Site Master is the preferred cable and antenna analyzer of
wireless providers, contractors and installers.
Site Master
™
S331D/S332D
Cable and Antenna Analyzer
MS2712
MS2712
MS2712
SiteMaster
SpectrumMaster
CellMaster
MS2711D
Spectrum Master
S331D
Site Master
SiteMaster
SpectrumMaster
MT8212A
Cell Master
CellMaster
Color display option shown
Programming Manual
www.valuetronics.com
Page 2
WARRANTY
The Anritsu product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment.
Anritsu’s obligation covers repairing or replacing products which prove to be defective
during the warranty period. Buyers shall prepay transportation charges for equipment returned to Anritsu for warranty repairs. Obligation is limited to the original purchaser.
Anritsu is not liable for consequential damages.
LIMITATION OF WARRANTY
The foregoing warranty does not apply to Anritsu connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation
outside the environmental specifications of the product. No other warranty is expressed or
implied, and the remedies provided herein are the Buyer’s sole and exclusive remedies.
TRADEMARK ACKNOWLEDGEMENTS
Site Master is a trademark of Anritsu Company.
NOTICE
Anritsu Company has prepared this manual for use by Anritsu Company personnel and
customers as a guide for the proper installation, operation, and maintenance of Anritsu
Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of Anritsu Company, and any unauthorized use or
disclosure of these drawings, specifications, and information is prohibited; they shall not
be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of
the equipment or software programs without the prior written consent of Anritsu Company.
UPDATES
Updates to this manual, if any, may be downloaded from the Anritsu internet site at:
http://www.us.anritsu.com.
January 2008 10580-00100
Copyright ã 2003-2008 Anritsu Co.Revision:C
GENERAL DESCRIPTION..............................................................................................................................................5
Bit Positions: .........................................................................................................................................................6
CONTROL BYTE DESCRIPTIONS ........................................................................................................................7
SETUP SYSTEM –CONTROL BYTE #1(01H) ................................................................................................................7
SET SITE MASTER VNAFREQUENCY –CONTROL BYTE #2(02H)..............................................................................7
EXAMPLES IN C: .....................................................................................................................................................172
EXAMPLE IN VISUAL BASIC....................................................................................................................................178
SIGNAL STANDARDS ..........................................................................................................................................180
4
www.valuetronics.com
Page 7
Programming Overview
Warning: The Anritsu Site Master Serial Port Commands are not backward compatible
with earlier Site Master Models.
This programming menu is written exclusively for Anritsu Site Master model S331D, S332D, S311D, and S312D.
It is intended for firmware 5.00 and above. For information on firmware upgrade, please contact your local Anritsu
service center.
General Description
The Site Master must first be set into “remote” mode for communication with a computer. Remote mode differs
from normal repetitive sweep and single-sweep modes. During remote mode, the Site Master suspends normal
operations and attends to the serial port. The front panel display indicates when the Site Master is in remote mode.
Once in remote mode, you send a series of control bytes and associated data to the Site Master. These control byte
sequences command the Site Master to perform various functions and activities. The serial port supports virtually
all features accessible from the keypad. The only exception is the printer, which requires connection to the same 9
pin connector on the Site Master rear panel.
To complete the communication session, send the control byte to exit remote mode. Site Master resumes normal
operations. You may also exit the remote mode by using the ESCAPE/CLEAR key.
Cabling
Serial communications take place via the 9 pin connector on the back of the Site Master. The Site Master is a DTEtype serial device and therefore requires a “null modem” cable for communication with a computer, which is also a
DTE device. We provide a suitable cable with your Site Master. (Anritsu part number 800-441)
Serial Communication Parameters
When turned on, the Site Master communicates at a default baud rate of 9600. It uses no parity bits, 8 data bits, and
1 stop bit (N-8-1). No hardware handshaking is used. The Set Baud Rate serial command Control Byte #197 (C5h)
can be used to change the baud rate to other common baud rates. It can be reset by turning the Cell Master off.
Communications Error Checking
Since there is no hardware handshaking, byte level error handling must be done by the controlling program. The
expected number of response bytes for each control byte (listed in the control byte description section of this
manual) works well for responses coming from the Site Master. For data streams going to the Site Master, the
“watch dog timer” protects against interrupted transmissions by aborting a control byte sequence if the inter-byte
time limit is exceeded.
Parameter Validation
The Site Master validates input parameters for each control byte sequence. If the input parameters are out of range
or invalid, the Site Master notifies the computer by sending Parameter Error Byte #224 (E0h). The Site Master
discards the received data and waits for the next control byte.
5
www.valuetronics.com
Page 8
Entering Remote Mode
Send the Enter Remote Mode Byte #69 (45h) to the Site Master to enter remote mode at the end of a sweep. Send
the Enter Remote Mode Immediately byte #70 (46h) to enter remote mode in the middle of a sweep.
The Site Master’s serial port buffer is one byte wide. No internal buffer exists, so waiting for the unit’s response is
essential. If the Site Master is not in remote, sending a second byte overwrites the original byte commanding it to go
into remote. If you send control byte #69, you must wait until the end of the sweep. If you send control byte #70,
the unit will enter remote mode as soon as it receives the byte. Note that this means that data stored for the current
sweep may be incomplete.
Once you receive the response string from Site Master, you are in remote mode.
Exiting Remote Mode
Send the Exit Remote control byte #255 (FFh) to the Site Master. Site Master sends a response byte of 255 (FFh)
then exits remote mode. Remote mode can also be exited by pressing the ESCAPE/CLEAR key.
Lifetime of Changes to Site Master Operating Parameters
System parameters changed during remote mode remain changed for normal operation. They are not automatically
written to the non-volatile EEPROM. Turning off power erases the changed settings.
If you want the changes saved, you must save the change to one of the setup memories. Use either the run-time
setup (location 0, which holds the power-on defaults) or one of the nine saved setups. See control byte #18 (12h) for
details.
Write Cycle Limitation of EEPROM
The EEPROM, used to store calibrations, setups and traces has a guaranteed lifetime of at least 100,000 write cycles
and an unlimited number of read cycles. The write cycle limitation is for a specific location. For example, you can
store setup #1 100,000 times and setup #2 100,000 times, etc.
It is for this reason we do not automatically store the changed system parameters to EEPROM. Instead, we provide
a means of changing the operating parameters independent of this limitation.
Be aware of the EEPROM write cycle limitation when programming the Site Master. Keep the number of write
cycles to a minimum.
Documentation Conventions
Through this manual the following conventions will be observed:
Numeric Representation:
Hexadecimal numbers are represented with the suffix h. For example, the decimal number 255 is represented in
hexadecimal as FFh.
Binary numbers are represented with the suffix b. For example, the decimal number 2 is represented in binary as
10b.
Decimal numbers are represented with the prefix # when referring to a control byte (command byte) and without a
prefix or suffix in all other cases.
Bit Positions:
When enumerating bits in a byte, bit 0 will always be the least significant bit (LSB).
6
www.valuetronics.com
Page 9
Control Byte Descriptions
Setup System
Description: Sets system status flags and switches. The current value of the flags can be obtained by executing
command #29, Query System Setup, and parsing the values from the appropriate bytes. The Site Master acts on the
entire byte. So, the state of each of the bits must be defined every time the command is issued. See control byte #29
(1Dh) response bytes 170 (VNA modes) and 275 and 276 (Spectrum Analyzer mode) for current Site Master
configuration.
Bytes to Follow: 2 bytes
1) Status Byte 1
bit 0: Fixed CW Mode On/Off (1b = On, 0b = Off)
bit 1: Not Used
bit 2: LCD Back Light On/Off (1b = On, 0b = Off)
bit 3: Measurement Unit Metric/English (0b = English, 1b = Metric)
bits 4-7: Not Used
2) Status Byte 2
bit 0: RBW Coupling (to span) (1b = Auto 0b = Manual)
bit 1: VBW Coupling (to RBW) (1b = Auto 0b = Manual)
bit 2: Not Used
bits 3-4: Logarithmic Amplitude Units (00b = dBm 01b = dBV 10b = dBmV 11b = dBuV)
bits 5-6: Detection Algorithm (00b = Positive Peak 01b = RMS Average
bit 7: Attenuation Coupling (to ref level) (1b = Auto 0b = Manual)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
– Control Byte #1 (01h)
10b = Negative Peak 11b = Sampling Mode)
238 (EEh) Time-out Error
1
Set Site Master VNA Frequency
Description: Sets the Site Master frequency range. Start and stop frequencies are given in terms of 1 Hz steps. (e.g.
1000.3 MHz would be sent as 1000300000 = 1,000,300,000 Hz.)
Valid range is 25 MHz – 4000 MHz.
Low end is extended to 2 MHz with option 2; and high end is extended to 6000 MHz with option 16.
See control byte #29 (1Dh) response bytes 28 to 35 for current Site Master start and stop frequencies.
This command handles frequency up to 4 GHz. If option 16 is present, then higher frequency can be entered using
the command Set Site Master VNA Extended Frequency whose control byte is #244 (F4h).
Bytes to Follow: 8 bytes
1) Start Frequency (Highest byte)
2) Start Frequency
3) Start Frequency
4) Start Frequency (Lowest byte)
5) Stop Frequency (Highest byte)
6) Stop Frequency
7) Stop Frequency
8) Stop Frequency (Lowest byte)
1
Set the Metric/English flag to the proper value before sending distance information.
– Control Byte #2 (02h)
7
www.valuetronics.com
Page 10
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Invalid frequency range
238 (EEh) Time-out Error
Select Measurement Mode
Description: Sets the measurement mode of the Site Master. The response byte will not be sent until the mode
change is complete.
See control byte #29 (1Dh) response byte 3 for the current Site Master measurement mode.
Bytes to Follow: 1 byte
1) Measurement Mode
00h: RL Frequency
01h: SWR Frequency
02h: Cable Loss Frequency
10h: RL Distance
11h: SWR Distance
30h: Spectrum Analyzer Mode
Description: Sets an individual marker position and status in the current measurement mode.
The Site Master sets the position of a marker by its relative position on the graph. The lowest position is 0 at the
start frequency (or distance). The highest position is the data point number at the stop frequency (or distance). For
example, for a resolution of 130, the first frequency is at position 0. The last frequency is at 129.
To calculate the data point from a frequency (or distance) do the following:
point = ( resolution – 1 ) * ( marker freq – start freq ) / ( stop freq – start freq )
See control byte #29 (1Dh) response bytes 44 to 55 for current frequency markers.
See control byte #29 (1Dh) response bytes 138 to 149 for current distance markers.
See control byte #29 (1Dh) response byte 162 for current marker on/off status.
This byte is not applicable for markers 5 and 6. It will be ignored by the Site Master.
9
www.valuetronics.com
Page 12
Set Site Master VNA Single Limit – Control Byte #6 (06h)
Description: Sets the position and On/Off Status of the Single Limit Line for the VNA modes. See control byte
#103 to set the single limit for the spectrum analyzer mode.
The single limit is a single, horizontal line. It can be set to On/Off in any Site Master mode. If Limit Beep is set to
ON, the Site Master will give an error beep when sweep data appears above the limit line in SWR or Return Loss
mode, or when sweep data appears below the limit line in Cable Loss mode.
The single limit and multiple limit types are mutually exclusive. That is, setting the single limit ON automatically
turns multiple limit lines OFF. See control byte #112 (70h) for information about multiple limits.
See control byte #29 (1Dh) response bytes 56-59, and byte 164 for current Site Master configuration.
Return Loss & Cable Loss:
Limit should be sent as ( dB * 1000 )
Maximum value sent is 60000 which represents 60.00 dB
Minimum value sent is 0 which represents 0.0 dB
SWR:
Limit is in thousandths (of ratio), so it should be sent as ( ratio * 1000 )
Maximum value sent is 65530 which represents 65.53
Minimum value sent is 1000 which represents 1.00
Set DTF Parameter
Description: Sets Distance to Fault parameters.
Be aware using this control byte. The distance to fault parameters are all inter-related. Consequently, the control
byte must change all of those parameters at the same time to properly set them.
Please refer to the Site Master User’s Guide for a detailed explanation of the factors influencing proper selection of
DTF parameters.
Give Start & Stop Distances in hundred-thousandths of meter or foot (12.34 m would be sent as 1234000)
Relative Propagation Velocity is in hundred-thousandths (a Relative Propagation Velocity of 0.850 will be sent as
85000)
Cable Loss is in hundred-thousandths of dB/m or dB/ft (-0.345 dB/m would be sent as 34500)
See control byte #29 (1Dh) response bytes 130-137 (Distance), 150-157 (Propagation Velocity & Cable Loss) for
current Site Master configuration.
Bytes to Follow: 16 bytes
– Control Byte #7 (07h)
10
www.valuetronics.com
Page 13
1) Start Distance (Highest byte)
2) Start Distance
3) Start Distance
4) Start Distance (Lowest byte)
5) Stop Distance (Highest byte)
6) Stop Distance
7) Stop Distance
8) Stop Distance (Lowest byte)
9) Relative Propagation Velocity (Highest byte)
10) Relative Propagation Velocity
11) Relative Propagation Velocity
12) Relative Propagation Velocity (Lowest byte)
13) Cable Loss (Highest byte)
14) Cable Loss
15) Cable Loss
16) Cable Loss (Lowest byte)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Parameter(s) out of range
238 (EEh) Time-out Error
254 (FEh): Internal Error
Set Time/Date
Description: Sets the current time and date.
This Time/Date is stamped into all stored sweeps (for users’ reference).
The Site Master stores bytes as ASCII text. Recommended time form is “hh:mm:ss” (hour:minute:sec).
Recommended date format is “mm/dd/yyyy” (month/day/year).
The current time setting can be found by using control byte #33 to recall trace 0 and examining response bytes 31-
38.
The current date setting can be found by using control byte #33 to recall trace 0 and examining response bytes 21-
30.
