completed, the
Bio-Rad CFX manager software icon will appear on the desktop of the computer.
5
System Installation
6. If the launch page does not appear automatically, double-click on (CD drive):\Bio-Rad CFX, then open and follow instructions in the Readme.txt file.
NOTE: For Windows Vista operating system, you will be prompted to install device
software for Jungo during the CFX Manager software installation. Click Install to
proceed. If prompted with the warning “Windows can’t verify the publisher of this
driver software,” Click Install this driver software anyway to proceed.
Installing MiniOpticon System Drivers
The MiniOpticon system drivers must be installed on the computer in order to properly
communicate with the device and perform real-time PCR experiments. The drivers are
installed automatically during CFX Manager software installation for computers running
Windows Vista operating system. Drivers must be installed manually for computers running
Windows XP operating system.
NOTE: For Windows XP operating system, three drivers must be installed: Bio-Rad
Thermal Cycler (EEPROM Empty), Bio-Rad Mini Optical Module and Bio-Rad Mini
Cycler. The driver installation package provides instructions on how to install the
drivers correctly.
To install the system drivers for Windows XP:
1. Connect the MiniOpticon system to the computer by plugging a USB cable (square end)
into the USB 2.0 port located on the back of the MiniOpticon system, and then
connecting the cable (flat end) into the USB 2.0 port located on the computer.
2. Turn the MiniOpticon system on by pressing the switch on the back of the system so that
the side marked “I” is depressed.
3. Follow the instructions in the Found New Hardware Wizard that launches after the
instrument is first detected by the computer.
4. On the first screen, select Yes, this time only to instruct the Windows operating system
to connect to Windows Update to search for software (Figure 4). Click Next.
Figure 4. Found New Hardware Wizard.
6
MiniOpticon Instruction Manual
5. Select Install the software automatically to install the Bio-Rad Thermal Cycler
(EEPROM Empty) driver. Click Next (Figure 5).
Figure 5. Software (Driver) installation screen.
6. A window will appear indicating the driver being installed has not passed Windows Logo
testing to verify its compatibility with Windows XP. Click Continue Anyway to proceed.
7. Click Finish (Figure 6) at the software installation completion screen when the driver is
installed.
Figure 6. Finished Driver installation screen.
8. Repeat the driver installation for the Bio-Rad Mini Optical Module and the Bio-Rad
MiniCycler drivers.
7
System Installation
Running Experiments
Be sure that the MiniOpticon system is connected to the computer and turned on before
launching the CFX Manager software. The green protocol-indicator light on the front of the
MiniOpticon detector is illuminated only during a protocol run.
WARNING! Remove the shipping plate from the thermal cycler block to operate.
Loading the Block
1. To access the MiniOpticon system’s block, turn the front green handle counter-clockwise
until it snaps into the open position. Rotate the entire tower outward, to the left.
2. Place the 48-well, 0.2 ml microplate, or tube strips with sealed lids in the block. Check
that the tubes are completely sealed to prevent leakage. For optimal results, load sample
volumes of 15–30 µl.
3. To ensure uniform heating and cooling of samples, sample vessels must be in complete
contact with the sample holder. Adequate contact is ensured by:
• Verifying the sample holder is clean before loading samples
• Firmly pressing tubes, or a 48-well microplate into the sample holder
TIP: Spin down reactions in tubes or microplates before loading into the thermal
cycler block. Air bubbles in samples, or liquid on the plate deck, can affect results.
• Bio-Rad strongly recommends that oil not be used to thermally couple sample
vessels to the block
NOTE: Do not open the MiniOpticon detector while the green protocol-indicator
light is illuminated. Opening the door, particularly during a scan of the plate, may
interrupt the software’s control of the protocol.
4. To close the instrument, rotate the tower back into the closed position and then turn the
green handle clockwise (Figure 1). Both the tower and the handle have spring
mechanisms that facilitate closure.
NOTE: For accurate data analysis, check that the orientation of reactions in the
block is exactly the same as the orientation of the well contents in the software
Plate tab (see “Plate Tab” on page 23). If needed, edit the well contents before,
during, or after the run.
WARNING! When running the MiniOpticon system, always balance the tube strips
or cut microplates in the wells. For example, if you run one tube strip on the left
side of the block, run an empty tube strip (with caps) on the right side of the block
to balance the pressure applied by the heated lid.
WARNING! Be sure that nothing is blocking the lid when it closes. Although there
is a safety mechanism to prevent the lid from closing if it senses an obstruction, do
not place anything in the way of the closing lid.
Recommended Plastic Consumables
Run only white-welled 48-well plates or white-welled strip tubes in the MiniOpticon system.
For optimal results, Bio-Rad provides the following consumables for the MiniOpticon system
(catalog numbers are provided in bold):
• MLL-4851. Multiplate low-profile 48-well unskirted PCR plates, white color wells
• TLS-0851. Low-profile 8-tube strips, 0.2 ml, without caps, white color wells
• TCS-0803. Optical flat 8-cap strips, for 0.2 ml tubes and plates, ultraclear
8
MiniOpticon Instruction Manual
2CFX Manager™ Software
Read this chapter for information about getting started with CFX Manager software.
• Main software window (page 9)
• Startup Wizard (page 12)
• Detected Instruments Pane (page 13)
• Status Bar (page 13)
• Instrument Properties window (page 14)
• Master Mix Calculator (page 15)
• Scheduler (page 16)
Main Software Window
Features available in the main software window are provided in Figure 7.
Figure 7. The main software window.
9
CFX Manager™ Software
Menu Bar
The menu bar of the main software window provides the items listed in Table 7.
Table 7. Menu bar items in the main software window
Menu ItemCommandFunction
FileNewCreate a new protocol, plate, run, or Gene Study.
ViewApplication LogDisplay the application log for the software.
UserSelect UserOpen the Select User window to change software
OpenOpen existing files, including protocol (.prcl), plate
(.pltd), data (.pcrd), Gene Study (.mgxd), and
stand-alone run files (.zpcr).
Recent Data FilesView a list of the ten most recently viewed data
files, and select one to open in Data Analysis.
Repeat a runOpen the Run Setup window with the protocol and
plate from a completed run to quickly repeat the
run.
ExitExit the software program.
Run ReportsSelect a run report to review from a list.
Startup WizardOpen the Startup Wizard.
Run SetupOpen the Run Setup window.
Instrument SummaryOpen the Instrument Summary window.
Detected InstrumentsShow or hide the Detected Instruments pane.
ToolbarShow or hide the main software window toolbar.
Status BarShow or hide the main software window status
bar.
ShowOpen the Block Status window, application data
folder, user data folder, LIMS file folder, PrimePCR
folder, run history, or a window displaying the
properties of all connected instruments.
users.
Change PasswordChange your user password.
User PreferencesOpen the User Preferences window.
User AdministrationManage users in the User Administration window.
10
MiniOpticon Instruction Manual
Table 7. Menu bar items in the main software window (continued)
Menu ItemCommandFunction
ToolsSchedulerOpen the Scheduler to make reservations for
instrument use.
Master Mix CalculatorOpen the Master Mix Preparation calculator.
Protocol AutoWriterOpen the Protocol AutoWriter window to create a
new protocol.
Ta CalculatorOpen the Ta Calculator window to calculate the
annealing temperature of primers.
Dye Calibration WizardOpen the Dye Calibration window to calibrate an
instrument for a new fluorophore.
Reinstall Instrument
Drivers
Zip Data and Log FilesChoose and condense selected files in a zipped
OptionsConfigure software email settings.
WindowsCascadeArrange software windows on top of each other.
Tile VerticalArrange software windows from top to bottom.
Tile HorizontalArrange software windows from right to left.
Close AllClose all open software windows.
HelpContentsOpen the software Help for more information
IndexView the index in the software Help.
SearchSearch the software Help.
qPCR Applications &
Technologies Web Site
PCR Reagents Web Site View a website that lists Bio-Rad PCR and real-
PCR Plastic
Consumables Web Site
Software Web SiteView a website that lists Bio-Rad PCR and real-
Check For UpdatesCheck for software or instrument updates.
AboutOpen a window to see the software version.
Reinstall the drivers that control communication
with Bio-Rad real-time PCR systems
file for storage or to email.
about running PCR and real-time PCR.
Open a website to find information about real-time
PCR.
time PCR reagents.
View a website that lists Bio-Rad consumables for
PCR and real-time PCR runs.
time PCR amplification software.
Toolbar Buttons
Click a button in the toolbar of the main software window (Table 8) for quick access to
common software commands.
Table 8. Toolbar buttons in the main software window.
ButtonButton NameFunction
Open a Data File or
Gene Study
Open a browser window to locate a data file (*.pcrd
extension) and open it in the Data Analysis window or
a gene study file (.mgxd extension) open it in the Gene
Study window.
11
CFX Manager™ Software
Table 8. Toolbar buttons in the main software window. (continued)
ButtonButton NameFunction
SchedulerOpen the Scheduler to reserve a PCR instrument.
Master Mix CalculatorOpen the Master Mix Calculator window to set up
reaction mixes.
User-defined Run Setup Open the Run Setup window to set up a run (page 21).
PrimePCR Run SetupOpen the Run Setup window with the default
PrimePCR™ protocol and plate layout loaded based
on the instrument selected.
Startup WizardOpen the Startup Wizard that links you to common
software functions (page 12).
Startup Wizard
The Startup Wizard automatically appears when CFX Manager software is first opened. If it is
not shown, click the Startup Wizard button on the main software window toolbar.
Options in the Startup Wizard include the following:
• Run setup. Select the appropriate instrument in the pull-down list to ensure the default
plate settings match the instrument to be used
• User-defined. Set up the protocol and plate to begin a new run in the Run Setup
window (page 21)
• PrimePCR. Open the Run Setup window with the default PrimePCR protocol and
plate layout (for the selected instrument) loaded. PrimePCR plate layouts are
available only for 96- and 384-well plates.
• Repeat Run. Set up a run with the protocol and plate layout from a completed run. If
needed, you can edit the run before starting
• Analyze. Open a data file to analyze results from a single run (page 53) or a gene study
file for results from multiple gene expression runs (page 97)
12
Detected Instruments Pane
The connected instrument appears in the Detected Instruments pane (Figure 8). This list
shows each instrument as an icon named with the serial number (default). Right-click on the
instrument in the Detected Instruments pane to open the Instrument Properties window and
rename the instrument.
Figure 8. Instruments listed in the Detected Instruments pane.
Right-click on the instrument icon to select one of these options:
• View Status. Open the Run Details window to check the status of the selected
instrument block
• Flash Block Indicator. Flash the indicator LED on the instrument
• Rename. Change the name of the instrument
• Properties. Open the Instrument Properties window
• Collapse All. Collapse the list of instruments in the Detected Instruments pane
• Expand All. Expand the list of instruments in the Detected Instruments pane
MiniOpticon Instruction Manual
You can also control a block by clicking an instrument block icon in the Detected Instrument
pane and then clicking a button in the Selected Instrument pane (Figure 9).
• Click View Status to open the Run Details window to check the status of the
• Click View Summary to open the Instrument Summary window
Status Bar
Figure 9. Buttons at the bottom of the Detected Instrument pane.
selected instrument block
The left side of the status bar at the bottom of the main software window shows the current
status of the instruments. View the right side of the status bar to see the current user name,
date, and time. Click and drag the right corner of the status bar to resize the main window.
13
CFX Manager™ Software
Instrument Properties Window
To open the Instrument Properties window to view information about an instrument, right-click
on the instrument icon in the Detected Instruments pane (Figure 8). The window includes two
tabs (Figure 10):
• Properties. View serial numbers of the MiniOpticon system
• Calibrated Dyes. View the list of calibrated fluorophores
Figure 10. Instrument Properties window.
Properties Tab
The Properties tab displays important serial numbers for the connected instrument. The
firmware versions are also displayed. The default name for an instrument is the MiniOpticon
serial number, which appears in many locations in the software.
Calibrated Dyes Tab
Open the Calibrated Dyes tab (Figure 11) to view the list of calibrated fluorophores and plates
for the selected instrument. Click an Info button to see detailed information about a
calibration.
14
Figure 11. Calibrated Dyes tab in the Instrument Properties window.
Master Mix Calculator
To open the Master Mix Calculator, click the Master Mix Calculator button in the toolbar
(Figure 12) or select Tools > Master Mix Calculator from the main window.
MiniOpticon Instruction Manual
Figure 12. Master Mix Calculator window.
To set up a reaction master mix:
1. Select either SYBR
2. Edit the default target name by highlighting the target name in the dropdown target list,
entering a new target name in the Target box and pressing Enter on the keyboard.
3. Enter the starting and final concentrations for your forward and reverse primers and any
probes.
4. Additional targets can be added by clicking the New button. To delete targets, select the
target using the dropdown target list and click Remove.
®
Green/EvaGreen or Probes detection method.
15
CFX Manager™ Software
WARNING! Removing a target from the target list also removes it from any master
mixes calculations it is used in.
5. Adjust the Supermix concentration, reaction volume per well, excess reaction volume,
the volume of template that will be added to each well, and the number of reactions that
will be run.
6. Check the checkbox next to the target (only one can be chosen per SYBR® Green/
EvaGreen master mix) or targets (for probe multiplex reactions). The calculated volumes
of the components required for the master mix are listed.
7. To print a master mix calculations table click Print.
8. Click the Set as Default button to set the quantities inputed in the Target and Master Mix
Setup sections as new defaults.
9. To save the contents of the Master Mix Calculator window, click OK.
Scheduler
Use the Scheduler to reserve access to an instrument(s). To access the Scheduler click the
Scheduler button in the toolbar (Figure 13) or select Tools > Scheduler from the main window.
16
Figure 13. Scheduler Main Window.
MiniOpticon Instruction Manual
To Set up the Scheduler
1. The first time Scheduler is opened, any User, Instrument, and SMTP email settings will
be imported from CFX Manager software.
2. To add a new instrument, select View > Instrument Details or click the Manage Instruments button below the Instruments list (Figure 13) in the scheduler main window.
In the Instrument Details window, enter the instrument name in the Name column.
Choose a model from the drop down menu or leave it blank to schedule instrument types
not listed. Entering base and optical head serial numbers is optional.
3. To add a new user, select View > User Details or click the Manage Users button below
the Users list. In the User Details window (Figure 14), enter the new user name in the
Name column. An e-mail address can be entered so that optional electronic notifications
can be sent.
NOTE: The SMTP server needs to be set up in order for electronic notifications to be
enabled.
Figure 14. Scheduler User Details Window.
4. To remove an instrument or user, open the appropriate details window and check the
corresponding box in the Delete column.
WARNING! All events associated with this instrument or user will be removed from
the calendar.
17
CFX Manager™ Software
Scheduler Menu Bar
The Scheduler menu bar contents are listed in Table 9.
Table 9. Menu bar items in the Scheduler
Menu ItemCommandFunction
FilePrint PreviewOpen the print preview window to adjust print
ViewInstrument DetailsOpen the instrument details window to view, edit,
ToolsImport from CFX
settings.
PrintPrint the calendar as it appears on the screen.
ExitExit the scheduler.
add, or delete the name, model, base or optical
head serial numbers.
User DetailsOpen the user details window to view, edit, add, or
delete scheduler users.
Log FileView the scheduler activity log.
Imports the instruments, users or SMTP e-mail
Manager
Cleanup EventsDelete events from the calendar older than the
OptionsOpen a window to specify default calendar
settings from CFX Manager software.
period of time specified in the options window.
settings, create a desktop icon, choose to run the
scheduler at start up or define cleanup parameters.
Entering Scheduler Events
To schedule an event:
1. Double click in the appropriate cell in the calendar or right click and choose New Event.
2. Select the instrument and user from the drop down list (Figure 15).
3. Adjust the start and end times. Once an event appears in the calendar view it can be
moved to another time period by clicking and dragging the entry to a new position in the
calendar.
4. Assign a color to this event (optional).
5. To include an e-mail or a popup reminder that will appear at a specified time prior to the
start of an event, check the Reminder check box and choose an advance notification
time period for the drop down list.
WARNING! The Scheduler must be running for reminders to be activated.
Minimizing the Scheduler window will enable pop-up and e-mail reminders to
occur at the scheduled time. Selecting Close will quit the Scheduler.
18
MiniOpticon Instruction Manual
Figure 15. Scheduler New Event window.
Cleanup events
Select Tools > Cleanup Events to delete events from the calendar older than the period of
time specified in the scheduler options window (Figure 16).
WARNING! All events older than the specified date will be deleted.
Scheduler Options
Select Tools > Options to define Scheduler display, cleanup and launch settings. Click
Restore Defaults to restore the Scheduler default settings.
Figure 16. Scheduler Options window.
19
CFX Manager™ Software
20
MiniOpticon Instruction Manual
3Performing Runs
Read this chapter for information about performing runs using CFX Manager™ software:
• Run Setup window (page 21)
• Prime PCR™ runs (page 22)
• Protocol tab (page 23)
• End point only runs (page 23)
• Plate tab (page 23)
• Start Run tab (page 24)
• Run Details window (page 25)
• Instrument Summary window (page 28)
Run Setup Window
The Run Setup window provides quick access to the files and settings needed to set up and
start a run. To open the Run Setup window, perform one of these options:
• Click the User-defined or the PrimePCR button in the Run Setup tab of the Startup
Wizard (page 12)
• Click the User-definedRun Setup or PrimePCR Run Setup button in the main
software toolbar (page 9)
• Select File > New > User-defined Run or PrimePCR Run in the main software
menu bar (page 10)
The Run Setup window includes three tabs:
• Protocol. Click the Protocol tab to select an existing protocol to run or edit, or to create
a new protocol in the Protocol Editor window (page 31)
• Plate. Click the Plate tab to select an existing plate to run or edit, or to create a new
plate in the Plate Editor window (page 39)
21
Performing Runs
• Start Run. Click the Start Run tab (page 24) to check the run settings, select one or
The Run Setup window opens with the Protocol tab in front (Figure 17). To open another tab,
click that tab or click the Prev or Next button at the bottom of the window.
more instrument blocks, and begin the run
NOTE: If the protocol currently selected in the Protocol tab does not include a step
with a plate read for real-time PCR analysis, then the Plate tab is hidden. To view
the Plate tab, add a “Plate Read” (page 33) in at least one step in the protocol.
NOTE: Start a new run from a previous run by selecting File > Repeat a Run in the
main software menu bar or Repeat Run in the Startup Wizard. Select the data file
(.pcrd) for the run you want to repeat.
Figure 17. Run Setup window, including the Protocol, Plate, and Start Run tabs.
PrimePCR Runs
PrimePCR runs use pathway or disease-specific assays that have been wet-lab validated and
optimized and are available from Bio-Rad in the following formats:
• Pre-plated panels. Plates contain assays that are specific for a biological pathway
or disease. This option is available only in a 96- or 384-well format
• Custom configured plates. Plates can be set up in a user-defined layout with the
option to choose assays for targets of interest, controls, and references. This option
is available only in a 96- or 384-well format
• Individual assays. Tubes contain individual primer sets that can be used to manually
set up reactions
Select one of the following options to start a PrimePCR run:
• PrimePCR from the Run setup tab on the Startup Wizard
• A PrimePCR run from the Recent Runs list of the Repeat run tab on the Startup
Wizard
• File > New > PrimePCR run from the main window
22
• File > Open > PrimePCR Run File... from the main window
Once a PrimePCR run has been selected, the Run Setup window will open on the Start Run
tab with the default PrimePCR protocol and plate layout loaded based on the instrument
selected.
To reduce the overall run time, the melt step can be removed by unchecking the box adjacent
to Include Melt Step on the Protocol tab. Any other modifications to a PrimePCR run
protocol are not recommended since the default protocol was used for assay validation and
any deviation from this may affect the results. Changes that are made will be noted in the Run Information tab of the resultant data file and in any reports that are created.
To import target information for PrimePCR plates into a run’s plate layout, select Plate Setup >
Apply PrimePCR File from the Real-time Status tab (page 27) or from the Data Analysis
window (page 53) and choose the appropriate file (.csv). Select this file by searching in the
PrimePCR folder using part of the file name or by browsing to the location on the computer
where the file was downloaded from the Bio-Rad website when the plate was ordered.
Protocol Tab
The Protocol tab shows a preview of the selected protocol file loaded in the Run Setup
(Figure 17). A protocol file contains the instructions for the instrument temperature steps, as
well as instrument options that control the ramp rate and lid temperature.
MiniOpticon Instruction Manual
Select one of the following options to select an existing protocol, create a new protocol, or edit
the currently selected protocol:
• Create New button. Open the Protocol Editor to create a new protocol
• Select Existing button. Open a browser window to select and load an existing protocol
• Express Load pull-down menu. Quickly select a protocol to load it into the Protocol tab
• Edit Selected button. Open the currently selected protocol in the Protocol Editor
End Point Only Runs
To run a protocol that contains only an end point data acquisition step, select Options > End
Point Only Run from Options in the menu bar of the Run Setup window. The default end point
protocol, which includes two cycles of 60.0°C for 30 seconds, is loaded into the Protocol tab.
To change the step temperature or sample volume for the end point only run, click the Start
Run tab and edit the Step Temperature or Sample Volume.
Plate Tab
The Plate tab shows a preview of the selected plate file loaded in the Run Setup (Figure 18). In
a real-time PCR run, the plate file contains a description of the contents of each well, the scan
mode, and the plate type. CFX Manager software uses these descriptions for data collection
and analysis.
file (.prcl extension) into the Protocol tab
TIP: To add or delete protocols in the Express Load menu, add or delete files (.prcl
extension) in the ExpressLoad folder. To locate this folder, select Tools > User Data Folder in the menu bar of the main software window
Select one of the following options to select an existing plate, create a new plate, or edit the
currently selected plate:
23
Performing Runs
• Create New button. Open the Plate Editor to create a new plate
• Select Existing button. Open a browser window to select and load an existing plate file
• Express Load pull-down menu. Quickly select a plate to load it into the Plate tab
• Edit Selected button. Open the currently selected plate in the Plate Editor
(.pltd extension) into the Plate tab
TIP: To add or delete plates in the Express Load menu, add or delete files (.pltd
extension) in the ExpressLoad folder. To locate this folder, select Tools > User
Data Folder in the menu bar of the main software window.
Start Run Tab
The Start Run tab (Figure 19) includes a section for checking information about the run that is
going to be started and a section for selecting the instrument block.
• Run Information pane. View the selected Protocol file, Plate file, and data acquisition
Scan Mode setting. Enter optional notes about the run in the Notes box.
• Start Run on Selected Block(s) pane. Select one or more blocks, edit run parameters
(if necessary), and then click the Start Run button to begin the run
Figure 18. Plate tab window.
24
Figure 19. Start Run tab.
MiniOpticon Instruction Manual
NOTE: You can override the Sample Volume loaded in the Protocol file by selecting
the volume in the spreadsheet cell and typing a new volume.
NOTE: A run ID can be entered for each block by selecting the cell and typing an ID
or by selecting the cell and scanning with a bar code reader.
To add or remove run parameters from the spreadsheet in the Start Run on Selected Block(s)
pane, right-click on the list and select an option in the menu to display. Choose the value to
change by clicking the text inside the cell to select it and then typing in the cell, or by selecting
a new parameter from the pull-down menu. Editable parameters include:
• Lid Temperature. View the temperature of the lid. Override the lid temperature by
selecting the text and typing a new temperature
Run Details Window
When you click the Start Run button, CFX Manager software prompts you to save the name of
the data file and then opens the Run Details window. Review the information in this window to
monitor the progress of a run.
• Run Status tab. Check the current status of the protocol, open the lid, pause a run, add
repeats, skip steps, or stop the run
• Real-time Status tab. View the real-time PCR fluorescence data as they are collected
• Time Status tab. View a full-screen countdown timer for the protocol
25
Performing Runs
Figure 20 shows the features of the Run Details window.
Figure 20. Run Details window showing the Run Status tab.
Run Status Tab
The Run Status tab (Figure 20) shows the current status of a run in progress in the Run Details
window and provides buttons (see below) to control the lid and change the run in progress.
• Run Status pane. Displays the current progress of the protocol.
• Run Status buttons. Click one of the buttons to remotely operate the instrument or to
interrupt the current protocol
• Run Information pane. Displays run details
Run Status Tab Buttons
Click one of the buttons listed in Table 10 to operate the instrument from the software or to
change the run that is in progress.
NOTE: Changing the protocol during the run, such as adding repeats, does not change the
protocol file associated with the run. These actions are recorded in the Run Log.
Table 10. Run Status buttons and their functions
ButtonFunction
This button is disabled for the MiniOpticon™ system.
26
This button is disabled for the MiniOpticon system.
Add more repeats to the current GOTO step in the protocol.
This button is only available when a GOTO step is running.
MiniOpticon Instruction Manual
Table 10. Run Status buttons and their functions (continued)
ButtonFunction
Skip the current step in the protocol. If you skip a GOTO step,
the software verifies that you want to skip the entire GOTO
loop and proceed to the next step in the protocol.
Flash the run indicating LED on the MiniOpticon system.
Pause the protocol.
NOTE: This action is recorded in the Run Log.
Resume a protocol that was paused.
Stop the run before the protocols ends, which may alter your
data.
Real-time Status Tab
The Real-time Status tab (Figure 21) shows real-time PCR data collected at each cycle during
the protocol after the first two plate reads.
TIP: Click the View/Edit Plate button to open the Plate Editor window. During the run, you can
enter more information about the contents of each well in the plate.
Figure 21. The Real-time Status tab displays the data during a run.