Bytes to Follow: 7 bytes
1) Hour
2) Minute
3) Month
4) Day
5) Year (Highest byte)
6) ear (Lowest byte)
7) Daylight Saving (01h = On, 00h = Off)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
– Control Byte #8 (08h)
238 (EEh) Time-out Error
11
www.valuetronics.com
Page 14
Set Trace Name (Reference Number) – Control Byte #9 (09h)
Description: Stores a Reference Number with the sweep trace.
The reference number is also known as the trace name. It is any combination of 16 letters, numbers and the
characters “-“, “,”, “.” and “+”. This command stores a trace name with the sweep trace.
The current reference number is found by recalling trace 0 and examining response bytes 39 to 54.
Description: Sets the serial port echo mode On/Off.
Serial Port Echo Mode uses the single sweep mode (see control byte #11 (0Bh)). At the end of each sweep cycle,
the Site Master sends a Sweep Complete Byte #192 (C0h) to the serial port.
This mode activates once the Site Master exits from the remote mode. Serial Port Echo status can’t be saved to or
recalled from saved setups. Cycling power resets the Serial port echo status to Off.
The Serial Port Echo Mode allows run-time handshaking between the Site Master and computer by doing the
following:
1) Enter remote mode. Set Serial Port Echo Mode On. Exit remote mode.
2) The Site Master sweeps once and then sends the Sweep Complete Byte.
3) After you receive it. Enter remote mode. Recall sweep 0 (last sweep trace in RAM).
4) Exit remote mode. Send Sweep Triggering Byte #48 (30h) and wait for the next sweep cycle.
5) Repeat steps 2-4
Bytes to Follow: 1 byte
1) Serial Port Echo Status
00h : Off
01h : On
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Invalid serial port echo status
238 (EEh) Time-out Error
– Control Byte #10 (0Ah)
Site Master VNA Single Sweep Mode On/Off – Control Byte #11 (0Bh)
Description: Enables or disables the Single Sweep Mode during Site Master VNA modes of operation.
For Single Sweep Mode during the Spectrum Analyzer mode of operation see control byte #108 (6Ch)
Single Sweep Mode activates once the Site Master exits from the remote mode.
When the Site Master returns to local mode, the Site Master stops sweeping, waits for either the Run/Hold Key of
the Site Master keypad or triggering byte #48 (30h).
Site Master also checks for the Enter Remote byte #69 (45h) at the end of each sweep. If present in the buffer, Site
Master returns to remote mode.
Bytes to Follow: 1 byte
12
www.valuetronics.com
Page 15
1) Single Sweep Mode Status
00h : Off
01h : On
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Invalid single sweep mode status
Description: Enables or disables the Watch-dog timer. Default is Disabled.
The Site Master incorporates a watch-dog timer for higher reliability in serial communication. In selected control
bytes (see control byte summary), the Site Master checks for the time interval between each byte received from the
computer. If the time interval exceeds the set time limit (0.5 sec), the Site Master notifies the computer by sending
Time-out Byte #238 (EEh). The Site Master discards the data it just received and then waits for the next control
byte sequence.
The Site Master must be calibrated to give accurate measurements.
The command sequence must be sent in correct order. i.e. Open -> Short -> Load. You can also abort the calibration
by command – “Abort” before the command - “Load” is sent. Once command - “Load” is sent, calibration is
completed, and the old calibration data is lost.
This command is designed to be executed step by step: open, short, load. Issuing any other command during this
command sequence will cause undesired results.
Bytes to Follow: 1 byte
1) Calibration Step to trigger
01h = Open
02h = Short
03h = Load
04h = Not Used
05h = Abort
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Error : Invalid Cal operation or Cal Incomplete
238 (EEh) Time-out Error
– Control Byte #13 (0Dh)
13
www.valuetronics.com
Page 16
2) 240 (F0h): Calibration Step Complete Byte
3
Set Site Master VNA Data Points
Description: Set number of measurement data points for Site Master VNA modes.
Bytes to Follow: 1 byte
1) Number of Data Points
00h = 130 Points
01h = 259 Points
02h = 517 Points
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Invalid number of data points
238 (EEh) Time-out Error
– Control Byte #14 (0Eh)
Set Site Master Calibration Mode
Description: Set the Site Master calibration mode to OSL Cal (standard) or FlexCal.
Description: Saves current trace to the next available memory location. Trace name can be set using control byte
#9, “Set Trace Name (Reference Number)” before executing this command.
This byte is returned only after the instrument is finished with its sweep. Not right away.
14
www.valuetronics.com
Page 17
OBSOLETE: Recall Sweep Trace – Control Byte #17 (11h)
This command exists for backward compatibility with the S33xC models. Features new to the S33xD models
are not available here. To access the new features use Control Byte #33 (21h).
Description: Queries the Site Master for sweep trace data.
NOTE: Before you can recall a sweep stored in non-volatile memory (trace numbers 1-200) you must build a trace
table in the Site Master’s RAM. Use Control Byte #24 to build the trace table. Since the trace table exists in RAM,
Control Byte #24 must be executed every time the Site Master’s power is cycled.
Bytes to Follow: 1 byte
0 = Last sweep trace before entering remote mode (sweep trace in RAM)
1- 200 = Specific saved sweep number (stored sweeps in Flash memory)
Site Master Returns:1-2) # of following bytes (total length - 2)
3-4) Not Used
5-11) Model Number (7 bytes in ASCII)
12-15) Software Version (4 bytes ASCII)
16) Measurement Mode
17-20) Time/Date (in Long Integer
21-30) Date in String Format (mm/dd/yyyy)
31-38) Time in String Format (hh:mm:ss)
39-54) Reference number stamp (16 bytes in ASCII)
55-56) # data points (130, 259, 517 or 400)
For all “Site Master Modes” :
57) Start Frequency
58) Start Frequency
59) Start Frequency
60) Start Frequency (Lowest byte)
61) Stop Frequency (Highest byte)
62) Stop Frequency
63) Stop Frequency
64) Stop Frequency (Lowest byte)
65) Minimum Frequency Step Size (Highest byte)
66) Minimum Frequency Step Size
67) Minimum Frequency Step Size
68) Minimum Frequency Step Size (Lowest byte)
69) Scale Top
7
(Highest byte)
70) Scale Top
71) Scale Top
72) Scale Top (Lowest byte)
73) Scale Bottom (Highest byte)
74) Scale Bottom
75) Scale Bottom
76) Scale Bottom (Lowest byte)
77) Frequency Marker 1
78) Frequency Marker 1 (Lowest byte)
4
5
6
(Highest byte)
8
(Highest byte)
)
4
Refer to Control Byte #3 “Select Measurement Mode” for detailed value.
5
Time/Date long integer representation is in seconds since January 1, 1970
6
Frequency units are Hz
7
See Control Byte #4 “Set Site Master Scale” for data format
8
marker point = (# of data points – 1 ) * ( marker freq – start freq ) / ( stop freq – start freq ) where # of data points
can be found in bytes 55-56, start freq is in bytes 57-60, and stop freq is in bytes 61-64.
15
www.valuetronics.com
Page 18
79) Frequency Marker 2 (Highest byte)
80) Frequency Marker 2 (Lowest byte)
81) Frequency Marker 3 (Highest byte)
82) Frequency Marker 3 (Lowest byte)
83) Frequency Marker 4 (Highest byte)
84) Frequency Marker 4 (Lowest byte)
85) Frequency Marker 5 (Highest byte)
86) Frequency Marker 5 (Lowest byte)
87) Frequency Marker 6 (Highest byte)
88) Frequency Marker 6 (Lowest byte)
89) Single Limit
9
(Highest byte)
90) Single Limit
91) Single Limit
92) Single Limit (Lowest byte)
93) Multiple Limit Segment # (1)
94) Multiple Limit Segment Status
95) Multiple Limit Start X
10
(Highest byte)
96) Multiple Limit Start X
97) Multiple Limit Start X
98) Multiple Limit Start X (Lowest byte)
99) Multiple Limit Start Y (Highest byte)
100) Multiple Limit Start Y (Lowest byte)
101) Multiple Limit End X (Highest byte)
102) Multiple Limit End X
103) Multiple Limit End X
104) Multiple Limit End X (Lowest byte)
105) Multiple Limit End Y (Highest byte)
106) Multiple Limit End Y (Lowest byte)
107–162) Repeat bytes 93-106 for segments 2-5
163) Start Distance
11
(Highest byte)
164) Start Distance
165) Start Distance
166) Start Distance (Lowest byte)
167) Stop Distance (Highest byte)
168) Stop Distance
169) Stop Distance
170) Stop Distance (Lowest byte)
171) Distance Marker 1
12
(Highest byte)
172) Distance Marker 1 (Lowest byte)
173) Distance Marker 2 (Highest byte)
174) Distance Marker 2 (Lowest byte)
175) Distance Marker 3 (Highest byte)
176) Distance Marker 3 (Lowest byte)
177) Distance Marker 4 (Highest byte)
178) Distance Marker 4 (Lowest byte)
179) Distance Marker 5 (Highest byte)
180) Distance Marker 5 (Lowest byte)
181) Distance Marker 6 (Highest byte)
182) Distance Marker 6 (Lowest byte)
183) Relative Propagation Velocity
9
See Control Byte #6 “Set Site Master Single Limit” for data format.
10
See Control Byte #112 “Set Site Master Segmented Limit Lines” for data format.
109) Multiple Upper Limit 1 End X (Frequency in Hz) (Highest byte)
110) Multiple Upper Limit 1 End X (Frequency in Hz)
111) Multiple Upper Limit 1 End X (Frequency in Hz)
112) Multiple Upper Limit 1 End X (Frequency in Hz) (Lowest byte)
113) Multiple Upper Limit 1 End Y (Power Level) (Highest byte)
114) Multiple Upper Limit 1 End Y (Power Level)
115) Multiple Upper Limit 1 End Y (Power Level)
116) Multiple Upper Limit 1 End Y (Power Level) (Lowest byte)
117-260) Multiple Upper Limits 2-5, Multiple Lower Limits 1-5 (see bytes 101-116 for format)
261) RBW Setting (Frequency in Hz) (Highest byte)
262) RBW Setting (Frequency in Hz)
263) RBW Setting (Frequency in Hz)
264) RBW Setting (Frequency in Hz) (Lowest byte)
265) VBW Setting (Frequency in Hz) (Highest byte)
266) VBW Setting (Frequency in Hz)
267) VBW Setting (Frequency in Hz)
268) VBW Setting (Frequency in Hz) (Lowest byte)
269) OCC BW Method (0b if % of power, 1b = dB down)
270) OCC BW % Value
24
(Highest byte)
271) OCC BW % Value
272) OCC BW % Value
273) OCC BW % Value (Lowest byte)
274) OCC BW dBc
25
(Highest byte)
275) OCC BW dBc
276) OCC BW dBc
277) OCC BW dBc (Lowest byte)
278) Attenuation
26
(Highest byte)
279) Attenuation
280) Attenuation
281) Attenuation (Lowest byte)
282-297)Antenna Name(16 bytes in ASCII)
298) Status Byte 1: ( 0b = Off , 1b = On) (LSB) bit 0 : Marker 1 On/Off
bit 1 : Marker 2 On/Off
bit 2 : Marker 3 On/Off
bit 3 : Marker 4 On/Off
bit 4 : Marker 5 On/Off
bit 5 : Marker 6 On/Off
bits 6-7 : Not Used
299) Status Byte 2: ( 0b = Off , 1b = On) (LSB) bit 0 : Not Used
bit 1 : Marker 2 Delta On/Off
23
Value sent as (value in dBm * 1000) + 270,000
24
% value is 0-99
25
dBc value 0 – 120 dBc
26
Value sent as ( value in dB * 1000 )
19
www.valuetronics.com
Page 22
bit 2 : Marker 3 Delta On/Off
bit 3 : Marker 4 Delta On/Off
bits 4-7: Not Used
298) Status Byte 3: (0b = Off, 1b = On)
(LSB) bit 0 : Antenna Factor Correction On/Off
bits 1-2 : Detection Alg (00b = pos. peak 01b = average 10b = neg. peak)
bits 3-4 : Amplitude Units (00b = dBm 01b = dBV 10b = dBmV 11b = dBuV)
bit 5 : Channel Power On/Off
bit 6 : Adjacent Channel Power On/Off
bit 7 : Not Used
299) Status Byte 4
27
(0b = Off/Beep if data is BELOW line, 1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Limit Type (0b = Single, 1b = Multiple)
bit 1 : Not Used
bit 2 : Single Limit On/Off
bit 3 : Single Limit Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Upper Segment 1 Status On/Off
bit 5 : Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
28
bit 6 : Multiple Limit Upper Segment 2 Status On/Off
bit 7 : Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
300) Status Byte 5
( 0b = Off/Beep if data is below line, 1b = On/Beep if data is above line)
(LSB) bit 0 : Multiple Limit Upper Segment 3 Status On/Off
bit 1 : Multiple Limit Upper Segment 3 Beep Level ABOVE/BELOW
bit 2 : Multiple Limit Upper Segment 4 Status On/Off
bit 3 : Multiple Limit Upper Segment 4 Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Upper Segment 5 Status On/Off
bit 5 : Multiple Limit Upper Segment 5 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Lower Segment 1 Status On/Off
bit 7 : Multiple Limit Lower Segment 1 Beep Level ABOVE/BELOW
29
303) Status Byte 6
(0b = Off/Beep if data is BELOW line, 1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Multiple Limit Lower Segment 2 Status On/Off
bit 1 : Multiple Limit Lower Segment 2 Beep Level ABOVE/BELOW
bit 2 : Multiple Limit Lower Segment 3 Status On/Off
bit 3 : Multiple Limit Lower Segment 3 Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Lower Segment 4 Status On/Off
bit 5 : Multiple Limit Lower Segment 4 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Lower Segment 5 Status On/Off
bit 7 : Multiple Limit Lower Segment 5 Beep Level ABOVE/BELOW
304) Status Byte 7
bits 0-6: Number of sweeps to average (1-25, 1 implies no averaging)
bit 7: Not Used
305) Reference Level Offset
30
(Highest byte)
306) Reference Level Offset
307) Reference Level Offset
308) Reference Level Offset (Lowest byte)
309-338) Not Used
339-1938) Sweep Data (400 points * 4 bytes/point= 1600 bytes)
4 bytes for each data point
27
For bits 2 and 0, 00=no limit, 10=single limit, 01=multiple limit, 11=multiple limit.