27
Performing Runs
Editing a Plate Setup
The plate setup can be viewed and edited while a run is in progress by selecting the View/Edit
Plate button in the Real-Time Status tab. The Plate Editor window will then be presented and
edits can be made as outlined in Chapter 5 (Plates).
The trace styles can also be edited from the Plate Editor window and any changes made will
be visible in the amplification trace plot in the Real-Time Status tab.
Replacing a Plate File
During a run, replace the plate file by selecting Replace Plate file from the Plate Setup dropdown in the Real-time Status tab. The Apply PrimePCR file selection is only applicable to a
96 or 384-well plate.
NOTE: CFX Manager software checks the scan mode and plate size for the plate
file; these must match the run settings that were started during the run.
TIP: Replacing a plate file is especially useful if you start a run with a Quick Plate
file in the Express Load folder.
NOTE:
Time Status Tab
The Time Status tab shows a countdown timer for the current run.
Instrument Summary Window
The Instrument Summary window (Figure 22) shows a list of the detected instruments and
their status. Open the Instrument Summary by clicking the View Summary button (Figure 9 on
page 13) in the Detected Instrument pane. Right-click in the Instrument Summary window to
change the list of options that appear.
Figure 22. Instrument Summary window.
28
MiniOpticon Instruction Manual
Instrument Summary Toolbar
The Instrument Summary toolbar includes buttons and functions listed in Table 11.
Table 11. Toolbar buttons in the Instrument Summary window
ButtonButton NameFunction
Set Up ExperimentSet up an experiment on the selected
block by opening the Experiment Setup
window.
StopStop the current run on selected blocks.
PausePause the current run on selected blocks.
ResumeResume the run on selected blocks.
Flash Block IndicatorFlash the run indicating LED on the
MiniOpticon system.
Open LidThis button is disabled for the
MiniOpticon system.
Close LidThis button is disabled for the
MiniOpticon system.
Hide Selected BlocksHide the selected blocks in the
Instrument Summary list.
Show All BlocksShow the selected blocks in the
Instrument Summary list.
ShowSelect which blocks to show in the list.
Select one of the options to show all
detected blocks, all idle blocks, all the
blocks that are running with the current
user, or all running blocks.
29
Performing Runs
30
4Protocols
Read the following chapter for information about creating and editing protocol files:
• Protocol Editor window (page 31)
• Protocol Editor controls (page 33)
• Temperature control mode (page 36)
• Protocol AutoWriter (page 37)
MiniOpticon Instruction Manual
Protocol Editor Window
A protocol instructs the instrument to control the temperature steps, lid temperature, and other
instrument options. Open the Protocol Editor window to create a new protocol or to edit the
protocol currently selected in the Protocol tab. Once a Protocol is created or edited in the
Protocol Editor, click OK to load the protocol file into the Run Setup window and run it.
Opening the Protocol Editor
To open the Protocol Editor, follow one of these options:
• To create a new protocol, select File > New > Protocol or click the Create New
button in the Protocol tab (page 22)
• To open an existing protocol, select File > Open > Protocol, or click the Open Existing button in the Protocol tab (page 22)
• To edit the current protocol in the Protocol tab, click the Edit Selected button in the
Protocol tab (page 22)
TIP: To change the default settings in the Protocol Editor window, enter the
changes in the Protocol tab in the User Preferences window (page 114)
Protocol Editor Window
The Protocol Editor window (Figure 23) includes the following features:
• Menu bar. Select settings for the protocol
• Toolbar. Select options for editing the protocol
• Protocol. View the selected protocol in a graphic (top) and text (bottom) view. Click the
temperature or dwell time in the graphic or text view of any step to enter a new value
31
Protocols
• Protocol Editor buttons. Edit the protocol by clicking one of the buttons to the left of
the text view
Figure 23. Protocol Editor window with buttons for editing protocols.
Protocol Editor Menu Bar
The menu bar in the Protocol Editor window provides the menu items listed in Table 12
Table 12. Protocol Editor menu bar
Menu ItemCommandFunction
File SaveSave the current protocol.
Save AsSave the current protocol with a new name or in a new
location.
CloseClose the Protocol Editor.
SettingsLid SettingsOpen the Lid Settings window to change or set the Lid
Temperature.
ToolsGradient
Calculator
Run time
Calculator
Select the block type for a gradient step. Choose 48 wells
for the MiniOpticon system.
Select the instrument and scan mode to be used for
calculating the estimated run time in the Experiment Setup
window.
32
MiniOpticon Instruction Manual
Table 13 lists the function of the Protocol Editor toolbar buttons:
Table 13. Protocol Editor toolbar buttons
Toolbar Button and Menus NameFunction
SaveSave the current protocol file.
PrintPrint the selected window.
Insert StepSelect After or Before to insert steps in a
position relative to the currently highlighted
step.
Sample VolumeEnter a sample volume in µl between 0 and
50. If you are using higher than 50 µl
reactions, select 50 µl.
Sample volume determines the Temperature
Control mode. Enter zero (0) to select Block
mode.
Est. Run TimeView an estimated run time based on the
protocol steps and ramp rate.
HelpOpen the software Help for more
information about protocols.
Protocol Editor Controls
The Protocol Editor window includes buttons for editing the protocol. First, select and highlight
a step in the protocol by left clicking it with the mouse. Then click one of the Protocol Editor
buttons at the bottom left side of the Protocol Editor window to change the protocol. The
location for inserting a new step, “Before” or “After” the currently selected step is determined
by the status of the Insert Step box located in the toolbar.
Insert Step Button
To insert a temperature step before or after the currently selected step:
1. Click the Insert Step button.
2. Edit the temperature or hold time by clicking the default value in the graphic or text view,
and entering a new value.
3. (Optional) Click the Step Options button to enter an increment or extend option to the
step (page 36).
Add or Remove a Plate Read
To add a plate read to a step or to remove a plate read from a step:
1. Select the step by clicking the step in either the graphical or text view.
33
Protocols
2. Click the Add Plate Read to Step button to add a plate read to the selected step. If the
step already contains a plate read, the text on the button changes, so now the same
button reads Remove Plate Read. Click to remove a plate read from the selected step.
Insert Gradient Button
To insert a gradient step before or after the currently selected step:
1. Insert a temperature gradient step by clicking the Insert Gradient button.
2. Make sure the plate size for the gradient matches the block type of the instrument.
Select the plate size for the gradient by selecting Tools > Gradient Calculator in the
Protocol Editor menu bar.
3. Edit the gradient temperature range by clicking the default temperature in the graphic or
text view, and entering a new temperature. Alternatively, click the Step Options button
to enter the gradient range in the Step Options window (page 36)
4. Edit the hold time by clicking the default time in the graphic or text view, and entering a
new time.
Figure 24 shows the inserted gradient step. The temperatures of each row in the gradient are
charted on the right side of the window.
34
Figure 24. Protocol with inserted gradient step.
Insert GOTO Button
To insert a GOTO step before or after the selected step:
1. Click the Insert GOTO button.
MiniOpticon Instruction Manual
2. Edit the GOTO step number or number of GOTO repeats by clicking the default number
in the graphic or text view, and entering a new value.
Figure 24 shows an inserted GOTO step at the end of the protocol. Notice that the GOTO loop
includes steps 2 through 4.
Insert Melt Curve Button
To insert a melt curve step before or after the selected step:
1. Click the Insert Melt Curve button.
2. Edit the melt temperature range or increment time by clicking the default number in the
graphic or text view, and entering a new value. Alternatively, click the Step Options
button to enter the gradient range in the Step Options window (page 36).
NOTE: You cannot insert a melt curve step inside a GOTO loop.
NOTE: The melt curve step includes a 30 second hold at the beginning of the step
that is not shown in the protocol.
Figure 25 shows a melt curve step added after step 6:
Figure 25. Protocol with inserted melt curve step.
Step Options
To change a step option for the selected step:
1. Select a step by clicking on the step in the graphic or text view.
2. Click the Step Options button to open the Step Options window.
3. Add or remove options by entering a number, editing a number, or clicking a check box.
TIP: To hold a step forever (an infinite hold), enter zero (0.00) for the time.
35
Protocols
Figure 26 shows the selected step with a gradient of 10oC. Notice that some options are not
available in a gradient step. A gradient step cannot include an increment or ramp rate change.
Figure 26. Step option for a gradient.
NOTE: A gradient runs with the lowest temperature in the front of the block (row H)
and the highest temperature in the back of the block (row A).
The Step Options window lists the following options you can add or remove from steps:
• Plate Read. Check the box to include a plate read
• Temperature. Enter a target temperature for the selected step
• Gradient. Enter a gradient range for the step
• Increment. Enter a temperature to increment the selected step; the increment amount is
added to the target temperature with each cycle
• Ramp Rate. Enter a rate for the selected step; the range depends on the block size
• Time. Enter a hold time for the selected step
• Extend. Enter a time to extend the selected step. The extend amount is added to the
hold time with each cycle
• Beep. Check the box to include a beep at the end of the step
TIP: When you enter a number that is outside the option range, the software
changes the number to the closest entry within the range.
Delete Step Button
To delete a step in the protocol:
1. Select a step in the graphic or text view.
2. Click the Delete Step button to delete the selected step.
WARNING! You cannot undo this function.
Temperature Control Mode
The instrument uses one of two temperature control modes to determine when the sample
reaches the target temperature in a protocol.
TIP: The sample volume can be changed before a run by editing the Sample
Volume parameter in the Start Run tab (see “Start Run Tab” on page 24).
Enter a sample volume in the protocol editor to select a temperature control mode:
36
• Calculated mode. When you enter a sample volume between 1 and 50 µl the thermal
cycler calculates the sample temperature based on the sample volume. This is the
standard mode
• Block mode. When you enter a sample volume of zero (0) µl, the thermal cycler records
the sample temperature as the same as the measured block temperature
Protocol AutoWriter
Open the Protocol AutoWriter to quickly write protocols for PCR and real-time PCR runs. To
open the Protocol AutoWriter, select one of these options:
• Click the Protocol AutoWriter button in the main software window toolbar
• Select Tools > Protocol AutoWriter from the menu bar in the main software window
Figure 27 shows a protocol (bottom of window) written by the Protocol AutoWriter.
MiniOpticon Instruction Manual
Figure 27. Protocol AutoWriter window with a new protocol.
Creating a Protocol with the Protocol AutoWriter
Follow these steps to use the Protocol AutoWriter to create a new protocol:
1. Click the Protocol AutoWriter button on the toolbar to open the Protocol AutoWriter
window.
2. Enter the Annealing Temperature (Ta) and Amplicon Length in the boxes within the
Enter Target Values/Enzymes pane. If you do not know the annealing temperature for
primers, click the Ta Calculator button to enter the primer sequences and calculate the
annealing temperature. For information about the calculations used in the Ta Calculator
see Breslauer et al. 1986.
37
Protocols
3. Select an enzyme type from the list of options (iTaq™, iProof™, or Other).
4. Add parameters in the Additional Parameters (Optional) pane if you want to add a
Gradient Range, Hot Start Activation temperature, or Final Extension time in the
protocol.
5. Select a protocol speed (Standard, Fast, or Ultrafast) by moving the sliding bar in the
Type pane. When you move the sliding bar, the software adjusts the total run time. Select
Real-time PCR to tell the software to collect fluorescence data.
6. Review the protocol in the Preview pane and total run time. Make changes as needed.
TIP: Enter the lid temperature and sample volume before each run by editing the
parameters in the Start Run tab (see “Start Run Tab” on page 24).
7. Click OK to save the new protocol, or click Cancel to close the window without saving
the protocol.
TIP: To edit a protocol written with the Protocol AutoWriter, open the protocol file
(.prcl extension) in the Protocol Editor window (page 31).
NOTE: Bio-Rad Laboratories does not guarantee that running a protocol written in
the Protocol AutoWriter window will always result in a PCR product.
38
5Plates
Read this chapter for information about creating and editing plate files:
A plate file contains run parameters, such as scan mode and fluorophores, and well contents
and instructs the instrument about how to analyze the data. Open the Plate Editor window to
create a new plate or to edit the plate currently selected in the Plate tab. Once a plate file is
created or edited in the Plate Editor, click OK to load the plate file into the Run Setup window
and run it.
To perform a real-time PCR run, you must load the minimal required information in the Plate
Editor: at least one well must contain a loaded sample type and fluorophore.
TIP: Change the well contents before, during, and after completion of the run.
However, the scan mode and plate size cannot be changed during or after the run.
Opening the Plate Editor
To open the Plate Editor window (Figure 28), follow one of these options:
• To create a new plate, select File > New > Plate or click the Create New button in
the Plate tab (page 23)
• To open an existing plate, select File > Open > Plate, or click the Open Existing
button in the Plate tab (page 23)
• To edit the current plate in the Plate tab, click the Edit Selected button in the Plate
tab (page 23)
• To open the plate associated with a data file, in the Data Analysis window (page 53),
click View/Edit Plate on the toolbar
39
Plates
Figure 28. Plate Editor window.