28
Upper limits always trigger an error beep if data is ABOVE the limit segment, for example, this bit is always 1b.
29
LOWER limits always trigger an error beep if data is BELOW the limit segment, for example, this bit is always
111 – 114) E Bit Error Count (E1 Only)
115 – 118) Errored Seconds
119 – 122) Bit Count
123 – 126) Bit Errors
127) User Defined Pattern (convert to binary for pattern) (Highest byte)
128) User Defined Pattern
129) User Defined Pattern
130) User Defined Pattern (Lowest byte)
131 – 138) Measurement Start Time String (ASCII string: “HH:MM:SS”)
139 – 150) Reserved
151 – 158) Measurement Stop Time String (ASCII string: “HH:MM:SS”)
159 – 170) Reserved
171 – 181) Elapsed Time String (ASCII string: “DD,HH:MM:SS”)
182 – 189) Bit Error Rate String (ASCII string in engineering format: x.xxE-xx)
190 – 689) 100 data points with 5 bytes for each data point.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Not Used Not Used
690 – 800) Not Used
Site Master Returns (For invalid sweeps/empty stored sweep locations): 11 bytes
1-2) Number of following bytes (9 bytes for invalid sweep recall)
3-4) Model # (unsigned integer, 14h for Site Master S33xD)
5-11) Extended Model # (7 bytes in ASCII)
Site Master Returns (Invalid sweep location): 1 byte
byte has information about Carrier Loss, Frame Loss, BPV and CRC
1
Following 4 bytes corresponds to the Bit Error Count
Break down of the 1
st
byte :
Carrier
Loss
Frame Loss BPV Error
CRC / EBit Error
Any Error
Save System Setup
Description: Saves current system setup parameters to a specific setup store location.
The Site Master saves all parameters described in Query System Status - Control Byte #29 (1Dh), (except Serial Port
Echo Status) to the specified store location. Store location 0 is the run-time setup of the Site Master. It holds the
power-on defaults of the Site Master.
Bytes to Follow: 1 byte
1) Location to save system setup parameters:
0 – 10 for SWR Mode, Return Loss Mode, Cable Loss Mode and DTF Mode
0 – 5 for Spectrum Analyzer Mode (S332D only)
0 – 5 for Power Meter Mode (with Option 29 only)
0 – 5 for T1/E1 Modes (with Option 50 only)
Description: Recalls system setup parameters from a specific store location. Storage locations depend on the
measurement mode of the current setup. When the current mode is Spectrum Analyzer, Spectrum Analyzer setups
(1-5) can be recalled. When the current mode is one of the Site Master VNA modes (SWR, RL, CL, DTF), one of
the 10 VNA mode setups can be recalled. When the current mode is T1/E1, one of the T1/E1 setups can be recalled
(1-5).
The Site Master recalls all parameters described in Query System Status - Control Byte #29 (1Dh), (except Serial
Port Echo Status) from the specified store location. The recalled setup does not automatically become the power-on
runtime setup when exiting remote. Therefore, a call to #29 will not display the parameters in that setup.
You may want to save the recalled setup as the run-time setup by saving it to setup location 0 (which holds the
power-on runtime setup). See control byte #18 (12h) for details.
Bytes to Follow: 1 byte
1) Location from which to recall system setup parameters:
0 = Run time setup for all measurement modes
1 – 10 = Saved setups for Site Master VNA modes SWR, RL, CL, DTF
1 – 5 = Saved setups for Spectrum Analyzer mode (S332D only)
1 – 5 = Saved setups for Power Meter mode (with Option 29 only)
1 – 5 = Saved setups for T1/E1 modes (with Option 50 only)
254 = Default setup, current mode
255 = Default setup, all modes
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Invalid store location or no saved setup
227 (E3h) Frequency Mismatch Error
238 (EEh) Time-out Error
OBSOLETE: Query System Status
This command exists for backward compatibility with the S33xC models. Features new to the S33xD models
are not available here. To access the new features use Control Byte #29 (1Dh).
Description: Queries the Site Master for current system settings.
The current state of the Site Master represents the state after the last successful remote control operation.
For example, change the start frequency to another valid frequency while in remote mode, then execute control byte
#20. The new start frequency will be returned in bytes 4-7, even though no sweep has been performed with that
frequency.
Bytes to Follow: 0 bytes
Site Master Returns: 434 bytes
1) Measurement Mode
2) Site Master Mode Data Points (Higher byte)
3) Site Master Mode Data Points (Lower byte)
4) Start Frequency (Frequency in Hz) (Highest byte)
5) Start Frequency
6) Start Frequency
7) Start Frequency (Lowest byte)
8) Stop Frequency (Frequency in Hz)
9) Stop Frequency
32
Refer to Control Byte #3 “Select Measurement Mode” for valid measurement modes.
32
– Control Byte #20 (14h)
34
(Highest byte)
23
www.valuetronics.com
Page 26
10) Stop Frequency
11) Stop Frequency (Lowest byte)
12) Scale Start (Highest byte)
33
13) Scale Start
14) Scale Start
15) Scale Start (Lowest byte)
16) Scale Stop (Highest byte)
17) Scale Stop
18) Scale Stop
19) Scale Stop (Lowest byte)
20) Frequency Marker 1 (Higher byte)
34
21) Frequency Marker 1(Lower byte)
22) Frequency Marker 2 (Higher byte)
23) Frequency Marker 2 (Lower byte)
24) Frequency Marker 3 (Higher byte)
25) Frequency Marker 3 (Lower byte)
26) Frequency Marker 4 (Higher byte)
27) Frequency Marker 4 (Lower byte)
28) Frequency Marker 5 (Higher byte)
29) Frequency Marker 5 (Lower byte)
30) Frequency Marker 6 (Higher byte)
31) Frequency Marker 6 (Lower byte)
32) Site Master Single Limit (Highest byte)
35
33) Site Master Single Limit
34) Site Master Single Limit
35) Site Master Single Limit (Lowest byte)
36) Multiple Limit Segment # (1)
37) Multiple Limit Segment Status (0h = Off, 01h = On )
38) Multiple Limit Segment Start X (Highest byte)
36
39) Multiple Limit Segment Start X
40) Multiple Limit Segment Start X
41) Multiple Limit Segment Start X (Lowest byte)
42) Multiple Limit Segment Start Y (Higherbyte)
43) Multiple Limit Segment Start Y (Lower byte)
44) Multiple Limit Segment End X (Highest byte)
45) Multiple Limit Segment End X
46) Multiple Limit Segment End X
47) Multiple Limit Segment End X (Lowest byte)
48) Multiple Limit Segment End Y (Higher byte)
49) Multiple Limit Segment End Y (Lower byte)
50-105) Repeat bytes 36 – 49 for segments 2 - 5
106) Start Distance (Highest byte)
37
107) Start Distance
108) Start Distance
109) Start Distance (Lowest byte)
110) Stop Distance (Highest byte)
111) Stop Distance
112) Stop Distance
113) Stop Distance (Lowest byte)
33
See “Set Site Master Scale” Control Byte #4 for data format.
(LSB) bit 0 : Site Master Marker 1 On/Off
bit 1 : Site Master Marker 2 On/Off
bit 2 : Site Master Marker 3 On/Off
bit 3 : Site Master Marker 4 On/Off
bit 4 : Site Master Marker 5 On/Off
bit 5 : Site Master Marker 6 On/Off
bits 6- 7 : Not Used
379) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Not Used
bit 1 : Site Master Marker 2 Delta On/Off
bit 2 : Site Master Marker 3 Delta On/Off
bit 3 : Site Master Marker 4 Delta On/Off
bits 4-7: Not Used
380) Status Byte 3: ( 0b = Off , 1b = On)
(LSB) bit 0 : Spectrum Analyzer Mode Marker 1 On/Off
bit 1 : Spectrum Analyzer Mode Marker 2 On/Off
bit 2 : Spectrum Analyzer Mode Marker 3 On/Off
bit 3 : Spectrum Analyzer Mode Marker 4 On/Off
bit 4 : Spectrum Analyzer Mode Marker 5 On/Off
bit 5 : Spectrum Analyzer Mode Marker 6 On/Off
bits 6 - 7 : Not Used
381) Status Byte 4: (0b = Off, 1b = On)
(LSB) bit 0 : Not Used
bit 1 : Spectrum Analyzer Mode Marker 2 Delta On/Off
bit 2 : Spectrum Analyzer Mode Marker 3 Delta On/Off
bit 3 : Spectrum Analyzer Mode Marker 4 Delta On/Off
bits 4-7: Not Used
382) Status Byte 5: ( 0b = Off , 1b = On)
(LSB) bit 0 : Site Master Limit Type (0b = Single, 1b = Multiple)
bit 1 : Site Master Limit Beep ON/OFF
bit 2 : FREQ-SWR Multiple Limit Segment 1 Status On/Off
bit 3 : FREQ-SWR Multiple Limit Segment 2 Status On/Off
bit 4 : FREQ-SWR Multiple Limit Segment 3 Status On/Off
bit 5 : FREQ-SWR Multiple Limit Segment 4 Status On/Off
bit 6 : FREQ-SWR Multiple Limit Segment 5 Status On/Off
bit 7 : Not Used
383) Status Byte 6: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2 : FREQ-RL Multiple Limit Segment 1 Status On/Off
bit 3 : FREQ-RL Multiple Limit Segment 2 Status On/Off
bit 4 : FREQ-RL Multiple Limit Segment 3 Status On/Off
bit 5 : FREQ-RL Multiple Limit Segment 4 Status On/Off
bit 6 : FREQ-RL Multiple Limit Segment 5 Status On/Off
bit 7 : Not Used
384) Status Byte 7: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2 : FREQ-CL Multiple Limit Segment 1 Status On/Off
bit 3 : FREQ-CL Multiple Limit Segment 2 Status On/Off
bit 4 : FREQ-CL Multiple Limit Segment 3 Status On/Off
bit 5 : FREQ-CL Multiple Limit Segment 4 Status On/Off
bit 6 : FREQ-CL Multiple Limit Segment 5 Status On/Off
bit 7 : Not Used
385) Status Byte 8: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2 : DIST-SWR Multiple Limit Segment 1 Status On/Off
bit 3 : DIST-SWR Multiple Limit Segment 2 Status On/Off
bit 4 : DIST-SWR Multiple Limit Segment 3 Status On/Off
bit 5 : DIST-SWR Multiple Limit Segment 4 Status On/Off
bit 6 : DIST-SWR Multiple Limit Segment 5 Status On/Off
bit 7 : Not Used
386) Status Byte 9: (Ob = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2 : DIST-RL Multiple Limit Segment 1 Status On/Off
bit 3 : DIST-RL Multiple Limit Segment 2 Status On/Off
bit 4 : DIST-RL Multiple Limit Segment 3 Status On/Off
bit 5 : DIST-RL Multiple Limit Segment 4 Status On/Off
bit 6 : DIST-RL Multiple Limit Segment 5 Status On/Off
bit 7 : Not Used
387) Status Byte 10: ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Limit Type (0b = Single, 1b = Multiple)
bit 1 : SPA Single Limit Beep On/Off
bit 2 : SPA Single Limit Status On/Off
bit 3 : SPA Single Limit Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Upper Segment 1 Status On/Off
bit 5 : SPA Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Upper Segment 2 Status On/Off
bit 7 : SPA Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
388) Status Byte 11 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Multiple Limit Upper Segment 3 Status On/Off
bit 1 : SPA Multiple Limit Upper Segment 3 Beep Level ABOVE/BELOW
bit 2 : SPA Multiple Limit Upper Segment 4 Status On/Off
bit 3 : SPA Multiple Limit Upper Segment 4 Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Upper Segment 5 Status On/Off
bit 5 : SPA Multiple Limit Upper Segment 5 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Lower Segment 1 Status On/Off
bit 7 : SPA Multiple Limit Lower Segment 1 Beep Level ABOVE/BELOW
389) Status Byte 12 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Multiple Limit Lower Segment 2 Status On/Off
Beep level is always 1b for upper segmented limit line
55
Beep level is always 0b for lower segmented limit line
54
55
28
www.valuetronics.com
Page 31
bit 2 : SPA Multiple Limit Lower Segment 3 Status On/Off
bit 3 : SPA Multiple Limit Lower Segment 3 Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Lower Segment 4 Status On/Off
bit 5 : SPA Multiple Limit Lower Segment 4 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Lower Segment 5 Status On/Off
bit 7 : SPA Multiple Limit Lower Segment 5 Beep Level ABOVE/BELOW
390) Status Byte 13:
(LSB) bits 0 - 1 : DTF Windowing Mode
bit: 1 0
| |
0 0 - Rectangular (No Windowing)
0 1 - Nominal Side Lobe
1 0 - Low Side Lobe
1 1 - Minimum Side Lobe
bits 2 – 7 : Not Used
391) Status Byte 14: (0b = Off, 1b = On )
(LSB) bit 0 : Fixed CW Mode On/Off
bit 1 : Site Master Cal On/Off
bit 2 : LCD Back Light On/Off
bit 3 : Measurement Unit Metric/English (0b = English, 1b = Metric)
bit 4 : InstaCal On/Off
bits 5 -7 : Not Used
392) Status Byte 15: (0b = Off, 1b = On)
(LSB) bit 0 : Antenna Factors Correction On/Off
bit 1 : Not Used
bit 2 : SPA Cal Status On/Off
bits 3-4 : Amplitude Units (00b = dBm 01b = dBV 10b = dBmV 11b = dBuV)
bits 5-6 : Detection alg (00b = pos. peak 01b = average 10b = neg. peak, 11b= sampling
mode)
bit 7 : Not Used
393) Status Byte 16: (0b = Off, 1b = On)
(LSB) bit 0: Serial Port Echo Status On/Off
bit 1: Return Sweep Time On/Off
bit 2: RBW Coupling (1b = auto, 0b = manual)
bit 3: VBW Coupling (1b = auto, 0b = manual)
bit 4: Attenuation Coupling (1b = auto, 0b = manual)
Description: Triggers a self test on the Site Master.