Plate Editor Menu Bar
The menu bar in the Plate Editor window provides the menu items shown in Table 14.
Table 14. Menu bar items in the Plate Editor.
Menu ItemCommandFunction
File SaveSave the plate files.
Save AsSave the plate file with a new file name.
ExitExit the Plate Editor.
ViewShow Well NotesSelect to show this pane in the well loading controls.
Enter notes about one or more wells.
Show Biological Set
Name
Plate Loading GuideShow a guide about how to set up a plate and load the
SettingsPlate SizeSelect a plate size that reflects the number of wells in
Select to show this pane in the well loading controls.
Select to enter Biological Set names for one or more
wells.
wells.
the instrument block. Choose 48 Wells for the
MiniOpticon system.
40
MiniOpticon Instruction Manual
Table 14. Menu bar items in the Plate Editor. (continued)
Menu ItemCommandFunction
Plate TypeChoose the type of wells in the plate that holds your
samples. The MiniOpticon system is only factory
calibrated for BR White plates. For accurate data
analysis, the plate type must be the same as the plate
well type used in the experiment.
NOTE: You must calibrate new plate types.
Number ConventionSelect or cancel the selection for Scientific Notation.
UnitsSelect the units to show in the spreadsheets when
performing quantitation of unknowns versus a standard
curve.
Editing Tools Setup WizardDefine plate layout and analysis parameters for gene
expression.
Spreadsheet View/
Importer
Flip PlateFlip the plate contents 180 degrees.
View layout or import target/sample information using
spreadsheet.
Plate Editor Toolbar
The toolbar in the Plate Editor provides quick access to important plate loading functions.
Table 15 lists the functions available in the Plate Editor toolbar.
Table 15. Plate Editor toolbar buttons.
Toolbar ItemNameFunction
SaveSave the current plate file.
PrintPrint the selected window.
ZoomIncrease or decrease magnification in plate view.
Well GroupsOpen the Well Groups Manager window and set up well
groups for the current plate.
Trace StylesSelect the colors and symbol used for the amplification
traces.
HelpOpen the software Help for information about plates.
Show a quick guide about how to set up a plate and load
the wells.
Plate Size and Type
The software applies these plate settings to all the wells during the experiment:
• Plate Size. Select a plate size that represents the size of the reaction module block of
your instrument. Choose MiniOpticon from the pull-down menu option on the Startup
Wizard to change the default plate size loaded in the Plate tab of the Experiment Settings
window. In the Plate Editor, select the plate size from the Settings menu (see Table 14).
Plate size cannot be changed during or after the experiment
• Plate Type. For the MiniOpticon system, select the appropriate white wells designation
from the Settings menu. For older systems, the plate type MJ White may need to be
selected. For new systems, select the plate type BR White. Make sure the fluorophore
being used in the experiment is calibrated for the selected plate type
NOTE: The MiniOpticon system is factory calibrated for plates with white wells.
Calibration is specific to the instrument, dye, and plate type. To calibrate a new
combination of dye and plate type on an instrument, select Tools > Calibration
Wizard (see “Calibration Wizard” on page 126).
Trace Styles
During the plate setup and while a run is in progress, the color of the amplification traces can
be modified. These colors will be displayed as the data is being collected, which can be
viewed in the Real-time Status window. For more information on Trace Styles, see page 68.
Setup Wizard
The Setup Wizard can be used to enter plate layout information needed for normalized gene
expression analysis either before, during or after a run has been completed. Target and sample
name and location on plate, reference gene(s), and control sample can all be entered from this
window.
The Wizard (Figure 29) can be opened by selecting Editing Tools > Setup Wizard from the
Plate Editor window menu bar.
42
MiniOpticon Instruction Manual
Figure 29. Auto layout tab of Setup Wizard.
Create a plate layout by following these steps:
1. Auto layout tab. Select the area in which samples will be located on the plate by clicking
on a well at one edge and then dragging to encompass the area required. Enter the
number of targets and samples to be loaded. If the numbers entered do not fit in the area
selected, you will need to reduce the numbers or increase the plate area. The orientation
of items on the plate and their grouping can be specified.
NOTE: If your plate layout does not have a regular pattern, use the Target names
tab to manually position your targets anywhere on the plate. Click and drag to
select mulitple wells.
2. Target names tab. Click a target grouping and then enter its name in the box provided.
Multiple target groups can be selected by clicking and dragging.
TIP: After entering a name, press Tab to advance to the next grouping on the right
or Enter to move to the next group below.
3. Sample names tab. Click a sample grouping and then enter its name in the box
provided. Multiple sample groups can be selected by clicking and dragging.
TIP: When entering target or sample names, click and hold the control key to select
groups of wells that are not adjacent.
4. Reference targets tab. Click on one or more targets to use as references for normalized
gene expression.
5. Control sample tab. Click on one sample to use as a control for relative gene
expression calculations.
43
Plates
6. Click OK to apply the information entered to your plate. Any additional edits can be
made using the Plate Editor.
NOTE: Returning to the Auto layout tab will reset the plate layout. The layout can
also be reset by selecting Tools > Clear Plate.
TIP: To read text within wells of the plate layout more easily, click the Zoom plate
box for a magnified view.
Select Fluorophores Window
The Select Fluorophores window lists fluorophores that can be selected to load into the Plate
Editor well loading controls. To open the Select Fluorophores window, click the Select Fluorophores button on the right side of the Plate Editor.
NOTE: You cannot add or remove fluorophores in this list; you must calibrate the
new fluorophores on an instrument in the Calibration Wizard (page 126). After
calibration, the new fluorophore is added to the Select Fluorophore window.
NOTE: The MiniOpticon system is factory calibrated only for FAM, SYBR
HEX. If you intend to use another dye, you must perform a dye calibration. To
calibrate a new combination of dye and plate type on an instrument, select Tools > Dye Calibration Wizard (see “Calibration Wizard” on page 126).
®
and
Click the Selected check box next to the fluorophore name to add or remove the fluorophores
to the list on the right side of the Plate Editor window.
In this example, SYBR® is selected from the list of available fluorophores (Figure 30).
Figure 30. Select Fluorophores window.
• Click the Color box next to the fluorophore name and select a new color to represent
each fluorophore in the Plate Editor window and Data Analysis charts
NOTE: Before beginning the run, the software verifies that the fluorophores you
specified in the plate are calibrated on that instrument. You cannot run a plate if it
includes fluorophores that have not been calibrated on that instrument.
44
Well Loading Controls
A plate file contains information about the contents of each well loaded with sample for a run.
After the run, the software links the well contents to the fluorescence data collected during the
protocol and applies the appropriate analysis in the Data Analysis window. For example, wells
loaded with standard sample type are used to generate a standard curve.
When setting up a gene expression run, consider the following guidelines for well contents:
• Target Name. One or more targets of interest (genes or sequences) in each loaded well.
Each target is assigned to one fluorophore
• Sample Name. One identifier or condition that corresponds to the sample in each
loaded well, such as “0 hr”, “1 hr”, or “2 hr”
TIP: Target names and sample names must match between wells to compare data
in the Gene Expression tab in the Data Analysis window. Each name must contain
the same punctuation and spacing. For example, “Actin” is not the same as
“actin”, and “2hr” is not the same as “2 hr”. To facilitate consistency in names,
enter them in the Target and Sample Names Libraries in the Plate tab in the User
Preferences window (page 117).
• Biological Set Name. Select View > Show Biological Set Name to show this pane
in the well loading controls and then enter Biological Set names for one or more
wells.
MiniOpticon Instruction Manual
Select a well to load contents into by left-clicking in the plate view. Hold down the mouse
button and drag to select multiple wells. The buttons and lists on the right side of the plate
view include all the options needed to load the wells (Table 16).
Table 16. Options for loading the plate and wells in the Plate Editor.
OptionFunction
After selecting wells, the Sample Type must be loaded
first. Select a Sample Type from the pull-down menu to
load it in the selected wells, including Unknown,
Standard, NTC (no template control), Positive Control,
Negative Control, and NRT (no reverse transcriptase).
Click a Load box to add a fluorophore to the selected
wells; each fluorophore corresponds to a target name. To
add fluorophores to the Load list, select them in the
Select Fluorophores window.
For gene expression analysis or to distinguish among
multiple targets, select a name in the Target Name pulldown menu and press the Enter key to load the target
name in the well. To delete a target name, select it, press
the Delete key, and then press the Enter key.
TIP: To add a new target name to the pull-down menu in
the current plate only, type a name in the pull-down box
and press the Enter key.
45
Plates
Table 16. Options for loading the plate and wells in the Plate Editor. (continued)
OptionFunction
For gene expression analysis or to distinguish among
multiple samples, select a Sample Name from the pulldown menu to load that sample name in the selected
wells. To delete a sample name, select it in the menu,
press the Delete key on your keyboard, and then press
Enter.
TIP: To add a new sample name to the pull-down menu in
the current plate, type a new name in the pull-down box
and press the Enter key.
To load replicate numbers, selected wells must contain
identical well contents. If they do not, the software
disables this loading control.
Click the Load box to add a Replicate # to the selected
wells. Click the Clear Replicate # button to clear the
replicate number from selected cells.
TIP: To load multiple replicate numbers across a series of
wells, click the Replicate Series button.
In the Replicate Series pane you can apply a replicate
series to a set of selected wells. Enter the Replicate GroupSize by selecting a number that represents the
number of samples (wells) in each group of replicates.
Select a Starting Replicate # to add replicates.
NOTE: You can load replicate groups with replicate
numbers progressing from left to right (Horizontal), or
progressing from top to bottom (Vertical).
Enter a concentration to the selected wells with standard
sample type by editing or typing a number in the
Concentration box. To apply the concentration to one
fluorophore in the well, select a single fluorophore from
the pull-down menu (<All>) under the concentration
box.To delete a concentration, select it, press the Back Space key on your keyboard and then press Enter.
Select multiple wells with a Standard sample type to
activate the Dilution Series button.
46
MiniOpticon Instruction Manual
Table 16. Options for loading the plate and wells in the Plate Editor. (continued)
OptionFunction
Click the Dilution Series button to enter a dilution series
for the concentration of Standard samples, and load a
standard curve.
Enter the Starting Concentration for the dilution series,
the Replicatesfrom (starting replicate number) and to
(ending replicate number), and the Dilution Factor
(amount to change the concentration with each replicate
group). Select Increasing for a dilution series that
increases, or select Decreasing for a dilution series that
decreases. Finally, select the fluorophore used for the
dilution series from the pull-down menu and click Apply.
Select View> Show Well Notes to show this pane. Enter
notes about one or more wells by selecting the wells and
typing the notes in the pull-down menu. Any notes you
add appear in the spreadsheet on the Quantification Data
tab.
Select View > Show Biological Set Name to show this
pane. Enter biological set information about one or more
wells by selecting the wells and typing a biological set
name in the pull-down menu. Entering Biological Set Name information enables sample analysis in one of four
configurations defined by the Biological Set Analysis Options. Refer to the Biological Set Analysis Options
section for further details.
Click the Experiment Settings button to open the
Experiment Settings window to manage the lists of
Targets and Samples, and to set up a gene expression
run.
Click the Clear Replicate # button to clear the replicates
numbers in the selected wells.
Click the Clear Wells button to permanently remove all
content in the selected wells.
NOTE: Well contents can also be copied and pasted into other wells. To do this,
highlight the well that is to be copied (only one well can be copied at a time), rightclick and select Copy Well. Highlight the wells into which content is be pasted and
select Paste Well. Depress and hold the control key to select non-contiguous wells
to paste to.
47
Plates
Experiment Settings Window
To open the Experiment Settings window, perform one of these options:
• In the Plate Editor, click the Experiment Settings button
• While analyzing data in the Data Analysis window, click the Experiment Settings
button in the Gene Expression tab
Open the Experiment Settings window to view or change the list of Targets and Samples
(Figure 31) or to set the gene expression analysis sample group to be analyzed if Biological
Set Names have been added to the wells.
• Targets. A list of target names for each PCR reaction, such as a genes or sequences of
interest. Click the Reference column to assign reference genes in a run
• Samples. A list of sample names that indicate the source of the target, such as a sample
taken at 1 hour (1 hr), or taken from a specific individual (“mouse1”). Click the Control
column to assign the control condition for a run
Figure 31 shows the Targets tab with the analysis settings shown.
48
Figure 31. Targets tab in Experiment Settings window.
Figure 32 shows the Samples Tab with the Analysis Settings shown.
Figure 32. Samples tab in Experiment Settings window.
MiniOpticon Instruction Manual
To adjust the lists in these tabs, use the following functions:
• Add a target or sample name by typing a name in the New box, and clicking Add
• Remove a target or sample name from the list by clicking the Select to Remove box
for that row, and then clicking the Remove checked item(s) button
• Select the target as a reference for gene expression data analysis by clicking the box
in the Reference column next to the name for that target
• Select the sample as a control sample for gene expression data analysis by clicking
the box in the Control column next to the name for that sample
Click the Show Analysis Settings box in the Experiment Settings window to view or change
analysis parameters applied in the Gene Expression tab.
To adjust target parameters:
• Click a cell in the Color column to change the color of the targets graphed in the
Gene Expression chart
• Enter a number for the efficiency of a target. The software will calculate the relative
efficiency for a target using Auto Efficiency if the data for a target includes a
standard curve. Alternatively, type a previously determined efficiency
To adjust the settings for a sample in the Samples tab:
• Click a color in the Color column to change the color of the samples graphed in the
Gene Expression chart
• Click a box in the Show Graph column to show the sample in the Gene Expression
chart using a color selected in the Color column
Well Selector Right-Click Menu Items
Right-click any well to select the items listed in the table below.
Table 17. Right-click menu items in the Plate Editor Well Selector window
ItemFunction
Copy WellCopy the well contents, which can then be pasted into another
well or wells.
Paste WellPaste the contents from a copied well into another well or
wells.
Copy to ClipboardCopy the text from a well to a clipboard that can then be
pasted into a document.
Copy as ImageCopy the well selector view as an image.
Print...Print the well selector view.
Print Selection...Print the current selection.
Export to Excel...Export the data to an Excel spreadsheet.
Export to Text...Export the data as a text document.
Export to Xml...Export the data as a .xml document.
Export to Html...Export the data as a .html document.
FindSearch for specific text.
Export Well Info to ExcelExport the well text information as a .xml document.
49
Plates
Well Groups Manager Window
Well groups divide a single plate into subsets of wells that can be analyzed independently in
the Data Analysis window. Once well groups are set up, select one in the Data Analysis
window to analyze the data as an independent group. For example, set up well groups to
analyze multiple experiments run in one plate, or to analyze each well group with a different
standard curve.
NOTE: The default well group is All Wells.
Create Well Groups
To create well groups in the Well Groups Manager window, follow these instructions:
1. Click the Well Groups button in the Plate Editor toolbar or click the Manage Well Groups button in the Data Analysis window toolbar.
2. Click Add to create a new group. The pull-down menu shows the group name as Group 1 for the first group.
3. Select the wells that will compose the well group in the plate view by clicking and
dragging across the group of wells. Selected wells turn blue in color (Figure 33).
4. (Optional) Change the name of the group by selecting the group name in the pull-down
menu and typing a new name.
5. (Optional) Create more well groups by repeating steps 1 and 2.
6. (Optional) Delete well groups by selecting the group name in the pull-down list, and
clicking the Delete button.
7. Click OK to finish and close the window, or click Cancel to close the window without
making changes.
Figure 33. Color of wells in the Well Group Manager window.
50
Plate Spreadsheet View/Importer Window
The Plate Spreadsheet View window shows the contents of a plate in the Plate Editor. Open
the Plate Spreadsheet View window (Figure 34) by selecting Editing Tools > Spreadsheet View/Importer in the Plate Editor menu bar.
MiniOpticon Instruction Manual
Figure 34. Plate Spreadsheet View window.
Open the spreadsheet view to import or export the well contents to Excel or to another tabdelimited format:
• Click Export Template to export a plate spreadsheet template to an Excel file (.csv
format). This template may be edited and used for import of well content information.
• Click Import to import well contents from a comma delimited file
• Sort or edit a column by selecting it and using these methods:
• Sort the spreadsheet according to the data in one column by clicking the diamond
next to a column name
• Edit the contents of a column that has an asterisk (*) at top by clicking and typing
in each well
NOTE: Select the units for the standard curve data in the Quantity column by
opening the Plate Editor and selecting Settings > Units in the menu bar. After the
plate runs, the data from these standards appear in the Standard Curve chart of the
Quantification tab (Data Analysis window) with the units you select.
Right-click on the spreadsheet to select one of these options from the right-click menu:
• Copy. Copy the entire spreadsheet
• Copy as Image. Copy the spreadsheet as an image file
• Print. Print the spreadsheet
• Print Selection. Print only the selected cells
• Export to Excel. Export the file as an Excel- formatted file
• Export to Text. Export the file as a text file
• Export to Xml. Export the file as a .xml file.
• Export to Html. Export the file as a .html file.
• Find. Find text in the spreadsheet
• Sort. Sort the spreadsheet by selecting up to three columns of data in the Sort window.
51
Plates
52
MiniOpticon Instruction Manual
6Data Analysis Overview
Read this chapter for information about data analysis:
• Data Analysis window (page 53)
• Quantification tab (page 56)
• Well groups (page 57)
• Data analysis settings (page 58)
• Well selectors (page 61)
• Charts (page 63)
• Spreadsheets (page 64)
• Export (page 65)
Data Analysis Window
During data analysis, changing the way the data are displayed by changing the contents of the
wells in the Plate Editor never changes the fluorescence data that were collected from each
well during the run. Once the module collects fluorescence data, you cannot delete those data
but you can choose to remove data from view and analysis.
To change the content of wells after a run, select one of the following options from the Plate Setup button at the top of the Data Analysis window:
• Edit/View Plate. Open the Plate Editor to make manual changes to the layout
• Replace Plate file. Select a previously saved plate file to replace the current plate
layout
• Apply PrimePCR file. PrimePCR™ files are not be available for 48-well plates
CFX Manager™ software processes real-time PCR data automatically at the end of each run,
and opens the Data Analysis window to display these data. Choose one of these methods to
open existing data files in the Data Analysis window:
• Drag a data file (.pcrd extension) over the main software window and release it
• Select Analyze tab in the Startup Wizard window and either select from Recent Files
or click the Browse button to find
• Select File > Open > Data File in the main software window to select a file in the
Windows browser
• Click the Data Analysis button in the main software window toolbar to select a file in
the Windows browser
53
Data Analysis Overview
• Select File > Recent Data Files to select from a list of the ten most recently opened
data files
The Data Analysis window displays multiple tabs (Figure 35), each tab showing the analyzed
data for a specific analysis method or run-specific information. Tabs will only be displayed if
the data collected in the run are available for that type of analysis.
TIP: To choose the tabs displayed, select View in the main windown. To return to
the original tab layout, select Settings > Restore Default Window Layout.
Data Analysis Toolbar
The toolbar in the Data Analysis window (Figure 36) provides quick access to important data
analysis functions.
Figure 35. Data Analysis window tabs.
Figure 36. Toolbar in the Data Analysis window.
Table 18 lists the functions of buttons in the toolbar.
Table 18. Toolbar in the Data Analysis window.
Toolbar ButtonNameFunction
Plate SetupView/Edit plate: Open the Plate Editor to view and edit
the contents of the wells.
Replace Plate file: Select a plate file to replace the
plate layout.
Apply PrimePCR file: Select a run file to replace the
plate layout for a PrimePCR run.
Manage Well
Groups
Well GroupSelect an existing well group name from the pull-down
Analysis ModeSelect to analyze the data in either Fluorophore or
HelpOpen the software Help for more information about
Open the Well Groups Manager window to create, edit
and delete well groups.
menu. The default selection is All Wells. This will only
be displayed if well groups have been created.
Target mode.
data analysis.
54
MiniOpticon Instruction Manual
Data Analysis Menu Bar
The menu bar in the Data Analysis window provides these menu items.
Table 19 lists the functions of items in the menu bar.
Table 19. Right-click menu items for spreadsheets.
Menu ItemCommandFunction
File SaveSave the file.
Save AsSave the file with a new name.
Repeat RunExtract the protocol and plate file from the
current run to rerun it.
ExitExit the Data Analysis window.
ViewRun LogOpen a Run Log window to view the run
log of those data file.
Quantification, Melt Curve,
Gene Expression, End Point,
Custom Data View, QC, Run
Information
SettingsCq Determination ModeSelect Regression or Single Threshold
Baseline SettingSelect Baseline Subtraction method for
Analysis ModeSelect to analyze data by Fluorophore or
Cycles to AnalyzeSelect the cycles that are to be analyzed.
Baseline ThresholdsOpen the Baseline Thresholds window to
Trace StylesOpen the Trace Styles window.
Plate SetupOpen the Plate Editor to view and edit the
Include All Excluded WellsAll excluded wells are included in the
Mouse HighlightingTurn on or off the simultaneous
Select the tabs displayed in the Data
Analysis window. At least one tab
must be selected.
mode to determine how Cq values are
calculated for each trace.
the selected well groups.
by Target.
adjust the baseline or the threshold.
plate; replace the current plate with one
from a user-defined plate file or a
PrimePCR run file.
analysis.
highlighting of data with the mouse
pointer.
TIP: If the Mouse Highlighting is turned off,
then hold down the Control key to
temporarily turn on the highlighting.
Restore Default Window Layout Restores the arrangement of windows to
the default setting.
ExportExport All Data Sheets to Excel Export all the spreadsheet views from
every tab to a separate Excel formatted
file.
Export RDML FileOpen a Save As window to specify an
RDML file name and location.
55
Data Analysis Overview
Table 19. Right-click menu items for spreadsheets. (continued)
Menu ItemCommandFunction
Custom Export...Open the Custom Export window in which
Export to LIMS Folder...Open a window to save data in a pre-
ToolsReports...Open the Report for this data file.
Well Group Reports...Open the Well Group Report window to
Import Fluorophore
Calibration...
Quantification Tab
Each tab in the Data Analysis window displays data in charts and spreadsheets for a specific
analysis method and includes a well selector to select the data you want to show. The Data
Analysis window opens with the Quantification tab (Figure 37) in front. The Amplification chart
data in this tab should be used to determine the appropriate analysis settings for the run.
the fields to be exported and the file
format can be specified.
determined format to the LIMS folder.
generate reports for specified well groups.
Select a calibration file to apply to the
current data file.
56
Figure 37. Layout for the Quantification tab in the Data Analysis window.
NOTE: The software links the data in the panes of each Data Analysis tab. For
example, highlighting a well by placing the mouse pointer over the well in the well
selector view highlights the data in all the other panes.
MiniOpticon Instruction Manual
Step Number Selector
The MiniOpticon™ system can acquire fluorescence data at multiple protocol steps; the
software maintains the data acquired at each step independently. The software displays the
Step Number selector below the Standard Curve chart on the Quantification tab whenever a
protocol contains more than one data collection step. When you select a step, the software
applies that selection to all the data that are shown in the Data Analysis window. Figure 38
shows the data collection step number is 3 for all the data.
Figure 38. Step Number selection in the Data Analysis window.
Viewing Well Groups in Data Analysis
Wells in the plate can be grouped into subsets for independent analysis using well groups.
When you create well groups in the Well Groups Manager window (page 50), group names
appear in the Data Analysis window Well Groups drop-down list on the toolbar.
TIP: To edit, create and delete well groups, click the Manage Well Groups button
in the toolbar.
By default, the well group All Wells is selected when the Data Analysis Window is first opened,
with the data in all wells with content shown in the charts and spreadsheets.
Figure 39 shows Group 2 selected in the Well Groups menu. Only the wells in that well group
appear loaded with content in the well selector and data only for these wells are included in
the data analysis calculations.
Figure 39. Data Analysis window with Group 2 selected.
57
Data Analysis Overview
Data Analysis Settings
The Amplification chart data in the Quantification tab shows the relative fluorescence (RFU)
for each well at every cycle. Each trace in the chart represents data from a single fluorophore
in one well. These data are used to determine Cq values for each well on a per fluorophore
basis. The software uses one of two modes to determine C
• Regression. This mode applies a multivariable, nonlinear regression model to individual
well traces and then uses this model to compute an optimal Cq value
• Single Threshold. This mode uses a single threshold value to calculate the Cqvalue
based on the threshold crossing point of individual fluorescence traces
Select Settings > Cq Determination Mode to choose the Cq determination mode.
Adjusting the Threshold
In Single-Threshold mode, adjust the threshold for a fluorophore by clicking on the threshold
line in the Amplification chart and moving the mouse pointer vertically. Alternatively, specify an
exact crossing threshold for the selected fluorophore by following these instructions:
1. Select one fluorophore in the fluorophore selector in the Quantification tab (Figure 37)
by clicking the boxes next to the fluorophore name located under the Amplification chart.
values:
q
2. Select Settings > Baseline Thresholds in the menu bar to open the Baseline Thresholds
window.
3. Adjust the crossing threshold (Figure 40) for the fluorophore by clicking User Defined
and entering a threshold number.
58
Figure 40. Baseline Thresholds window.
4. Click OK to confirm the change and close the window.
TIP: To have the same threshold value used for all of your data files define this in
the Data Analysis tab of the User Preferences window. This value will be applied
to all subsequently created data files.