Bytes to Follow: 0 bytes
Site Master Returns: 12 bytes
1) Self-test report: (0b = Fail, 1b = Pass)
(LSB) bit 0 : Phase Lock Loop
bit 1 : Integrator
bit 2 : Battery
bit 3 : Temperature
bit 4 : EEPROM read/write
bit 5 : RTC Battery
bits 6- 7 : Not Used
2) Self-test report: (0b = Fail, 1b = Pass)
(LSB) bit 0 : Spectrum Analyzer Lock
bits 1–7 : Not Used
Battery Voltage in 1/10th of a Volt (e.g. 124 = 12.4 Volts)
Temperature in 1/10th of degree Celsius (e.g. 362 = 36.2
on the current measurement unit (Metric or English) selected
– Control Byte #21 (15h)
o
C) or degree Fahrenheit (e.g. 934 = 93.4 oF), depending
Read Fail Counter
Description: Reads the Fail Counter. Values are integer numbers of failures.
Bytes to Follow: 0 bytes
Site Master Returns: 8 bytes
1) Value of SM Lock Fail Counter (Higher byte)
2) Value of SM Lock Fail Counter (Lower byte)
3) Value of Integration Fail Counter (Higher byte)
4) Value of Integration Fail Counter (Lower byte)
5) Value of SA Lock Fail Counter (Higher byte)
6) Value of SA Lock Fail Counter (Lower byte)
7) Value of SA Fatal Error Counter (Higher byte)
8) Value of SA Fatal Error Counter (Lower byte)
30
– Control Byte #22 (16h)
www.valuetronics.com
Page 33
Clear Fail Counters – Control Byte #23 (17h)
Description: Resets the Lock Fail Counters, Integrator Fail Counter and spectrum analyzer Fatal Error Counter.
Bytes to Follow: 0 bytes
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
Query Trace Names
Description: Returns a list of all saved traces.
Bytes to Follow: 0 bytes
Site Master Returns: 3 + (41 x number of save traces) bytes
1-2) # of saved traces
For each trace:
1-2) Trace Index
3) Measurement Mode (refer to Control Byte #3)
4-21) Date/Time in string format (“MM/DD/YYYYHH:MM:SS”)
22-25) Date/Time as Unsigned Long Integer (Seconds Since January 1, 1970)
26-41) Trace Name (16 bytes)
255 (FFh) Operation Complete Byte
Delete Sweep Trace
Description: Delete single trace or all stored sweep traces in Site Master.
Bytes to Follow: 1 byte
1) 0 - Delete all traces
X - Delete single trace #X
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
– Control Byte #24 (18h)
– Control Byte #25 (19h)
OBSOLETE: Upload SPA Sweep Trace
This command exists for backward compatibility with the S33xC models. Features new to the S33xD models
are not available here. To access the new features use Control Byte #36 (24h).
Description: Uploads a spectrum analyzer sweep trace to Site Master.
For data formats, refer to the footnotes listed beside the return bytes.
Bytes to Follow: 1921 bytes
1-2) # of following bytes (1919)
3) Measurement Mode
4-7) Time/Date (long integer format
8-17) Date in String Format (mm/dd/yyyy)
60
See Control Byte #3 “Select Measurement Mode” for measurement modes.
61
Time/Date long integer representation is in seconds since January 1, 1997.
31
www.valuetronics.com
– Control Byte #26 (1Ah)
60
61
)
Page 34
18-25) Time in String Format (hh:mm:ss)
26-41) Reference Number/Trace Name (16 bytes in ASCII)
42-43) # data points (400)
44) Start Frequency (in Hz) (Highest byte)
45) Start Frequency (in Hz)
46) Start Frequency (in Hz)
47) Start Frequency (in Hz) (Lowest byte)
48) Stop Frequency (in Hz) (Highest byte)
49) Stop Frequency (in Hz)
50) Stop Frequency (in Hz)
51) Stop Frequency (in Hz) (Lowest byte)
52) Center Frequency (in Hz) (Highest byte)
53) Center Frequency (in Hz)
54) Center Frequency (in Hz)
55) Center Frequency (in Hz) (Lowest byte)
56) Frequency Span (in Hz) (Highest byte)
57) Frequency Span (in Hz)
58) Frequency Span (in Hz)
59) Frequency Span (in Hz) (Lowest byte)
60) Ref Level
62
(Highest byte)
61) Ref Level
62) Ref Level
63) Ref Level (Lowest byte)
64) Scale per div
63
(Highest byte)
65) Scale per div
66) Scale per div
67) Scale per div (Lowest byte)
68) Marker 1
64
(Higher byte)
69) Marker 1 (Lower byte)
70) Marker 2 (Higher byte)
71) Marker 2 (Lower byte)
72) Marker 3 (Higher byte)
73) Marker 3 (Lower byte)
74) Marker 4 (Higher byte)
75) Marker 4 (Lower byte)
76) Marker 5 (Higher byte)
77) Marker 5 (Lower byte)
78) Marker 6 (Higher byte)
79) Marker 6 (Lower byte)
80) Single Limit
65
(Highest byte)
81) Single Limit
82) Single Limit
83) Single Limit (Lowest byte)
84) Multiple Upper Limit 1 Start X (Frequency in Hz) (Highest byte)
85) Multiple Upper Limit 1 Start X (Frequency in Hz)
86) Multiple Upper Limit 1 Start X (Frequency in Hz)
87) Multiple Upper Limit 1 Start X (Frequency in Hz) (Lowest byte)
Valid frequencies (in Hz) are 10,000 30,000 100,000 1,000,000
67
Valid frequencies (in Hz) are 100, 300, 1,000 3,000 10,000 30,000 100,000 300,000
68
Value sent as (value * 1000)
33
www.valuetronics.com
Page 36
bit 7: Not Used
284) Status Byte 4
(0b = Off/Beep if data is BELOW line, 1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Limit Type (0b = Single, 1b = Multiple)
bit 1 : Single Limit On/Off
bit 2 : Single Limit Beep Level (0b = beep when data is below line 1b = above)
bit 3 : Not Used
bit 4 : Multiple Limit Upper Segment 1 Status On/Off
bit 5 : Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Upper Segment 2 Status On/Off
bit 7 : Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
285) Status Byte 5
(0b = Off/Beep if data is BELOW line, 1b =On/Beep if data is ABOVE line)
(LSB) bit 0 : Multiple Limit Upper Segment 3 Status On/Off
(LSB) bits 0-6: Number of Sweeps to Average (1-25, 1 implies no averaging)
bit 7 : Not Used
288) Reference Level Offset
69
(Highest byte)
289) Reference Level Offset
290) Reference Level Offset
291) Reference Level Offset (Lowest byte)
292-321) Not Used
322-1921) Sweep Data (400 points * 4 bytes/point = 1600 bytes)
4 bytes for each data point
1. dBm
70
(Highest byte)
2. dBm
3. dBm
4. dBm (Lowest byte)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Not enough bytes transferred
225 (E1h) Memory Error: Not enough memory to store data
238 (EEh) Time-out Error
69
Value sent as (Value in dBm * 1000 ) + 270,000
70
Value sent as (Value in dBm * 1000 ) + 270,000
34
www.valuetronics.com
Page 37
Query Sweep Memory – Control Byte #27 (1Bh)
Description: Queries Site Master for percentage of memory that is available for trace storage.
Bytes to Follow: 0 bytes
Site Master Returns: 1 byte
1) % of memory currently available (0 to 100)
OBSOLETE: Upload Site Master Sweep Trace
– Control Byte #28 (1Ch)
This command exists for backward compatibility with the S33xC models. Features new to the S33xD models
are not available here. To access the new features use Control Byte #36 (24h).
Description: Uploads a Site Master Mode sweep trace to the Site Master.
Bytes to Follow: 1255, 2287, or 4351 Bytes (depending on resolution)
1-2) # of following bytes
3) Measurement Mode
71
4-7) Time/Date (in Long Integer)
8-17) Date in String Format (mm/dd/yyyy)
18-25) Time in String Format (hh:mm:ss)
26-41) Reference number stamp (16 ASCII bytes)
42-43) # of data points
44) Start Frequency (Highest byte)
45) Start Frequency
46) Start Frequency
47) Start Frequency (Lowest byte)
48) Stop Frequency (Highest byte)
74
49) Stop Frequency
50) Stop Frequency
51) Stop Frequency (Lowest byte)
52) Minimum Frequency Step Size (Highest byte)
53) Minimum Frequency Step Size
54) Minimum Frequency Step Size
55) Minimum Frequency Step Size (Lowest byte)
56) Scale Top (Highest byte)
72
57) Scale Top
58) Scale Top
59) Scale Top (Lowest byte)
60) Scale Bottom (Highest byte)
61) Scale Bottom
62) Scale Bottom
63) Scale Bottom (Lowest byte)
64) Frequency Marker 1 (Higher byte)
73
65) Frequency Marker 1 (Lower byte)
66) Frequency Marker 2 (Higher byte)
67) Frequency Marker 2 (Lower byte)
68) Frequency Marker 3 (Higher byte)
69) Frequency Marker 3 (Lower byte)
70) Frequency Marker 4 (Higher byte)
71) Frequency Marker 4 (Lower byte)
71
See Control Byte #3 “Set Measurement Mode” for available measurement modes.
72
See Control Byte #4, “Set Site Master Scale” for data format.
73
Marker point = (Number of data points – 1) * (marker freq – start freq) / (stop freq – start freq)
93) Multiple Limit End Y (Lower byte)
94-149) Repeat bytes 80-93 for segments 2-5
150) Start Distance (Highest byte)
76
151) Start Distance
152) Start Distance
153) Start Distance (Lowest byte)
154) Stop Distance (Highest byte)
155) Stop Distance
156) Stop Distance
157) Stop Distance (Lowest byte)
158) Distance Marker 1 (Higher byte)
77
159) Distance Marker 1 (Lower byte)
160) Distance Marker 2 (Higher byte)
161) Distance Marker 2 (Lower byte)
162) Distance Marker 3 (Higher byte)
163) Distance Marker 3 (Lower byte)
164) Distance Marker 4 (Higher byte)
165) Distance Marker 4 (Lower byte)
166) Distance Marker 5 (Higher byte)
167) Distance Marker 5 (Lower byte)
168) Distance Marker 6 (Higher byte)
169) Distance Marker 6 (Lower byte)
170) Relative Propagation Velocity (Highest byte)
78
171) Relative Propagation Velocity
172) Relative Propagation Velocity
173) Relative Propagation Velocity (Lowest byte)
174) Cable Loss (Highest byte)
79
175) Cable Loss
74
See Control Byte #6, “Set Site Master Single Limit” for data format
75
See Control Byte #112, “Set Site Master Segmented Limit Lines” for data format.
76
Distance data uses units 1/100,000m or 1/100,000 ft
77
Marker point = ( # of data points – 1 ) * ( marker dist – start dist ) / ( stop dist – start dist )
78
Relative Propogation Velocity uses units 1/100,000
79
Cable Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft
36
www.valuetronics.com
Page 39
176) Cable Loss
177) Cable Loss (Lowest byte)
178) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Marker 1 On/Off
bit 1 : Marker 2 On/Off
bit 2 : Marker 3 On/Off
bit 3 : Marker 4 On/Off
bit 4 : Marker 5 On/Off
bit 5 : Marker 6 On/Off
bits 6-7 : Not Used
179) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Marker 2 Delta On/Off
bit 1 : Marker 3 Delta On/Off
bit 2 : Marker 4 Delta On/Off
bits 3-7: Not Used
180) Status Byte 3: (0b = Off , 1b = On)
80
(LSB) bit 0 : Single Limit On/Off
bit 1: CW On/Off
bits 2-3: Not Used
bit 4 : InstaCal On/Off
bit 5 : Cal On/Off
bit 6 : Limit Type ( 0b = Single; 1b = Multiple)
bit 7 : Unit of measurement (1b = Metric, 0b = English)
181) Status Byte 4: (LSB) bit 0 - 1 : DTF Windowing Mode
bit: 1 0
| |
0 0 - Rectangular (No Windowing)
0 1 - Nominal Side Lobe
1 0 - Low Side Lobe
1 1 - Minimum Side Lobe
bits 2 – 7 : Not Used
182-215) Not Used
216-1255) Sweep Data (130 points * 8 bytes/point= 1040 bytes)
216-2287) (259 points * 8 bytes/point= 2072 bytes)
216-4351) (517 points * 8 bytes/point= 4136 bytes)
8 bytes for each data point
1. Gamma
81
MSB
2. Gamma
3. Gamma
4. Gamma LSB
5. Phase
82
MSB
6. Phase
7. Phase
8. Phase LSB
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Not enough bytes transferred
225 (E1h) Memory Error: Not enough memory to store data
238 (EEh) Time-out Error
80
Bits (4,5) are as follows: (0,0)=Cal Off, (0,1)=OSL Cal, (1,0) = Impossible, (1,1) = InstaCal
81
Gamma data uses 1/1000 units.
82
Phase data uses 1/10 degree unit.
37
www.valuetronics.com
Page 40
Notes:
return loss = - 20* ( log(Gamma) / log(10) )
VSWR = (1+Gamma)/(1-Gamma)
Phase compares the reflected to the incident (reference)
Query System Status
– Control Byte #29 (1Dh)
This command is new to the S33xD. Use it instead of Control Byte #20 to access the new features.