MiniOpticon Instruction Manual
Baseline Settings
The software automatically sets the baseline individually for each well. Select the Baseline
Setting to determine the method of baseline subtraction for all fluorescence traces. Select
Settings > Baseline Setting to choose one of these three options:
• No Baseline Subtraction. The software displays the data as relative fluorescence
traces. Some analysis is not possible in this analysis mode, and therefore the software
does not display the Gene Expression, End Point, and Allelic Discrimination tabs
• Baseline Subtracted. The software displays the data as baseline subtracted traces for
each fluorophore in a well. The software must baseline subtract the data to determine
quantification cycles, construct standard curves, and determine the concentration of
unknown samples. To generate a baseline subtracted trace, the software fits the best
straight line through the recorded fluorescence of each well during the baseline cycles,
and then subtracts the best fit data from the background subtracted data at each cycle
• Baseline Subtracted Curve Fit. The software displays the data as baseline subtracted
traces, and the software smoothes the baseline subtracted curve using a centered mean
filter. This process is performed so that each C
Along with the options above, the following can also be selected:
• Apply Fluorescent Drift Correction. For wells that have abnormally drifting RFU values
during the initial few cycles of a run the software derives an estimated baseline from
adjacent wells for which a horizontal baseline was successfully generated
is left invariant
q
Adjusting the Baseline
Once wells for analysis have been selected, check the baseline settings in these wells. Open
the Baseline Thresholds window (Figure 40) to change the default baseline for selected wells.
To open this window:
1. Select a single fluorophore in the Quantification tab (Figure 37) by clicking the boxes next
to the fluorophore name located under the Amplification chart.
2. Select Settings > Baseline Threshold to open the Baseline Threshold window.
To adjust the begin and end baseline cycle for each well:
1. In the Baseline Cycles pane, select one or more wells by clicking the row number,
clicking the top left corner to select all wells, holding down the Control key to select
multiple individual wells, or holding down the shift key to select multiple wells in a row.
2. Adjust the Baseline Begin cycle and Baseline End cycle for all selected wells or change
the Begin and End cycle number at the bottom of the spreadsheet (Figure 40).
3. To revert the settings back to the last saved values, click Reset All User Defined Values.
4. Click OK to confirm any changes and close the window.
Analysis Mode
Data can be analyzed and displayed grouped by either fluorophore or target name. To choose
the data analysis mode, select Settings > Analysis Mode or make a selection from the
Analysis Mode drop down menu in the toolbar.
59
Data Analysis Overview
When Fluorophore is chosen data traces are displayed by fluorophore as indicated in the
plate setup for that run. Individual fluorophore data is displayed in the amplification and
standard curve chart (if available) by checking the appropriate fluorophore selector check
boxes located below the amplification chart (Figure 41).
Figure 41. Fluorophore analysis mode selected.
When Target is selected data traces are displayed by target name as entered in the plate
setup.
Figure 42. Target analysis mode selected.
60
Cycles to Analyze
To restrict data analysis to a specified range of cycles, select Settings > Cyclesto Analyze.
Select the starting cycle and the ending cycle using the arrow buttons or by typing in the
desired values and pressing Enter. Click the Restore Defaults button to return to the cycles
originally used for analysis.
NOTE: Removing cycles from the beginning of a run can have a significant impact
on baselining.
Well Selectors
Click the wells in the well selector to show or to hide the data in the charts or spreadsheets
throughout the Data Analysis window:
• To hide one well, highlight and click the individual well. To show that well, highlight
and click the well again
• To hide multiple wells, click and drag across the wells you want to select. To show
those wells, click and drag across the wells again
• Click the top left corner of the plate to hide all the wells. Click the top left corner
again to show all wells
• Click the start of a column or row to hide those wells. Click the column or row again
to show the wells
MiniOpticon Instruction Manual
Only wells loaded with content (entered in the Plate Editor) can be selected in the well selector,
and their color shows if they are selected. As shown in Figure 43, the well selector shows
these three types of wells:
• Selected, loaded wells (blue). These wells contain a loaded Unk (unknown) sample
type. The data from these wells appear in the Data Analysis window
• Unselected, loaded wells (light gray). These wells contain loaded Std and Pos sample
types. The data from unselected wells do not appear in the Data Analysis window
• Empty wells (dark gray). These wells were not loaded in the Plate Editor window
Figure 43. Three well colors appear in a well selector.
61
Data Analysis Overview
Well Selector Right-Click Menu Items
Right-click on well(s) in the well selector view to select the items listed in Table 20.
Table 20. Right-click menu items in the well selectors
ItemFunction
Well XXView only this well, remove this well from view, set color for
Selected Wells (right-click
and drag)
CopyCopy the content of the well to a clipboard, including Sample
Copy as ImageCopy the well selector view as an image.
Print...Print the well selector view.
Print Selection...Print the current selection.
Export to Excel...Export the data to an Excel spreadsheet.
Export to Text...Export the data as a text document.
Export to Xml...Export the data as a .xml document.
Well LabelsChange the well labels to Sample Type, Target Name or
this well, or exclude this well from analysis.
View only these wells, remove these wells from view, set color
for these wells, or exclude these wells from analysis.
Type and optional Replicate #.
Sample Name.
Temporarily Exclude Wells from Analysis
USING RIGHT-CLICK
1. To exclude a single well, right-click on the well in the well selector, on a fluroescence
trace, or on a point plotted on the standard curve, select Well XX > Exclude from Analysis (Figure 44).
2. To exclude multiple wells, right click and drag to highlight multiple wells, traces or points,
click on Selected Wells > Exclude from Analysis.
62
Figure 44. Right-click to exclude a well from analysis.
NOTE: To re-include an excluded well, click on the appropriate well in the well
selector, right click and select Include Well XX in Analysis.
MiniOpticon Instruction Manual
USING THE PLATE EDITOR
1. Click the Plate Setup button on the toolbar in the Data Analysis window.
2. Clicks View/Edit Plate...
3. Select one or more wells in the well selector view.
4. Click Exclude Wells in Analysis (Figure 45) to exclude the selected wells. This checkbox
is at the bottom of the Plate Editor controls on the right side of the window.
Charts
Figure 45. Exclude Wells in Analysis Checkbox at bottom of the pane.
5. The excluded well(s) are marked with an asterisk (*) in the Plate Editor window.
Alternatively, to permanently remove wells from analysis, clear the contents from wells in the
Plate Editor by clicking the Clear Wells button.
WARNING! You will have to reenter any well content that is cleared.
Each chart in the Data Analysis window displays the data in a different graph and includes
options for adjusting the data. To magnify an area of the chart, select an area by clicking and
dragging the mouse. The software resizes the chart and centers it on the selected area.
TIP: Return the chart to a full view by right-clicking on the chart and selecting Set
Scale to Default from the right-click menu.
Common Right-Click Menu Items for Charts
Right-click menu items are available on all charts. Some of the available items are present for
all charts, and these items can be used to change how the data are displayed or to easily
export the data from a chart (Table 21)
Table 21. Right-click menu items for charts
ItemFunction
CopyCopy the chart into the clipboard.
Save Image As...Save the chart image in the selected image file type. Select
from these formats: PNG (default), GIF, JPG, TIF, or BMP.
63
Data Analysis Overview
Table 21. Right-click menu items for charts (continued)
ItemFunction
Page Setup...Preview and select page setup for printing.
Print...Print the chart.
Show Point ValuesShow the point values when the mouse moves over a point
Set Scale to DefaultReturn to the default chart view after magnifying the chart.
Chart Options...Open the Chart Options window to change the chart,
Charts can be copied into Microsoft Word or PowerPoint documents by clicking on the icon in
the upper right corner of the pane, dragging, and then releasing at the required location. The
image resolution will correspond to that of the screen from which the image was obtained.
NOTE: Menu items that apply to specific charts are described in the next chapter
“Data Analysis Overview” (page 53).
Spreadsheets
on the chart.
including changing the title, selecting limits for the x and y
axes, showing grid lines, and showing minor ticks in the
axes.
The spreadsheets shown in Data Analysis include options for sorting and transferring the data.
Sort the columns by one of these methods:
• Click and drag a column to a new location in the selected table
• Click the column header to sort the data in Ascending or Descending order
To sort up to three columns of data in the Sort window, follow these steps:
1. Right-click on the spreadsheet to open the menu and select Sort.
2. In the Sort window, select the first column title to sort. Sort the data in Ascending or
Descending order.
3. Select more than one column title by selecting the title in the pull-down menu. Select
Ascending or Descending to sort the column in that order.
4. Click OK to sort the data, or click Cancel to stop sorting.
Highlight the data on the associated charts and well selector by holding the mouse pointer
over a cell. If you click in the cell, you can copy the contents to paste into another software
program.
Common Right-Click Menu Items for Spreadsheets
Right-click any spreadsheet view to select the items shown in Table 22.
Table 22. Right-click menu items for spreadsheets.
ItemFunction
CopyCopy the contents of the selected wells to a clipboard,
then, paste the contents into a spreadsheet such as Excel.
Copy as ImageCopy the spreadsheet view as an image file and paste it
into a file that accepts an image file such as text, image, or
spreadsheet files.
64
Export
MiniOpticon Instruction Manual
Table 22. Right-click menu items for spreadsheets. (continued)
ItemFunction
Print...Print the current view.
Print Selection...Print the current selection.
Export to Excel...Export the data to an Excel spreadsheet.
Export to Text...Export the data to a text editor.
Export to Xml...Export the data to an Xml file.
Export to Html...Export the data to an Html file.
Find...Search for text.
Sort...Sort the data in up to three columns.
Select Columns...Select the columns that will be displayed in the
spreadsheet.
Four export options are accessible from the Export drop-down menu.
Export All Data Sheets to Excel
Select Export > Export All Data Sheets to Excel to export all the spreadsheet views from
every tab of the CFX Manager software into individual Excel formatted files.
Export RDML Files
Select Export > Export RDML Files and choose either version 1.1 or 1.0 to open a Save As
window and specify the file name and location for the Real-Time PCR Data Markup Language
(RDML)-formatted file. RDML is a structured and universal data standard for exchanging
quantitative PCR (qPCR) data. The data standard is a text file in Extensible Markup Language
(.xml) format. Refer to the International RDML Consortium website (www.rdml.org) for
additional information about the RDML data exchange format.
NOTE: Save the RDML file as version 1.1 if you are using version 2.3 or higher of
PLUS
qbase
software.
Custom Export
Select Export >Custom Export to open a window in which the fields to be exported and the
file format can be customized (Figure 46).
65
Data Analysis Overview
Figure 46. Custom Export window.
1. Select the export format from the following file export formats (Text *.txt, CSV *.csv,
Excel 2007 *.xlsx, Excel 2003 *.xls, XML *.xml, and HTML *.html).
2. Select the items to be exported by checking the appropriate check boxes.
3. Click the Export button to open a Save As window to specify the file name and location
for the exported file.
Export to LIMS Folder
LIMS compatibility is not currently available for the MiniOpticon™ system.
66
MiniOpticon Instruction Manual
7Data Analysis Windows
Read this chapter for more information about the tabs in the Data Analysis window:
• Quantification tab (page 67)
• Quantification Data tab (page 71)
• Melt Curve tab (page 74)
• Melt Curve Data tab (page 75)
• End Point tab (page 77)
• Allelic Discrimination tab (page 79)
• Custom Data View tab (page 81)
• QC tab (page 82)
• Run Information tab (page 83)
• Data file reports (page 84)
• Well Groups Reports (page 87)
NOTE: The tabs displayed in the data analysis window can be customized by
selecting them in the View menu. This layout will be saved with the file.
Quantification Tab
Use the data in the Quantification tab (Figure 47) to set the data analysis conditions, including
the baseline settings for individual wells and the threshold settings. The Quantification tab
shows data in these four views:
• Amplification chart. Shows the relative fluorescence units (RFUs) for each well at every
cycle. Each trace in the chart represents data from a single fluorophore in one well
• Standard curve. This graph is only shown if the run includes wells designated as
Sample Type Standard. It shows a standard curve with the threshold cycle plotted
against the log of the starting quantity. The legend shows the Reaction Efficiency (E) for
each fluorophore in the wells with a standard sample type
• Well selector. Selects the wells with the fluorescence data you want to show
67
Data Analysis Windows
• Spreadsheet. Shows a spreadsheet of the data collected in the selected wells
Figure 47. Layout for the Quantification tab in Data Analysis window.
Fluorophore Selector
To select the fluorophore data to display in the Quantification tab charts and spreadsheets,
click the fluorophore selector below the Amplification chart. Click the box next to the
fluorophore name to show or hide the fluorophore data throughout the data analysis window.
Trace Styles Window
Open the Trace Styles window (Figure 48) to adjust the appearance of traces in the
amplification and melt curve charts in the Quantification and Melt Curve tabs.
To open this window, follow these steps:
1. Select only one fluorophore in the fluorophore selection boxes (Figure 41) under the
Amplification chart.
2. Click Settings > Trace Styles in the Data Analysis menu bar, or right-click on a trace and
select Trace Styles.
68
MiniOpticon Instruction Manual
Figure 48. Trace Styles window.
Use the tools in the Trace Styles window to adjust the appearance of traces and preview the
changes in the well selector at the bottom of the window.
• Select a specific set of wells by using the well selector. Alternatively, select wells that
contain one sample type in the pull-down menu in the Wells column
• Click the box in the Color column to select a color for the wells
• Select a symbol from the dropdown menu in the Symbol column
•A Color Quick Set can be chosen to color the wells in the manner indicated by the
button label: Random by Well, Random by Replicate, Use Fluor Colors, Use Target
Colors, or Use Sample Colors
• Select the Well Labels by clicking either Sample Type, Target Name, Sample Name,
or Symbol
Log Scale Option
Click the Log Scale box at the bottom of the Amplification chart to view the fluorescence
traces in a semi-log scale, as shown in Figure 49.
Figure 49. Log Scale option selected in the Amplification chart.
TIP: To magnify any area of the chart, click and drag the mouse across an area. To
return to a full view, right-click and select Set Scale to Default from the menu.
69
Data Analysis Windows
Standard Curve Chart
The software creates a Standard Curve chart (Figure 50) in the Quantification tab if the data
include sample types defined as standard (Std) for one fluorophore in the run.
Figure 50. Standard Curve chart.
The Standard Curve chart displays the following information:
• Name for each curve (the fluorophore or target)
• Color of each fluorophore or target
• Reaction efficiency (E). Use this statistic to optimize a multiplex reaction and to
equalize the data for a standard curve
NOTE: The reaction efficiency describes how much of your target is being
produced with each cycle in the protocol. An efficiency of 100% means that you
are doubling your target with each cycle.
• Coefficient of determination, R
correctly the line describes the data (goodness of fit)
• Slope
• y-intercept
2
(written as R^2). Use this statistic to determine how
Chart Right-Click Menu Options
In addition to the common right-click menu options to copy, print and export charts, Table
lists the menu options available only on the Amplification chart.
Table 23. Right-click menu items for spreadsheets.
Menu OptionFunction
Well XX, Fluor/TargetView only this well, remove this well from view, set color for
this trace, or exclude this well from analysis.
Selected TracesView only these wells, remove these wells from view, set
color for these traces, or exclude these wells from analysis.
Show Threshold ValuesDisplay the threshold value for each amplification curve on
the chart.
Trace Styles...Open the Trace Styles window to change trace styles that
appear on the Quantification and Melt Curve tabs.
70
MiniOpticon Instruction Manual
Table 23. Right-click menu items for spreadsheets. (continued)
Menu OptionFunction
Baseline Thresholds...Open the Baseline Thresholds window to change baseline
or thresholds of each fluorophore (changes appear in
Amplification chart in Quantification tab).
Quantification Tab Spreadsheet
Table 24 shows the type of data shown in the spreadsheet at the bottom right side of the
Quantification tab:
Table 24. Quantification tab spreadsheet content
InformationDescription
WellWell position in the plate.
FluorFluorophore detected.
TargetTarget Name loaded in the Plate Editor wells.
ContentA combination of the Sample Type (required) and Replicate #
(optional) loaded in the Plate Editor.
SampleSample Name loaded in the Plate Editor wells.
C
q
Quantification cycle for each trace.
TIP: To make changes to the Content, Target, and Sample, open the Plate Editor by
clicking the Plate Setup button and selecting View/Edit Plate.
Quantification Data Tab
The Quantification Data tab shows spreadsheets that describe the quantification data
collected in each well. Select one of the four options to show the data in different formats:
• Results. Displays a spreadsheet view of the data
• Standard Curve Results. Displays a spreadsheet view of the standard curve data
• Plate. Displays a view of the data in each well as a plate map
• RFU. Choose this spreadsheet to show the RFU quantities in each well for each cycle
TIP: Right-click any spreadsheet for options, including the sort option.
Results Spreadsheet
Select a Results spreadsheet (Figure 51) to see data for each well in the plate.
Figure 51. Quantification Data tab with Results spreadsheet selected.
71
Data Analysis Windows
NOTE: All Std. Dev (standard deviation) calculations apply to the replicate groups
assigned in the wells in the Plate Editor window. The calculations average the Cq
value for each well in the replicate group.
The Results spreadsheet includes the type of information listed in Table 25.
Table 25. Results spreadsheet content
InformationDescription
WellWell position in the plate.
FluorFluorophore detected.
TargetAmplification target name (gene).
ContentSample type and Replicate number.
SampleSample description.
Biological Set NameName of the biological set.
C
q
Cq MeanMean of the quantification cycle for the replicate group.
Cq Std. DevStandard deviation of the quantification cycle for the replicate
Starting Quantity (SQ)Estimate of the starting quantity of the target.
Log Starting QuantityLog of the starting quantity.
SQ MeanMean of the starting quantity.
SQ Std. DevStandard deviation of the starting quantity.
Set PointTemperature of sample in the well for a gradient step.
Sample NoteOne round of denaturation, annealing, and extension, or one
Quantification cycle.
group.
round of annealing and extension steps in a protocol.
Standard Curve Results Spreadsheet
Select the Standard Curve Results Spreadsheet (Figure 52) to see the calculated standard
curve parameters.
Figure 52. Standard Curve Results spreadsheet in the Quantification Data tab
These values can be copied and pasted into a document by right clicking and selecting Copy
or a file can be created by choosing one of the Export options.
72
MiniOpticon Instruction Manual
Table 26. Standard Curve Results spreadsheet contents
Y-interceptPoint at which the curve intercepts the y-axis.
R^2Coefficient of determination.
Plate Spreadsheet
Select the Plate spreadsheet to see a plate map of the data for one fluorophore at a time.
Select each fluorophore by clicking a tab at the bottom of the spreadsheet. Figure 53 shows
the Plate spreadsheet as a plate map.
Figure 53. Plate spreadsheet in the Quantification Data tab.
73
Data Analysis Windows
RFU Spreadsheet
Select the RFU spreadsheet to see the relative fluorescence units (RFU) readings for each well
acquired at each cycle of the run. Select individual fluorophores by clicking a tab at the bottom
of the spreadsheet. The well number appears at the top of each column, and the cycle number
appears to the left of each row (Figure 54).
Melt Curve Tab
Figure 54. RFU spreadsheet in the Quantification Data tab.
For DNA-binding dyes and noncleavable hybridization probes, the fluorescence is brightest
when the two strands of DNA anneal. Therefore, as the temperature rises toward the melting
temperature (Tm), fluorescence decreases at a constant rate (constant slope). At the Tm, there
is a dramatic reduction in the fluorescence with a noticeable change in slope. The rate of this
change is determined by plotting the negative first Regression of fluorescence versus
temperature (-d(RFU)/dT). The greatest rate of change in fluorescence results in visible peaks
and represents the Tm of the double-stranded DNA complexes.
The software plots the RFU data collected during a melt curve as a function of temperature. To
analyze melt peak data, the software assigns a beginning and ending temperature to each
peak by moving the threshold bar. The floor of the peak area is specified by the position of the
melt threshold bar. A valid peak must have a minimum height relative to the distance between
the threshold bar and the height of the highest peak.
Open the Melt Curve tab (Figure 55) to determine the melting temperature (Tm) of amplified
PCR products. This tab shows the melt curve data in these four views:
• Melt Curve. View the real-time data for each fluorophore as RFUs per temperature for
each well
• Melt Peak. View the negative regression of the RFU data per temperature for each well
• Well selector. Select wells to show or hide the data
• Peak spreadsheet. View a spreadsheet of the data collected in the selected well
NOTE: This spreadsheet shows only as many as two peaks for each trace. To see
more peaks, click the Melt Curve Data tab (page 75).
74
MiniOpticon Instruction Manual
Figure 55. Layout of the Melt Curve tab in the Data Analysis window.
Adjust the Melt Curve data by any of these methods:
• Click and drag the threshold bars in the Melt Peak chart to include or exclude peaks
in data analysis
• Select Positive in the Peaks pull-down menu to show the spreadsheet data for the
peaks above the Melt Threshold line, or select Negative to view the spreadsheet
data for the peaks below the Melt Threshold line
• Open the Trace Styles window to change the color of the traces in the Melt Curve
and Melt Peak charts.
• Select a number in the Step Number selector (page 57) to view the Melt Curve data
at another step in the protocol. The list shows more than one step if the protocol
includes plate read (camera icon) in two or more melt curve steps
• Select wells in the well selector to focus on subsets of the data
• Select a well group (page 57) to view and analyze a subset of the wells in the plate.
Select each well group by name in the Well Group pull-down menu in the toolbar
Melt Curve Data Tab
The Melt Curve Data tab shows the data from the Melt Curve tab in multiple spreadsheets that
include all the melt peaks for each trace. Select one of these four options from the drop down
list at the top of the tab to show the melt curve data in different spreadsheets:
• Melt Peaks. List all the data, including all the melt peaks, for each trace
• Plate. List a view of the data and contents of each well in the plate
• RFU. List the RFU quantities at each temperature for each well
• -d(RFU)/dT. List the negative rate of change in RFU as the temperature (T) changes. This
is a first regression plot for each well in the plate
75
Data Analysis Windows
Melt Peaks Spreadsheet
Select the Melt Peaks spreadsheet (Figure 56) to view melt curve data.
The Melt Peaks spreadsheet (Figure 56) includes the type of information shown in Table 27.
Table 27. Melt Peaks spreadsheet content
InformationDescription
WellWell position in the plate.
FluorFluorophore detected.
ContentSample Type listed in the Plate Editor window.
TargetAmplification target (gene).
SampleSample Name listed in the Plate Editor window.
Melt Temperature The melting temperature of each product, listed as one peak (highest) per
Peak HeightHeight of the peak.
Begin
Temperature
End Temperature Temperature at the end of the peak.
Figure 56. Melt Peaks spreadsheet in the Melt Curve Data tab.
row in the spreadsheet.
Temperature at the beginning of the peak.
76
Plate Spreadsheet
Select the Plate spreadsheet to view melt curve data in a plate format.
NOTE: To adjust the peak that the software calls, adjust the threshold line in the
Melt Peak chart on the Melt Curve tab.
The Plate spreadsheet includes the types of information shown in Table 28.
Table 28. Plate spreadsheet content
InformationDescription
ContentA combination of Sample Type (required) and Replicate #
(optional).
SampleSample description.
Peak 1First melt peak (highest).
Peak 2Second (lower) melt peak.
MiniOpticon Instruction Manual
RFU Spreadsheet
Select the RFU spreadsheet to view the fluorescence for each well at each cycle acquired
during the melt curve.
Table 29 lists the types of information shown in the RFU spreadsheet.
Table 29. RFU spreadsheet content
InformationDescription
Well number (A1, A2, A3, A4,
A5...)
TemperatureMelting temperature of the amplified target. Plotted as one
Well position in the plate for the loaded wells.
well per row, and multiple wells for multiple products in the
same well.
-d(RFU)/dT Spreadsheet
Select the -d(RFU)/dT spreadsheet to view the types of data shown in.
Table 30 lists the types of information shown in the -d(RFU)/dT spreadsheet.
Table 30. -d(RFU)/dT spreadsheet content
InformationDescription
Well number (A1, A2, A3, A4,
A5...)
-d(RFU)/dTNegative rate of change in RFU as temperature (T) changes.
End Point Tab
Open the End Point tab to analyze final relative fluorescence units (RFUs) for the sample wells
(Figure 57). The software compares the RFU levels for wells with unknown samples to the RFU
levels for wells with negative controls, and “calls” the unknown as a Positive or Negative.
Positive samples have an RFU value that is greater than the average RFU value of the negative
controls plus the Cut Off Value.
To analyze the end point data, the plate must contain negative controls, or the software cannot
make the call. Run one of these two types of protocols:
• Run a quantification protocol. Set up a standard protocol. After completion of the run,
open the Data Analysis window, adjust the data analysis settings in the Quantification
tab, and then click the End Point tab to pick an end point cycle
• Run an End Point Only protocol. Load the End Point Only protocol in the Plate tab of
the Run Setup window, select or create a plate, and start the run
The End Point tab shows the average RFU values to determine whether or not the target was
amplified by the last (end) cycle. Use these data to determine if a specific target sequence is
present (positive) in a sample. Positive targets have higher RFU values than the Cut Off value
you define.
TIP: To create an end point protocol, open the Protocol tab (Run Setup window)
and select Options > End Point Only Run.
Well position in the plate for the loaded wells.
The software displays these data in the End Point tab:
• Settings. Adjust data analysis settings
77
Data Analysis Windows
• Results. Shows the results immediately after you adjust the Settings
• Well selector. Select the wells with the end point data you want to show
• Well spreadsheet. Shows a spreadsheet of the end RFU collected in the selected wells
Figure 57. Layout of the End Point analysis tab.