Description: Queries the Site Master for current system settings. Unlike Control Byte #20, this command returns
only data that is valid for the active mode, plus system settings, such as the defined printer.
The current state of the Site Master represents the state after the last successful remote control operation.
For example, change the start frequency to another valid frequency while in remote mode, then execute control byte
#29. The new start frequency will be returned in the defined bytes, even though no sweep has been performed with
that frequency.
11) PC Board Revision (Lower byte)
12-13) Digital Mother Board ID. Beginning with motherboard 64968, the hardware includes a 9-bit
digital ID port. The digital ID will be used together with the PC Board Revision (mother board ID voltage)
to identify the board and “dash” number. For boards prior to 64968, bytes 12 and 13 will be 0
14-25) Not Used
For Site Master VNA Modes:
26) Site Master VNA Mode Data Points (Higher byte)
27) Site Master VNA Mode Data Points (Lower byte)
28) VNA Start Frequency
87
(Highest byte)
29) VNA Start Frequency
30) VNA Start Frequency
31) VNA Start Frequency (Lowest byte)
32) VNA Stop Frequency
88
(Highest byte)
33) VNA Stop Frequency
34) VNA Stop Frequency
83
Refer to Control Byte #3 “Select Measurement Mode” for valid measurement modes.
84
See Control Byte #30 for supported printers.
85
Value sent as Volts * 10. For example, 2.7 V = 27.
86
This value is for internal use only.
87
Frequency is scaled by the frequency scale factor specified in bytes 218-219.
88
Frequency is scaled by the frequency scale factor specified in bytes 218-219.
38
www.valuetronics.com
Page 41
35) VNA Stop Frequency (Lowest byte)
36) VNA Scale Start (Highest byte)
89
37) VNA Scale Start
38) VNA Scale Start
39) VNA Scale Start (Lowest byte)
40) VNA Scale Stop (Highest byte)
41) VNA Scale Stop
42) VNA Scale Stop
43) VNA Scale Stop (Lowest byte)
44) VNA Frequency Marker 1 (Higher byte)
90
45) VNA Frequency Marker 1(Lower byte)
46) VNA Frequency Marker 2 (Higher byte)
47) VNA Frequency Marker 2 (Lower byte)
48) VNA Frequency Marker 3 (Higher byte)
49) VNA Frequency Marker 3 (Lower byte)
50) VNA Frequency Marker 4 (Higher byte)
51) VNA Frequency Marker 4 (Lower byte)
52) VNA Frequency Marker 5 (Higher byte)
53) VNA Frequency Marker 5 (Lower byte)
54) VNA Frequency Marker 6 (Higher byte)
55) VNA Frequency Marker 6 (Lower byte)
56) Site Master VNA Single Limit (Highest byte)
91
57) Site Master VNA Single Limit
58) Site Master VNA Single Limit
59) Site Master VNA Single Limit (Lowest byte)
60) VNA Multiple Limit Segment # (1)
61) VNA Multiple Limit Segment Status (0h = Off, 01h = On )
62) VNA Multiple Limit Segment Start X (Highest byte)
92
63) VNA Multiple Limit Segment Start X
64) VNA Multiple Limit Segment Start X
65) VNA Multiple Limit Segment Start X (Lowest byte)
66) VNA Multiple Limit Segment Start Y (Higher byte)
67) VNA Multiple Limit Segment Start Y (Lowest byte)
68) VNA Multiple Limit Segment End X (Highest byte)
93
69) VNA Multiple Limit Segment End X
70) VNA Multiple Limit Segment End X
71) VNA Multiple Limit Segment End X (Lowest byte)
72) VNA Multiple Limit Segment End Y (Higher byte)
73) VNA Multiple Limit Segment End Y (Lowest byte)
74-129) Repeat bytes 60 – 73 for segments 2 - 5
130. Start Distance (Highest byte)
94
131. Start Distance
132. Start Distance
133. Start Distance (Lowest byte)
134. Stop Distance (Highest byte)
135. Stop Distance
136. Stop Distance
89
See “Set Site Master VNA Scale” Control Byte #4 for data format.
Where # of data points can be found in bytes 2-3, start freq is in bytes 4-7, and stop freq is in bytes 8-11.
91
See Control Byte #6, “Set Site Master VNA Single Limit” for data format.
92
See Control Byte #112, “Set Site Master VNA Segmented Limit Lines” for data format. Frequency is scaled by
the frequency scale factor specified in bytes 218-219.
93
Frequency is scaled by the frequency scale factor specified in bytes 218-219.
94
Distance data uses units 1/100,000m or 1/100,000 ft
39
www.valuetronics.com
Page 42
137. Stop Distance (Lowest byte)
138. Distance Marker 1 (Higher byte)
95
139. Distance Marker 1 (Lower byte)
140. Distance Marker 2 (Higher byte)
141. Distance Marker 2 (Lower byte)
142. Distance Marker 3 (Higher byte)
143. Distance Marker 3 (Lower byte)
144. Distance Marker 4 (Higher byte)
145. Distance Marker 4 (Lower byte)
146. Distance Marker 5 (Higher byte)
147. Distance Marker 5 (Lower byte)
148. Distance Marker 6 (Higher byte)
149. Distance Marker 6 (Lower byte)
150. Relative Propagation Velocity (Highest byte)
96
151. Relative Propagation Velocity
152. Relative Propagation Velocity
153. Relative Propagation Velocity (Lowest byte)
154. Cable Loss (Highest byte)
97
155. Cable Loss
156. Cable Loss
157. Cable Loss (Lowest byte)
158. Average Cable Loss
98
(Highest byte)
159. Average Cable Loss
160. Average Cable Loss
161. Average Cable Loss (Lowest byte)
162. Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Site Master Marker 1 On/Off
bit 1 : Site Master Marker 2 On/Off
bit 2 : Site Master Marker 3 On/Off
bit 3 : Site Master Marker 4 On/Off
bit 4 : Site Master Marker 5 On/Off
bit 5 : Site Master Marker 6 On/Off
bits 6- 7 : Not Used
163. Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Not Used
bit 1 : Site Master Marker 2 Delta On/Off
bit 2 : Site Master Marker 3 Delta On/Off
bit 3 : Site Master Marker 4 Delta On/Off
bits 4-7: Not Used
164. Status Byte 3: ( 0b = Off , 1b = On)
(LSB) bit 0 : Site Master Limit Type (0b = Single, 1b = Multiple)
bit 1 : Site Master Limit Beep On/Off
bit 2 : FREQ-SWR Multiple Limit Segment 1 Status On/Off
bit 3 : FREQ-SWR Multiple Limit Segment 2 Status On/Off
bit 4 : FREQ-SWR Multiple Limit Segment 3 Status On/Off
bit 5 : FREQ-SWR Multiple Limit Segment 4 Status On/Off
bit 6 : FREQ-SWR Multiple Limit Segment 5 Status On/Off
bit 7 : Site Master Single Limit Status On/Off
165. Status Byte 4: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
Where # of data points can be found in bytes 2-3, start dist is in bytes 106-109, and stop dist is in bytes 110-113.
96
Relative Propagation Velocity uses units 1/100,000.
97
Cable loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.
98
Average Cable Loss is dB * 1000.
40
www.valuetronics.com
Page 43
bit 2: FREQ-RL Multiple Limit Segment 1 Status On/Off
bit 3: FREQ-RL Multiple Limit Segment 2 Status On/Off
bit 4: FREQ-RL Multiple Limit Segment 3 Status On/Off
bit 5: FREQ-RL Multiple Limit Segment 4 Status On/Off
bit 6: FREQ-RL Multiple Limit Segment 5 Status On/Off
bit 7: Not Used
166. Status Byte 5: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2: FREQ-CL Multiple Limit Segment 1 Status On/Off
bit 3: FREQ-CL Multiple Limit Segment 2 Status On/Off
bit 4: FREQ-CL Multiple Limit Segment 3 Status On/Off
bit 5: FREQ-CL Multiple Limit Segment 4 Status On/Off
bit 6: FREQ-CL Multiple Limit Segment 5 Status On/Off
bit 7: Not Used
167. Status Byte 6: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2 : DIST-SWR Multiple Limit Segment 1 Status On/Off
bit 3 : DIST-SWR Multiple Limit Segment 2 Status On/Off
bit 4 : DIST-SWR Multiple Limit Segment 3 Status On/Off
bit 5 : DIST-SWR Multiple Limit Segment 4 Status On/Off
bit 6: DIST-SWR Multiple Limit Segment 5 Status On/Off
bit 7 : Not Used
168. Status Byte 7: (0b = Off, 1b = On)
(LSB) bits 0-1: Not Used
bit 2: DIST-RL Multiple Limit Segment 1 Status On/Off
bit 3: DIST-RL Multiple Limit Segment 2 Status On/Off
bit 4: DIST-RL Multiple Limit Segment 3 Status On/Off
bit 5: DIST-RL Multiple Limit Segment 4 Status On/Off
bit 6: DIST-RL Multiple Limit Segment 5 Status On/Off
bit 7: Not Used
169. Status Byte 8:
(LSB) bits 0 - 1 : DTF Windowing Mode
bit: 1 0
| |
0 0 - Rectangular (No Windowing)
0 1 - Nominal Side Lobe
1 0 - Low Side Lobe
1 1 - Minimum Side Lobe
bit 2: Serial Port Echo Status On/Off
bits 3 – 7 : Not Used
170. Status Byte 9: (0b = Off, 1b = On ) (LSB) bit 0 : Fixed CW Mode On/Off
bit 1 : Site Master VNA Cal On/Off
bit 2 : LCD Back Light On/Off
bit 3 : Measurement Unit Metric/English (0b = English, 1b = Metric)
bit 4 : InstaCal On/Off
bits 5-6: Not Used
bit 7 : Cal Mode (0b = OSL Cal, 1b = FlexCal)
171. VNA Signal Standard
99
(Higher byte)
172. VNA Signal Standard (Lower byte)
173-196. VNA Signal Standard Name, 24 bytes of ASCII
197-217. VNA Cable Name, 21 bytes of ASCII
218. Frequency Scale Factor
99
Index into Standard List (use control byte #89 to retrieve the ASCII string name). “No Standard” sent as FFFEh
100
Frequency Scale Factor is in number of Hz.
100
(Higher byte)
41
www.valuetronics.com
Page 44
219. Frequency Scale Factor (Lower byte)
220-300) Not Used
For Spectrum Analyzer Mode/Transmission Mode (Option 21):
26) Spectrum Analyzer Mode Data Points (Higher byte)
27) Spectrum Analyzer Mode Data Points (Lower byte)
28) Spectrum Analyzer Start Frequency
101
(Highest byte)
29) Spectrum Analyzer Start Frequency
30) Spectrum Analyzer Start Frequency
31) Spectrum Analyzer Start Frequency (Lowest byte)
32) Spectrum Analyzer Stop Frequency
102
(Highest byte)
33) Spectrum Analyzer Stop Frequency
34) Spectrum Analyzer Stop Frequency
35) Spectrum Analyzer Stop Frequency (Lowest byte)
36) Spectrum Analyzer Center Frequency
103
(Highest byte)
37) Spectrum Analyzer Center Frequency
38) Spectrum Analyzer Center Frequency
39) Spectrum Analyzer Center Frequency (Lowest byte)
40) Spectrum Analyzer Frequency Span
104
(Highest byte)
41) Spectrum Analyzer Frequency Span
42) Spectrum Analyzer Frequency Span
43) Spectrum Analyzer Frequency Span (Lowest byte)
44) Spectrum Analyzer Minimum Frequency Step Size (Highest byte)
45) Spectrum Analyzer Minimum Frequency Step Size
46) Spectrum Analyzer Minimum Frequency Step Size
47) Spectrum Analyzer Minimum Frequency Step Size (Lowest byte)
48) Ref Level (Highest byte)
105
49) Ref Level
50) Ref Level
51) Ref Level (Lowest byte)
52) Scale per div (Highest byte)
106
53) Scale per div
54) Scale per div
55) Scale per div (Lowest byte)
56) Spectrum Analyzer Frequency Marker 1 (Higher byte)
107
57) Spectrum Analyzer Frequency Marker 1 (Lower byte)
58) Spectrum Analyzer Frequency Marker 2 (Higher byte)
59) Spectrum Analyzer Frequency Marker 2 (Lower byte)
60) Spectrum Analyzer Frequency Marker 3 (Higher byte)
61) Spectrum Analyzer Frequency Marker 3 (Lower byte)
62) Spectrum Analyzer Frequency Marker 4 (Higher byte)
63) Spectrum Analyzer Frequency Marker 4 (Lower byte)
64) Spectrum Analyzer Frequency Marker 5 (Higher byte)
65) Spectrum Analyzer Frequency Marker 5 (Lower byte)
66) Spectrum Analyzer Frequency Marker 6 (Higher byte)
67) Spectrum Analyzer Frequency Marker 6 (Lower byte)
68) Spectrum Analyzer Single Limit (Highest byte)
101
Scaled by Frequency Scale Factor (bytes 321-322)
102
Scaled by Frequency Scale Factor (bytes 321-322)
103
Scaled by Frequency Scale Factor (bytes 321-322)
104
Scaled by Frequency Scale Factor (bytes 321-322)
105
Value sent as (value in dBm * 1000) + 270,000)
106
Value sent as (value * 1000)
107
Value sent as data point on the display. Equivalent frequency = (point * span / ( # data points – 1 ) ) + start
108
frequency.