The Results list includes this information:
• Lowest RFU value. Lowest RFU value in the data
• Highest RFU value. Highest RFU value in the data
• Negative Control Average. Average RFU for the wells that contain negative controls
• Cut Off Value. Calculated by adding the tolerance (RFU or Percentage of Range listed in
the Settings) and the average of the negative controls. Samples with RFUs that are
greater than the Cut Off Value will be called “Positive”. To adjust the Cut Off Value,
change the RFU or Percentage of Range
The Cut Off Value is calculated using this formula:
Cut Off ValueNegative Control Average Tolerance+=
Select a tolerance using one of these methods:
• RFUs (default). Select this method to use an absolute RFU value for the tolerance. The
minimum RFU tolerance value is 2. The maximum is the absolute value of the highest
RFU value minus the absolute value of the lowest RFU value. The default RFU tolerance
value is 10% of the total RFU range
• Percent of Range. Select this method to use a percentage of the RFU range for the
tolerance. The minimum percent of range is 1 percent. The maximum percent of range is
99 percent. The default percent of range is 10 percent
Adjusting the End Point Data Analysis
78
Adjust the information shown in the End Point tab by using these methods:
• Choose a Fluorophore from the pull-down list to view the data
• Choose an End Cycle to Average value to set the number of cycles that the
software uses to calculate the average end point RFU
• Select RFUs to view the data in relative fluorescence units
MiniOpticon Instruction Manual
• Select Percentage of Range to view the data as a percentage of the RFU range
• Select wells in the well selector to focus on subsets of the data
• Select a well group (page 57) to view and analyze a subset of the wells in the plate.
Select each well group by name in the Well Group pull-down menu in the toolbar
Data Description for End Point Analysis
Table 31 lists the types of information shown in the spreadsheet in the End Point tab.
Table 31. End Point spreadsheet contents
InformationDescription
WellWell position in the plate.
FluorFluorophore detected.
ContentA combination of the Sample type and Replicate #.
End RFURFU at the end point cycle.
CallPositive or Negative, where positive samples have an RFU
value greater than the average RFU of the negative controls
plus the Cut Off Value.
SampleSample Name loaded in the Plate Editor.
Allelic Discrimination Tab
The Allelic Discrimination tab assigns the genotypes to wells with unknown samples using the
RFU or Cq of positive control samples (Figure 58). Use this data to identify samples with
different genotypes, including Allele 1, Allele 2, Heterozygote, Unknown, Control 1, or Control
2.
NOTE: The data for allelic discrimination must come from multiplex runs with at
least two fluorophores. Each fluorophore identifies one allele in all samples.
Allelic discrimination analysis requires the following minimal well contents:
• Two fluorophores in each well, except the wells that contain positive controls can
contain only one fluorophore
• One fluorophore that is common to all wells in the well group
• NTC (no template control) samples if you want to normalize the data
The software displays allelic discrimination data in these layouts:
• RFU or Cq chart. View the data in a graph of RFU or Cq for Allele 1/Allele 2. Each point
in the graph represents data from a single fluorophore in one well
• Well spreadsheet. Shows a spreadsheet listing the allelic discrimination data collected
in each well of the plate
• Well selector. Select the wells with the end point data you want to show
79
Data Analysis Windows
• Well spreadsheet. Shows a spreadsheet listing the allelic discrimination data collected
in the selected wells
Figure 58. Layout of the Allelic Discrimination tab in the Data Analysis window.
Adjusting Data for Allelic Discrimination
The software automatically assigns a genotype to wells with unknown samples based on the
positions of the vertical and horizontal threshold bars, and then lists genotype calls in the
spreadsheet view. To automatically call genotypes, the software uses positive controls (when
available), or estimates the thresholds. The software takes an average Cq or RFU for the
positive controls to automatically set the threshold lines for discriminating the alleles.
Adjust the position of the threshold bars by clicking and dragging them; the software
automatically adjusts the calculations to make new genotype assignments:
• If the run contains three controls in the plate, then the position of the threshold bars
is based on the mean and standard deviation of the RFU or Cq of the controls
• If the number of controls is less than three, then the position of the threshold bars is
determined by the range of RFU or threshold cycle values in the selected fluorophore
Adjust allelic discrimination data by following any of these methods:
• Click and drag the threshold bars in the Allelic Discrimination chart to adjust the calls
in the spreadsheet
• Select a fluorophore for each axis in the chart (X: and Y:) in the settings options on
the bottom right of the window
• Change a call manually by highlighting a row in the spreadsheet, and then selecting
an option in the Call Selected Alleles list (including Allele 1, Allele 2, Heterozygote,
None, Unknown, Control 1, or Control 2)
• Click the Restore Default Thresholds button to restore the vertical and horizontal
bars to their original position, which are indicated by the numbers next to the bars
• Select the Cq Display Mode to view the data as threshold levels. Select RFU
Display Mode to view the data in relative fluorescence units at the selected cycle
80
MiniOpticon Instruction Manual
• Select Normalize Data to normalize the RFU data shown in the chart and
spreadsheet
Normalization changes the data on the chart to a range from 0 to 1 on both axes. To normalize
the data, the plate must contain wells with “no template control” (NTC) sample types for both
Allele 1 and Allele 2. For this plot, the RFU data are normalized to the NTC values as a linear
combination of Allele 1- and Allele 2-specific RFUs. This plot is an effective way to present
RFU data.
The calculation for normalized RFU follows the formulas presented in Livak et al. (1995).
CallIdentity of the allele, including automatic Allele 1, Allele 2,
TypeAuto (Automatic) or Manual. Describes the way the call was
Custom Data View Tab
The Custom Data View tab simultaneously displays multiple panes in a customizable format
(Figure 59).
Heterozygote, None, Unknown, Control 1, Control 2.
made. Automatic means the software selected the call.
Manual means the call was chosen by the user.
The Load a Preset View dropdown list offers a selection of display format templates. The
default view displayed is dependent on the file being analyzed. For example, if Melt Curve data
are present, the Amp+Melt default view is displayed.
The data view can be further customized by:
• Selecting an alternate preset view from the dropdown list
• Using the dropdown menu located at the top of an individual pane
• Using the Rows and Columns dropdown selection options
81
Data Analysis Windows
• Changing individual pane dimensions by clicking and dragging the bars at the
periphery of each pane.
Customized views can be saved as new preset templates by clicking Save as Preset. Existing
presets can be deleted, renamed, or the default preset views restored using Manage Presets.
QC Tab
Open the QC tab to quickly assess the quality of the run data based on the rules defined in the
QC tab in the User Preferences window (see “QC Tab” on page 120).
The QC tab is divided into four areas (Figure 60):
Figure 59. Custom Data View window.
• Amplification chart. Shows the RFU for each well at every cycle. Each trace in the chart
represents data from a single fluorophore in one well
• QC rules table. Shows the available QC rules and the settings that define each rule.
Applied QC rules are indicated by a checkmark. A QC rule can be removed by
unchecking the Use box
• Well selector. Selects the wells with the fluorescence data you want to show
• QC Rule Summary. shows the selected QC rule and highlights wells that fail the rule
82
Figure 60. QC tab layout.
MiniOpticon Instruction Manual
Excluding Wells that Fail QC
Wells failing QC criteria are listed in the results column of the QC rules table and in the
summary pane. These wells can be excluded, or included, in analysis by checking or unchecking the appropriate Exclude Wells checkbox.
Run Information Tab
The Run Information tab (Figure 61) shows the protocol and other information about each run.
Open this tab for the following options:
• View the protocol
• Enter and edit the Notes. Enter or edit notes about the run by typing in the Notes box
• Enter and edit the data ID for the run by typing in the ID box
• View the Other section to see events, such as error messages, that might have
occurred during the run. View these messages to help troubleshoot a run
83
Data Analysis Windows
Figure 61. Layout of the Run Information tab in the Data Analysis window.
TIP: Right-click the Protocol to copy, export, or print it. Right-click the Notes, ID, or
Other pane to undo, cut, copy, paste, delete, or select the text.
Data File Reports
The Report window (Figure 62) shows information about the current data file in the Data
Analysis window. To open a report, select Tools > Reports, or click the Reports button on the
toolbar in the Data Analysis window.
The Report window shows these three sections:
• Menu and toolbar. Select options to format, save and print the report or template
• Options list (top, left side of window). Select options to show in the report
• Options pane (bottom, left side of window). Enter information about a selected option
• Preview pane (right side of window). View the current report in a preview
84
Figure 62. Example of a Report window for a data file.
TIP: The layout of a report can define the type of information that appears in any
report if you save the report as a template. Select Template > Save or Save As to
save the layout of the current report as a template.
MiniOpticon Instruction Manual
Create a Data Analysis Report
To create a report in the Data Analysis window, follow these steps:
1. Make final adjustments to the well contents, selected wells, charts, and spreadsheets in
the Data Analysis window before creating the report.
2. Click the Report button in the Data Analysis toolbar to open the Report window.
3. Change the options you want to include in the report. The report opens with default
options selected. Click the check boxes in the report options list to change whole
categories or individual options within a category.
NOTE: The data that appear in the report are dependent on the current selections
within the tabs of the Data Analysis window. For example, a quantification run
might not contain a standard curve, and therefore those data do not appear in the
Data Analysis window or in the data report.
4. The ordering of categories and items within a report can be changed by clicking and
dragging these to the desired relative position. Items can only be reordered within the
categories to which they belong.
5. Click the Update Report button to update the Report Preview with any changes.
6. Print or save the report. Click the Print Report button in the toolbar to print the current
report. Select File > Save to save the report as a PDF (Adobe Acrobat Reader file), MHT
(Microsoft document), or MHTML (Microsoft document) file and select a location to store
the file. Select File > Save As to save the report with a new name or in a new location.
7. (Optional) Create a report template with the information you want. To save the current
report settings in a template, select Template > Save or Save As. Then load the report
template the next time you want to make a new report.
Data Analysis Report Categories
A report can include any of the options in each category described in Table 33, depending on
the type of data in Data Analysis window.
Table 33. Data analysis report categories in the options list.
CategoryOptionDescription
HeaderTitle, subtitle, and logo for the report
Report InformationRun date, user name, data file name,
data file path, and selected well group
Audit InformationSupplementary information required for
auditing, including signatures
NotesNotes about the data report
Run Setup
Run InformationIncludes the run date, user, data file
name, data file path, and the selected
well group
ProtocolText view of the protocol steps and
options
Plate DisplayShow a plate view of the information in
each well of the plate
Quantification
85
Data Analysis Windows
Table 33. Data analysis report categories in the options list. (continued)
Analysis SettingsIncludes fluorophore, end cycles to
DataSpreadsheet listing the data in each well
DataSpreadsheet listing the parameters for
Copy of the allelic discrimination chart
average, mode, lowest RFU value,
highest RFU value, and cut off value
each QC rule
86
Well Group Reports
To create reports for specific well groups:
1. Select Tools > Well Group Reports in the Data Analysis window.
MiniOpticon Instruction Manual
Figure 63. Well Group Reports window.
2. From the Well Groups Reports window (Figure 63) the Well Groups, Amplification Steps,
and Melt Steps to be included in the reports can be specified by checking the
appropriate box.
3. The destination folder can be changed to another location by clicking the ... button.
4. Select Choose a Report Template to choose a template other the default. Click the ...
button to browse for the template file.
5. Once the reports have been generated, the destination folder can be opened and the
reports viewed by checking the appropriate box.
Click Create Reports to create the reports as specified.
87
Data Analysis Windows
88
MiniOpticon Instruction Manual
8Gene Expression Analysis
Read this chapter for information about performing Gene Expression Analysis:
• Gene Expression (page 89)
• Plate setup for gene expression analysis (page 90)
• Guided plate setup (page 90)
• Bar Chart (page 91)
• Clustergram (page 97)
• Scatter Plot (page 98)
• Volcano Plot (page 99)
• Heat Map (page 100)
• Results (page 101)
• Gene Study (page 101)
• Gene Study Report window (page 104)
• Gene expression calculations (page 106)
Gene Expression
With the use of stringently qualified controls in your reactions, you can perform a gene
expression run to normalize the relative differences in a target concentration among samples.
Typically, message levels for one or more reference genes are used to normalize the
expression levels of a gene of interest. Reference genes take into account loading differences
or other variations represented in each sample, and they should not be regulated in the
biological system being studied.
Open the Gene Expression tab (Figure 66) to evaluate relative differences between PCR
reactions in two or more wells. For example, you can evaluate relative numbers of viral
genomes, or relative number of transfected sequences in a PCR reaction. The most common
application for gene expression study is the comparison of cDNA concentration in more than
one reaction to estimate the levels of steady state messenger RNA.
The software calculates the relative expression level of a target with one of these scenarios:
• Relative expression level of a target sequence (Target 1) relative to another target
(Target 2). For example, the amount of one gene relative to another gene under the
same sample treatment
89
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.