42
www.valuetronics.com
Page 45
69) Spectrum Analyzer Single Limit
70) Spectrum Analyzer Single Limit
71) Spectrum Analyzer Single Limit (Lowest byte)
72) SPA Multiple Upper Limit 1 Start X
109
(Highest byte)
73) SPA Multiple Upper Limit 1 Start X
74) SPA Multiple Upper Limit 1 Start X
75) SPA Multiple Upper Limit 1 Start X (Lowest byte)
83) SPA Multiple Upper Limit 1 End X (Lowest byte)
84) SPA Multiple Upper Limit 1 End Y (Power Level) (Highest byte)
112
85) SPA Multiple Upper Limit 1 End Y (Power Level)
86) SPA Multiple Upper Limit 1 End Y (Power Level)
87) SPA Multiple Upper Limit 1 End Y (Power Level) (Lowest byte)
88-231) SPA Multiple Upper Limits 2-5, SA Multiple Lower Limits 1-5 (see bytes 72-87 for format)
232) RBW Setting (Highest byte)
113
233) RBW Setting
234) RBW Setting
235) RBW Setting (Lowest byte)
236) VBW Setting (Highest byte)
114
237) VBW Setting
238) VBW Setting
239) VBW Setting (Lowest byte)
240) OCC BW Method
241) OCC BW % Value (Highest byte)
115
116
242) OCC BW % Value
243) OCC BW % Value
244) OCC BW % Value (Lowest byte)
245) OCC BW dBc (Highest byte)
117
246) OCC BW dBc
247) OCC BW dBc
248) OCC BW dBc (Lowest byte)
249) Attenuation (Highest byte)
250) Attenuation
251) Attenuation
252) Attenuation (Lowest byte)
253) Antenna Index(0-14)
254-269) Antenna Name (16 bytes in ASCII)
270) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Spectrum Analyzer Mode Marker 1 On/Off
108
Value sent as ( value in dBm * 1000 ) + 270000
109
Scaled by Frequency Scale Factor (bytes 321-322)
110
Value sent as ( value in dBm * 1000 ) + 270000
111
Scaled by Frequency Scale Factor (bytes 321-322)
112
Value sent as ( value in dBm * 1000 ) + 270000
113
RBW frequency sent in Hz.
114
VBW frequency sent in Hz.
115
00h = % of power, 01h = dB down
116
0 – 99%
117
0 – 120 dBc
43
www.valuetronics.com
Page 46
bit 1 : Spectrum Analyzer Mode Marker 2 On/Off
bit 2 : Spectrum Analyzer Mode Marker 3 On/Off
bit 3 : Spectrum Analyzer Mode Marker 4 On/Off
bit 4 : Spectrum Analyzer Mode Marker 5 On/Off
bit 5 : Spectrum Analyzer Mode Marker 6 On/Off
bits 6 - 7 : Not Used
271) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Transmission Mode Cal Status On/Off (Option 21)
bit 1 : Spectrum Analyzer Mode Marker 2 Delta On/Off
bit 2 : Spectrum Analyzer Mode Marker 3 Delta On/Off
bit 3 : Spectrum Analyzer Mode Marker 4 Delta On/Off
bit 4 : Pre Amp Mode (0b = Manual, 1b = Auto)
bit 5 : Pre Amp Status On/Off
bit 6 : Dynamic Attenuation On/Off
bit 7 : Normalization On/Off
272) Status Byte 3: ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Limit Type (0b = Single, 1b = Multiple)
bit 1 : SPA Single Limit Beep On/Off
bit 2 : SPA Single Limit Status On/Off
bit 3 : SPA Single Limit Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Upper Segment 1 Status On/Off
bit 5 : SPA Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Upper Segment 2 Status On/Off
bit 7 : SPA Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
273) Status Byte 4 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Multiple Limit Upper Segment 3 Status On/Off
bit 1 : SPA Multiple Limit Upper Segment 3 Beep Level ABOVE/BELOW
bit 2 : SPA Multiple Limit Upper Segment 4 Status On/Off
bit 3 : SPA Multiple Limit Upper Segment 4 Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Upper Segment 5 Status On/Off
bit 5 : SPA Multiple Limit Upper Segment 5 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Lower Segment 1 Status On/Off
bit 7 : SPA Multiple Limit Lower Segment 1 Beep Level ABOVE/BELOW
274) Status Byte 5 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Multiple Limit Lower Segment 2 Status On/Off
bit 1 : SPA Multiple Limit Lower Segment 2 Beep Level ABOVE/BELOW
bit 2 : SPA Multiple Limit Lower Segment 3 Status On/Off
bit 3 : SPA Multiple Limit Lower Segment 3 Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Lower Segment 4 Status On/Off
bit 5 : SPA Multiple Limit Lower Segment 4 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Lower Segment 5 Status On/Off
bit 7 : SPA Multiple Limit Lower Segment 5 Beep Level ABOVE/BELOW
275) Status Byte 6: (0b = Off, 1b = On)
(LSB) bit 0 : Antenna Factors Correction On/Off
bit 1 : Bias Tee On/Off (Option 10)
bit 2 : SPA Cal Status On/Off
bits 3-4 : Amplitude Units (Log) - 00b = dBm 01b = dBV 10b = dBmV 11b = dBuV
Beep level is always 1b for upper segmented limit line
119
Beep level is always 0b for lower segmented limit line
118
119
44
www.valuetronics.com
Page 47
bit 7 : Units Type (0b = Log 1b = Linear)
276) Status Byte 7: (0b = Off, 1b = On)
(LSB) bit 0: Serial Port Echo Status On/Off
bit 1: Return Sweep Time On/Off
bit 2: RBW Coupling (1b = Auto, 0b = Manual)
bit 3: VBW Coupling (1b = Auto, 0b = Manual)
bit 4: Attenuation Coupling (1b = Auto, 0b = Manual)
bit 5: Channel Power On/Off
bit 6: Adjacent Channel Power On/Off
bit 7: Occupied BW Measurement On/Off
277) Reference Level Offset
120
(Highest byte)
278) Reference Level Offset
279) Reference Level Offset
280) Reference Level Offset (Lowest byte)
281) External Reference Frequency
282) Signal Standard
283) Signal Standard (Lower byte)
284) Channel Selection
285) Channel Selection (Lower byte)
286) Trigger Type
122
(Higher byte)
123
(Higher byte)
124
287) Interference Analysis Frequency
121
125
(Highest byte)
288) Interference Analysis Frequency
289) Interference Analysis Frequency
290) Interference Analysis Frequency (Lowest byte)
291) Trigger Position (0 – 100%)
292) Min Sweep Time (in μs) (Highest byte)
293) Min Sweep Time (in μs)
294) Min Sweep Time (in μs)
295) Min Sweep Time (in μs) (Lowest byte)
296) Video Trigger Level
126
(Highest byte)
297) Video Trigger Level
298) Video Trigger Level
299) Video Trigger Level (Lowest byte)
300) Status Byte 8
(LSB) bit 0: Input Power Status (1b = Input Power Too High, 0b = Input Power Ok)
bit 1: Reserved
bits 2-7: Not Used
301) Status Byte 9
(LSB) bits 0-6: Number of sweeps to average (1-25, 1 implies averaging OFF)
bit 7: Not Used
302) Status Byte 10: (0b = Off, 1b = On)
(LSB) bits 0-1: Trace Math Operation (00b = A only, 01b = A-B, 10b = A+B)
bit 2: Max Hold On/Off
bit 3: Min Hold On/Off
bits 4-7: Not Used
PRBS-20(O.153), 06h: PRBS-23, 07h: QRSS, 08h: 1 in 8, 09h: 2 in 8, 0Ah: 3 in 8, 0Bh: All Ones,
0Ch: All Zeros, 0Dh: T1-DALY, 0Eh: User Defined)
37) T1 Pattern Invert Status (00h: Non-Inverted, 01h: Inverted)
38) T1 Display Type (00h: Histogram, 01h: Raw Data)
39) T1 Impedance
40 - 55) First User Defined Loop Code Down (16 bytes)
56 - 71) Second User Defined Loop Code Down (16 bytes)
72 - 87) First User Defined Loop Code Up (16 bytes)
88 - 103) Second User Defined Loop Code Up (16 bytes)
104 - 135) User Defined Pattern (32 bytes)
136) T1 1
137) T1 1
138) T1 2
139) T1 2
140) T1 1
141) T1 1
142) T1 2
143) T1 2
st
User Defined Loop Up (Higher byte)
st
User Defined Loop Up (Lower byte)
nd
User Defined Loop Up (Higher byte)
nd
User Defined Loop Up (Lower byte)
st
User Defined Loop Down (Higher byte)
st
User Defined Loop Down (Lower byte)
nd
User Defined Loop Down (Higher byte)
nd
User Defined Loop Down (Lower byte)
144) T1 User Defined Pattern (Highest byte)
145) T1 User Defined Pattern
146) T1 User Defined Pattern
147) T1 User Defined Pattern (Lowest byte)
148) T1 Bit Error Insert Value (1-1000) (Higher byte)
149) T1 Bit Error Insert Value (Lower byte)
150) T1 Frame Error Insert Value (1-1000) (Higher byte)
151) T1 Frame Error Insert Value (Lower byte)
152) T1 BPV Error Insert Value (1-1000) (Higher byte)
38) E1 Display Type (00h: Histogram, 01h: Raw Data)
39) E1 Impedance (01h: 75 Ω, 02h: 120 Ω)
40 - 55) First User Defined Loop Code Down (16 bytes)
56 - 71) Second User Defined Loop Code Down (16 bytes)
72 - 87) First User Defined Loop Code Up (16 bytes)
88 - 103) Second User Defined Loop Code Up (16 bytes)
104 - 135) User Defined Pattern (32 bytes)
136) E1 1
137) E1 1
138) E1 2
139) E1 2
140) E1 1
141) E1 1
142) E1 2
143) E1 2
st
User Defined Loop Up (Highest byte)
st
User Defined Loop Up (Lowest byte)
nd
User Defined Loop Up (Highest byte)
nd
User Defined Loop Up (Lowest byte)
st
User Defined Loop Down (Highest byte)
st
User Defined Loop Down (Lowest byte)
nd
User Defined Loop Down (Highest byte)
nd
User Defined Loop Down (Lowest byte)
144) E1 User Defined Pattern (Highest byte)
145) E1 User Defined Pattern
146) E1 User Defined Pattern
147) E1 User Defined Pattern (Lowest byte)
148) E1 Bit Error Insert Value (1-1000) (Higher byte)
149) E1 Bit Error Insert Value (Lower byte)
150) E1 Frame Error Insert Value (1-1000) (Higher byte)
151) E1 Frame Error Insert Value (Lower byte)
152) E1 BPV Error Insert Value (1-1000) (Higher byte)
13 – HP DJ 600 Series
14 – HP DJ 800 Series
15 – HP DJ 1120
16 – HP LJ 6L, 6P, 4000
17 – Epson Esc/P Compatible
18 – Epson Esc/P2 Compatible
19 – Epson Esc/P Raster Compatible
20 – HP PCL3 Compatible
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
Select DTF Windowing
Description: Select DTF Windowing Methods.
DTF windowing allows you to make a trade off between side lobe height and resolution.
Bytes to Follow: 1 byte
1) Windowing Method
00h = Rectangular (finest resolution, highest side lobes)
01h = Nominal Side Lobe (balance between resolution and side lobes)
02h = Low Side Lobe
03h = Minimum Side Lobe
This command is new to the S33xD. Use it, instead of Control Byte #17, to access the new features.
Description: Queries the Site Master for sweep trace data.
NOTE: Before you can recall a sweep stored in non-volatile memory (trace numbers 1-200) you must build a trace
table in the Site Master’s RAM. Use Control Byte #24 to build the trace table. Since the trace table exists in RAM,
Control Byte #24 must be executed every time the Site Master’s power is cycled.
Bytes to Follow: 1 byte
0 = Last sweep trace before entering remote mode (sweep trace in RAM)
1- 200 = Specific saved sweep number (stored sweeps in Flash memory)
Site Master Returns: 1-2) # of following bytes (total length - 2)
3) Current Instrument Date Format
4) Not Used
5-11) Model Number (7 bytes in ASCII)
12-15) Software Version (4 bytes ASCII)
16) Measurement Mode
151
17-20) Time/Date (in Long Integer
21-30) Date in String Format (mm/dd/yyyy)
31-38) Time in String Format (hh:mm:ss)
39-54) Reference number stamp (16 bytes in ASCII)
55-56) # data points (130, 259 or 517 or 401 or 100)
Where # of data points can be found in bytes 55-56, start dist is in bytes 163-166, and stop dist is in bytes 167-170.
52
www.valuetronics.com
Page 55
179) Distance Marker 5 (Higher byte)
180) Distance Marker 5 (Lower byte)
181) Distance Marker 6 (Higher byte)
182) Distance Marker 6 (Lower byte)
183) Relative Propagation Velocity
162
(Highest byte)
184) Relative Propagation Velocity
185) Relative Propagation Velocity
186) Relative Propagation Velocity (Lowest byte)
187) Cable Loss
163
(Highest byte)
188) Cable Loss
189) Cable Loss
190) Cable Loss (Lowest byte)
191) Average Cable Loss
164
(Highest byte)
192) Average Cable Loss
193) Average Cable Loss
194) Average Cable Loss (Lowest byte)
195) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Marker 1 On/Off
bit 1 : Marker 2 On/Off
bit 2 : Marker 3 On/Off
bit 3 : Marker 4 On/Off
bit 4 : Marker 5 On/Off
bit 5 : Marker 6 On/Off
bits 6-7 : Not Used
196) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Marker 2 Delta On/Off
bit 1 : Marker 3 Delta On/Off
bit 2 : Marker 4 Delta On/Off
bits 3-7 : Not Used
197) Status Byte 3: ( 0b = Off , 1b = On)
(LSB) bit 0 : Single Limit On/Off
bit 1: CW On/Off
bit 2: Trace Math On/Off
bits 3-5 : Not Used
bit 6 : Limit Type ( 0b = Single; 1b = Multiple)
bit 7 : Unit of Measurement (1b = Metric, 0b = English)
198) Status Byte 4:
(LSB) bit 0 - 1 : DTF Windowing Mode
bit: 1 0
| |
0 0 - Rectangular (No Windowing)
0 1 - Nominal Side Lobe
1 0 - Low Side Lobe
1 1 - Minimum Side Lobe
bits 2 – 7 : Not Used
199) Status Byte 5 (Cal Status):
00h : Calibration Off
01h : Standard Calibration On
02h : InstaCal Calibration On
03h : Standard FlexCal On
04h : InstaCal FlexCal On
200) VNA Signal Standard
162
Relative Propagation Velocity uses units 1/100,000
163
Cable Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.
164
Average Cable Loss is dB * 1000.
165
(Higher byte)
53
www.valuetronics.com
Page 56
201) VNA Signal Standard (Lower byte)
202-205) GPS Position – Latitude (long integer)
166
206-209) GPS Position – Longitude (long integer)
210-211) GPS Position – Altitude (short integer)
212) Signal Standard Link Type
167
213-236) Signal Standard Name, 24 bytes in ASCII
237-257) Cable Name, 21 bytes in ASCII
258-267) UTC Time, 10 bytes in ASCII
268) Frequency Scale Factor
168
(Higher Byte)
269) Frequency Scale Factor (Lower Byte)
270-324) Not Used
325-1364) Sweep Data (130 points * 8 bytes/point = 1040 bytes)
325-2396) Sweep Data (259 points * 8 bytes/point = 2072 bytes)
325-4460) Sweep Data (517 points * 8 bytes/point = 4136 bytes)
8 bytes for each data point
1. gamma
169
(Highest byte)
2. gamma
3. gamma
4. gamma (Lowest byte)
5. phase
170
(Highest byte)
6. phase
7. phase
8. phase (Lowest byte)
Notes:
return loss = - 20* (log(gamma) / log(10))
VSWR = (1+gamma)/(1-gamma)
phase compares the reflected to the incident (reference)
For Spectrum Analyzer Mode/Transmission Mode (Option 21 Only):
57) Start Frequency
171
(Highest byte)
58) Start Frequency
59) Start Frequency
60) Start Frequency (Lowest byte)
61) Stop Frequency
172
(Highest byte)
62) Stop Frequency
63) Stop Frequency
64) Stop Frequency (Lowest byte)
65) Center Frequency
173
(Highest byte)
66) Center Frequency
67) Center Frequency
68) Center Frequency (Lowest byte)
69) Frequency Span
165
Index into Standard List (use control byte #89 to retrieve the ASCII string name). “No Standard” sent as FFFEh
166
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
174
(Highest byte)
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
113) Multiple Upper Limit 1 End Y (Power Level) (Highest byte)
114) Multiple Upper Limit 1 End Y (Power Level)
115) Multiple Upper Limit 1 End Y (Power Level)
116) Multiple Upper Limit 1 End Y (Power Level) (Lowest byte)
117-260) Multiple Upper Limits 2-5, Multiple Lower Limits 1-5 (see bytes 101-116 for format)
175
Value sent as ( Value in dBm * 1000 ) + 270,000
176
Value sent as ( Value * 1000 )
177
Value sent as data point on display. Freq = ( Point * Span / ( Total Data Points – 1 ) ) + Start Freq
178
Value sent as ( Value in dBm * 1000 ) + 270,000
179
Scaled by Frequency Scale Factor (bytes 335-336)
180
Value sent as ( value in dBm * 1000 ) + 270,000
181
Scaled by Frequency Scale Factor (bytes 335-336)
55
www.valuetronics.com
Page 58
261) RBW Setting (Frequency in Hz) (Highest byte)
262) RBW Setting (Frequency in Hz)
263) RBW Setting (Frequency in Hz)
264) RBW Setting (Frequency in Hz) (Lowest byte)
265) VBW Setting (Frequency in Hz) (Highest byte)
266) VBW Setting (Frequency in Hz)
267) VBW Setting (Frequency in Hz)
268) VBW Setting (Frequency in Hz) (Lowest byte)
269) OCC BW Method (0b = % of power, 1b = dB down)
270) OCC BW % Value
271) OCC BW dBc
272) Attenuation
184
182
183
(Highest byte)
273) Attenuation
274) Attenuation
275) Attenuation (Lowest byte)
276-291)Antenna Name(16 bytes in ASCII)
292) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Marker 1 On/Off
bit 1 : Marker 2 On/Off
bit 2 : Marker 3 On/Off
bit 3 : Marker 4 On/Off
bit 4 : Marker 5 On/Off
bit 5 : Marker 6 On/Off
bits 6-7: Not Used
293) Status Byte 2: ( 0b = Off , 1b = On)
(LSB) bit 0 : Not Used
bit 1 : Marker 2 Delta On/Off
bit 2 : Marker 3 Delta On/Off
bit 3 : Marker 4 Delta On/Off
bit 4 : Pre Amp Mode (0b = Manual, 1b = Auto)
bit 5 : Pre Amp Status On/Off
bit 6 : Dynamic Attenuation On/Off
bit 7 : Normalization On/Off
294) Status Byte 3: (0b = Off, 1b = On)
(LSB) bit 0 : Antenna Factor Correction On/Off
bits 1-2 : Detection alg (00b = pos. peak 01b = RMS average 10b = neg. peak 11b =
sampling mode)
bits 3-4 : Amplitude Units (Log) - (00b = dBm 01b = dBV 10b = dBmV 11b = dBuV)
(Linear) – (00b = Watts 01b = Volts)
bit 5 : Channel Power On/Off
bit 6 : Adjacent Channel Power On/Off
bit 7 : Units Type (0b = Log 1b = Linear)
295) Status Byte 4
185
(0b = Off/Beep if data is BELOW line, 1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Limit Type (0b = Single, 1b = Multiple)
bit 1 : Not Used
bit 2 : Single Limit On/Off
bit 3 : Single Limit Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Upper Segment 1 Status On/Off
bit 5 : Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
182
% value is 0-99
183
dBc value 0 – 120 dBc
184
Value sent as ( value in dB * 1000 )
185
For bits 2, 1 and 0 (“X” is “don’t care): 0X0=no limit, 1X0=single limit, 0X1=multiple limit, 1X1=multiple limit.
186
Upper limits always trigger an error beep if data is ABOVE the limit segment, for example, this bit is always 1b.
186
56
www.valuetronics.com
Page 59
bit 6 : Multiple Limit Upper Segment 2 Status On/Off
bit 7 : Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
296) Status Byte 5
( 0b = Off/Beep if data is below line, 1b = On/Beep if data is above line)
(LSB) bit 0 : Multiple Limit Upper Segment 3 Status On/Off
bit 1 : Multiple Limit Upper Segment 3 Beep Level ABOVE/BELOW
bit 2 : Multiple Limit Upper Segment 4 Status On/Off
bit 3 : Multiple Limit Upper Segment 4 Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Upper Segment 5 Status On/Off
bit 5 : Multiple Limit Upper Segment 5 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Lower Segment 1 Status On/Off
bit 7 : Multiple Limit Lower Segment 1 Beep Level ABOVE/BELOW
187
297) Status Byte 6
(0b = Off/Beep if data is BELOW line, 1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Multiple Limit Lower Segment 2 Status On/Off
bit 1 : Multiple Limit Lower Segment 2 Beep Level ABOVE/BELOW
bit 2 : Multiple Limit Lower Segment 3 Status On/Off
bit 3 : Multiple Limit Lower Segment 3 Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Lower Segment 4 Status On/Off
bit 5 : Multiple Limit Lower Segment 4 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Lower Segment 5 Status On/Off
bit 7 : Multiple Limit Lower Segment 5 Beep Level ABOVE/BELOW
298) Status Byte 7
(LSB) bits 0-6: Number of sweeps to average (1-25, 1 implies averaging OFF)
bit 7: Not Used
Trigger Type – 00h = Single, 01h = Free Run, 02h = Video, 03h = External
57
www.valuetronics.com
Page 60
323) Min Sweep Time (in μs) (Highest byte)
324) Min Sweep Time (in μs)
325) Min Sweep Time (in μs)
326) Min Sweep Time (in μs) (Lowest byte)
327) Video Trigger Level
195
(Highest byte)
328) Video Trigger Level
329) Video Trigger Level
330) Video Trigger Level (Lowest byte)
331) Status Byte 8 (0b = Off, 1b = On)
(LSB) bits 0-1: Trace Math Operation (00b = A only, 01b = A-B, 10b = A+B)
bit 2: Max Hold On/Off
bit 3: Min Hold On/Off
bit 4: Transmission Calibration On/Off (Option 21 Only)
bit 5: Bias Tee On/Off (Option 10 Only)
bit 6: Occupied BW Measurement On/Off
bit 7: Not Used
If Status Byte 9, bytes 1-3 equal 111b, then signal will be calculated power for the Interference – NB FHSS trace.
Otherwise, these bytes represent the calculated Carrier power.
203
Value sent as ( value in dBm * 1000 ) + 270,000
204
If Status Byte 9, bytes 1-3 equal 111b, then signal will be calculated power for the Interference – WB FHSS
205
(Interference – Broadband
206
) (Highest byte)
trace. Otherwise, these bytes should be ignored.
58
www.valuetronics.com
Page 61
356) C/I Calculated Power (Interference – Broadband)
357) C/I Calculated Power (Interference – Broadband)
358) C/I Calculated Power (Interference – Broadband) (Lowest byte)
359) Occupied Bandwidth Power (Highest byte)
207
360) Occupied Bandwidth Power
361) Occupied Bandwidth Power
362) Occupied Bandwidth Power (Lowest byte)
363) Marker Type
364-367) GPS Position – Latitude (long integer)
208
209
368-371) GPS Position – Longitude (long integer)
372-373) GPS Position – Altitude (short integer)
374) Signal Standard Link Type
210
375-398) Signal Standard Name, 24 bytes in ASCII
399) Measure Offset Status (0h = Off, 1h = On)
400-431) Not Used
432-2035) Sweep Data (401 points * 4 bytes/point= 1604 bytes)
4 bytes for each data point
1. dBm
211
(Highest byte)
2. dBm
3. dBm
4. dBm (Lowest byte)
For Power Meter Mode (both option 5 and narrow band):
57) Power Monitor Mode (00h = Off, 01h = On)
58) Power Meter Unit (00h = dBm, 01h = Watts)
59) Start Frequency
212
(Highest byte)
60) Start Frequency
61) Start Frequency
62) Start Frequency (Lowest byte)
63) Stop Frequency
213
(Highest byte)
64) Stop Frequency
65) Stop Frequency
66) Stop Frequency (Lowest byte)
67) Center Frequency
214
(Highest byte)
68) Center Frequency
69) Center Frequency
70) Center Frequency (Lowest byte)
71) Frequency Span
215
(Highest byte)
72) Frequency Span
73) Frequency Span
74) Frequency Span (Lowest byte)
205
Value sent as ( value in dBm * 1000 ) + 270,000
206
If Status Byte 9, bytes 1-3 equal 111b, then signal will be calculated power for the Interference – Broadband
trace. Otherwise, these bytes should be ignored.
207
If Method is % of power then the value is db Down * 1000. If the method is db down, then the value is %
208
00h = Regular Marker, 01h = Noise Marker
209
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
114) User Defined Pattern (convert to binary for pattern) (Highest byte)
115) User Defined Pattern
116) User Defined Pattern
117) User Defined Pattern (Lowest byte)
118 – 125) Measurement Start Time String (ASCII string: “HH:MM:SS”)
126 – 136) Measurement Stop Time String (ASCII string: “DD:HH:MM:SS”)
137 – 147) Elapsed Time String (ASCII string: “DD:HH:MM:SS”)
148 – 155) Bit Error Rate String (ASCII string in engineering format: x.xxE-xx)
156 – 655) 100 data points with 5 bytes for each data point.
1
Following 4 bytes corresponds to the Bit Error Count
Break down of the 1
st
byte has information about Carrier Loss, Frame Loss, BPV and CRC
st
byte :
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Not Used Not Used
Carrier
Loss
Frame Loss BPV Error
CRC / EBit Error
656) Vpp or dBdsx (Higher byte) (Only in Vpp mode. See T1/E1 Read Vpp command for data format)
657) Vpp or dBdsx (Lower byte)
658) T1 or E1 Receive Frequency in Hz (Highest byte) (Only in BER mode)
659) T1 or E1 Receive Frequency in Hz
660) T1 or E1 Receive Frequency in Hz
661) T1 or E1 Receive Frequency in Hz (Lowest byte)
662 – 750) Not Used
For Channel Scanner Mode:
57) Reference Level (Highest Byte)
58) Reference Level
59) Reference Level
60) Reference Level (Lowest Byte)
61) Scale Division (Highest Byte)
62) Scale Division
63) Scale Division
64) Scale Division (Lowest Byte)
65) Start Frequency (Highest Byte)
66) Start Frequency
67) Start Frequency
68) Start Frequency (Lowest Byte)
69) Span Frequency (Highest Byte)
70) Span Frequency
71) Span Frequency
72) Span Frequency (Lowest Byte)
73) Channel Step (Highest Byte)
74) Channel Step (Lowest Byte)
75) Channel Frequency Step (Highest Byte)
76) Channel Frequency Step
77) Channel Frequency Step
78) Channel Frequency Step (Lowest Byte)
79) Number of Channels Displayed
80) External Reference Frequency
81) Display Type Channels or Frequencies
228
Frequency in MHz, OFF if 0
229
0 – Channel, 1 - Frequency
228
229
Any Error
62
www.valuetronics.com
Page 65
82) Display Type Graph or Text
230
83) Signal Standard (Highest Byte)
84) Signal Standard
85) Signal Standard
86) Signal Standard (Lowest Byte)
87-90) GPS Position – Latitude (long integer)
231
91-94) GPS Position – Longitude (long integer)
95-96) GPS Position – Altitude (short integer)
97) Start Channel (Highest Byte)
98) Start Channel
99) Start Channel
100) Start Channel (Lowest Byte)
101 – 124) Signal Standard Name, 24 bytes in ASCII
125 – 152) Reserved
153 – 272) Channel Scanner Data
232
For Interference Analyzer RSSI Mode
57) Center Frequency (Highest Byte)
58) Center Frequency
59) Center Frequency
60) Center Frequency (Lowest Byte)
61) Reference Level (Highest Byte)
62) Reference Level
63) Reference Level
64) Reference Level (Lowest Byte)
65) Scale (Highest Byte)
66) Scale
67) Scale
68) Scale (Lowest Byte)
69) RBW (Highest Byte)
70) RBW
71) RBW
72) RBW (Lowest Byte)
73) VBW (Highest Byte)
74) VBW
75) VBW
76) VBW (Lowest Byte)
77) Status Byte 1
Bit 0 - Detection Algorithm (Lowest Bit)
233
Bit 1 - Detection Algorithm
Bit 2 - Detection Algorithm (Highest Bit)
Bit 3 - Not Used
Bit 4 - Not Used
Bit 5 - Not Used
Bit 6 - Not Used
78) Reference Level Offset (Highest Byte)
79) Reference Level Offset
80) Reference Level Offset
230
0 – Graph, 1 - Text
231
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
232
20 points, 6 bytes per point. First 2 bytes are channel numbers(Invalid channels sent as 0xFFFF) and 4 bytes are
values. Value sent as (value in dBm) * 1000 + 270,000
102) Sweep Point Interval (Lowest Byte)
103 – 106) GPS Position – Latitude (long integer)
238
107 – 110) GPS Position – Longitude (long integer)
111 – 112) GPS Position – Altitude (short integer)
113) Signal Standard
114 – 117) Start GPS Position – Latitude (long integer)
239
118 – 121) Start GPS Position – Longitude (long integer)
122 – 123) Start GPS Position – Altitude (short integer)
124) Attenuation (Highest Byte)
240
125) Attenuation
126) Attenuation
127) Attenuation (Lowest Byte)
128 – 151) Signal Standard Name, 24 bytes in ASCII
152) Measure Offset Status (0h = Off, 1h = On)
153 – 207) Reserved
208 – 3415) RSSI Sweep data
241
For High Accuracy Power Meter Mode
57) Center Frequency(Highest Byte)
234
Frequency in MHz, OFF if 0
235
Invalid channels are sent as 0xFFFF
236
Measure Duration time in minutes
237
Sweep Point Interval time in milliseconds
238
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
242
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
239
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
240
Attenuation is sent as (Att in dB * 1000)
241
Sweep Data contains 401 display points, 8 bytes per display point. The first 4 bytes are the amplitude, the next 2
bytes are the latitude increments from the start GPS position and the following 2 bytes are the longitude increments
from the Start GPSposition.
242
in kHz
64
www.valuetronics.com
Page 67
58) Center Frequency
59) Center Frequency
60) Center Frequency(Lowest Byte)
61) Power Reading(Highest Byte)
243
62) Power Reading(Lowest Byte)
63) Max Hold Status (0h = Off, 1h = On)
64) Offset Status (0h = Off, 1h = On)
65) Offset Value(Highest Byte)
244
66) Offset Value(Lowest Byte)
67) Measure Offset Status (0h = Off, 1h = On)
68) Measure Offset Value(Highest Byte)
69) Measure Offset Value(Lowest Byte)
70) Relative Value(Highest Byte)
246
245
71) Relative Value(Lowest Byte)
72) Relative Status (0h = Off, 1h = On)
73) Running Averages Number(Highest Byte)
74) Running Averages Number(Lowest Byte)
75 – 76) Signal Standard ID
77 – 100) Signal Standard Name
101) Zero Status (0h = Off, 1h = On)
102) Limit Status (0h = Off, 1h = On)
103) Upper Limit dBm(Highest Byte)
104) Upper Limit dBm(Lowest Byte)
105) Lower Limit dBm(Highest Byte)
247
248
106) Lower Limit dBm(Lowest Byte)
107) Limit Unit Display
108) Error Message Status
109 – 112) GPS Position – Latitude (long integer)
249
250
113 – 116) GPS Position – Longitude (long integer)
117 – 118) GPS Position – Altitude (short integer)
119 – 128) UTC Time, 10 bytes in ASCII
129 – 256) Reserved Byte
Site Master Returns (For invalid sweeps/empty stored sweep locations): 11 bytes
1-2) Number of following bytes (9 bytes for invalid sweep recall)
3) Current Instrument Date Format
251
4) Model # (unsigned integer, 10h for Site Master model S331D, 11h for Site Master model S332D)
5-11) Extended Model # (7 bytes in ASCII)
Site Master Returns (Invalid sweep location): 1 byte
Bit 0: set to 1 if there is power supply error in the power sensor module. Bit 1: set to 1 if there is too much RF
power going into the sensor module. Bit 2: set to 1 if zeroing is done incorrectly. Bit 3: set to 1 if power sensor's
operating temperature range is exceeded. Bit 4: set to 1 if temperature has drifted by more than specified degree
since the last zeroing.
250
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
Description: Defines traces “A” and “B” for Spectrum Analyzer mode.
Trace A is always the currently measured data (with or without trace math). It is always visible.
Trace B is always stored data and may come from a saved sweep or a previous “A” trace. There is no default for
trace B. Trace B can be ON (visible) or OFF.
3) “B” trace number
0 = save current “A” data into “B” buffer, use that as “B”
1-200 = trace number
255 = no “B” trace defined
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Not enough bytes transferred, “B” trace requested to be used in
calculations or displayed, but no trace or invalid trace specified
238 (EEh) Time-out Error
– Control Byte #35 (23h)
Upload Sweep Trace
This command is new to the S33xD. Use it instead of Control Bytes #26 and #28 to access the new features.
– Control Byte #36 (24h)
Description: Uploads a sweep trace to the Site Master.
Bytes to Follow:
For All Modes:
1-2) # of following bytes
3) Measurement Mode
4-7) Time/Date (in Long Integer)
8-17) Date in String Format (MM/DD/YYYY)
18-25) Time in String Format (HH:MM:SS)
252
See Control Byte #3 “Set Measurement Mode” for available measurement modes.
66
www.valuetronics.com
252
Page 69
26-41) Reference number stamp (16 ASCII bytes)
42-43) # of data points (130, 259, 517 or 401 or 100)
Frequency is scaled by the frequency scale factor specified in byte 245-246.
254
Frequency is scaled by the frequency scale factor specified in byte 245-246.
255
See Control Byte #4, “Set Site Master VNA Scale” for data format.
256
Marker point = (Number of data points – 1) * (marker freq – start freq) / (stop freq – start freq)
257
See Control Byte #6, “Set Site Master VNA Single Limit” for data format
258
See Control Byte #112, “Set Site Master VNA Segmented Limit Lines” for data format. Frequency is scaled by
the frequency scale factor specified in bytes 245-246.
67
www.valuetronics.com
Page 70
88) Multiple Limit End X (Highest byte)
259
89) Multiple Limit End X
90) Multiple Limit End X
91) Multiple Limit End X (Lowest byte)
92) Multiple Limit End Y (Higher byte)
93) Multiple Limit End Y (Lower byte)
94-149) Repeat bytes 80-93 for segments 2-5
150) Start Distance (Highest byte)
260
151) Start Distance
152) Start Distance
153) Start Distance (Lowest byte)
154) Stop Distance (Highest byte)
155) Stop Distance
156) Stop Distance
157) Stop Distance (Lowest byte)
158) Distance Marker 1 (Higher byte)
261
159) Distance Marker 1 (Lower byte)
160) Distance Marker 2 (Higher byte)
161) Distance Marker 2 (Lower byte)
162) Distance Marker 3 (Higher byte)
163) Distance Marker 3 (Lower byte)
164) Distance Marker 4 (Higher byte)
165) Distance Marker 4 (Lower byte)
166) Distance Marker 5 (Higher byte)
167) Distance Marker 5 (Lower byte)
168) Distance Marker 6 (Higher byte)
169) Distance Marker 6 (Lower byte)
170) Relative Propagation Velocity (Highest byte)
262
171) Relative Propagation Velocity
172) Relative Propagation Velocity
173) Relative Propagation Velocity (Lowest byte)
174) Cable Loss (Highest byte)
263
175) Cable Loss
176) Cable Loss
177) Cable Loss (Lowest byte)
178) Average Cable Loss
264
(Highest byte)
179) Average Cable Loss
180) Average Cable Loss
181) Average Cable Loss (Lowest byte)
182) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Marker 1 On/Off
bit 1 : Marker 2 On/Off
bit 2 : Marker 3 On/Off
bit 3 : Marker 4 On/Off
bit 4 : Marker 5 On/Off
bit 5 : Marker 6 On/Off
bits 6-7 : Not Used
183) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Marker 2 Delta On/Off
259
Frequency is scaled by the frequency scale factor specified in bytes 245-246.
260
Distance data uses units 1/100,000m or 1/100,000 ft
261
Marker point = ( # of data points – 1 ) * ( marker dist – start dist ) / ( stop dist – start dist )
262
Relative Propagation Velocity uses units 1/100,000
263
Cable Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft
264
Average Cable Loss is dB * 1000.
68
www.valuetronics.com
Page 71
bit 1 : Marker 3 Delta On/Off
bit 2 : Marker 4 Delta On/Off
bits 3-7: Not Used
184) Status Byte 3: (0b = Off , 1b = On)
(LSB) bit 0 : Single Limit On/Off
bit 1: CW On/Off
bit 2: Trace Math On/Off
bits 3-5: Not Used
bit 6 : Limit Type ( 0b = Single; 1b = Multiple)
bit 7 : Unit of measurement (1b = Metric, 0b = English)
185) Status Byte 4:
(LSB) bit 0 - 1 : DTF Windowing Mode
bit: 1 0
| |
0 0 - Rectangular (No Windowing)
0 1 - Nominal Side Lobe
1 0 - Low Side Lobe
1 1 - Minimum Side Lobe
bits 2 – 7 : Not Used
186) Status Byte 5 (Cal Status) :
00h : Calibration Off
01h : Standard Calibration On
02h : InstaCal Calibration On
03h : Standard FlexCal On
04h : InstaCal FlexCal On
187) VNA Signal Standard
188) VNA Signal Standard (Lower byte)
189-192) GPS Position – Latitude (long integer)
265
(Higher byte)
266
193-196) GPS Position – Longitude (long integer)
197-198) GPS Position – Altitude (short integer)
199) Reserved
200-223) Signal Standard Name, 24 bytes in ASCII
224-244) Cable Name, 21 bytes in ASCII
245) Frequency Scale Factor
267
(Higher byte)
246) Frequency Scale Factor (Lower byte)
248-314) Not Used
315-1354) Sweep Data (130 points * 8 bytes/point= 1040 bytes)
315-2386) (259 points * 8 bytes/point= 2072 bytes)
315-4450) (517 points * 8 bytes/point= 4136 bytes)
8 bytes for each data point
1. Gamma
268
(Highest byte)
2. Gamma
3. Gamma
4. Gamma (Lowest byte)
5. Phase
269
(Highest byte)
6. Phase
7. Phase
8. Phase (Lowest byte)
265
Index into Standard List (use control byte #89 to retrieve the ASCII string name). “No Standard” sent as FFFEh
266
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
267
Frequency Scale Factor is in number of Hz.
268
Gamma uses units scaled to 1/10,000
269
Phase is transmitted in 1/10ths of a degree
69
www.valuetronics.com
Page 72
Notes:
return loss = - 20* ( log(Gamma) / log(10) )
VSWR = (1+Gamma)/(1-Gamma)
Phase compares the reflected to the incident (reference)
For Spectrum Analyzer Mode:
44) Start Frequency
270
(Highest byte)
45) Start Frequency
46) Start Frequency
47) Start Frequency (Lowest byte)
48) Stop Frequency
271
(Highest byte)
49) Stop Frequency
50) Stop Frequency
51) Stop Frequency (Lowest byte)
52) Center Frequency
272
(Highest byte)
53) Center Frequency
54) Center Frequency
55) Center Frequency (Lowest byte)
56) Frequency Span
273
(Highest byte)
57) Frequency Span
58) Frequency Span
59) Frequency Span (Lowest byte)
60) Ref Level
274
(Highest byte)
61) Ref Level
62) Ref Level
63) Ref Level (Lowest byte)
64) Scale per div
275
(Highest byte)
65) Scale per div
66) Scale per div
67) Scale per div (Lowest byte)
68) Marker 1
276
(Higher byte)
69) Marker 1 (Lower byte)
70) Marker 2 (Higher byte)
71) Marker 2 (Lower byte)
72) Marker 3 (Higher byte)
73) Marker 3 (Lower byte)
74) Marker 4 (Higher byte)
75) Marker 4 (Lower byte)
76) Marker 5 (Higher byte)
77) Marker 5 (Lower byte)
78) Marker 6 (Higher byte)
79) Marker 6 (Lower byte)
80) Single Limit
277
(Highest byte)
81) Single Limit
82) Single Limit
270
Scaled by Frequency Scale Factor (bytes 318-319)
271
Scaled by Frequency Scale Factor (bytes 318-319)
272
Scaled by Frequency Scale Factor (bytes 318-319)
273
Scaled by Frequency Scale Factor (bytes 318-319)
274
Value sent as (value in dBm * 1000) + 270,000
275
Value sent as (value * 1000)
276
Marker values are sent as # of data point on display.
277
See Control Byte #102, “Set Spectrum Analyzer Marker” for calculation of data point.
All amplitude values are sent as (value in dBm * 1000) + 270,000
bit 6: Adjacent Channel Power Ratio On/Off
bit 7 : Units Type (0b = Log 1b = Linear)
278) Status Byte 4
(0b = Off/Beep if data is BELOW line, 1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Limit Type (0b = Single, 1b = Multiple)
bit 1 : Single Limit On/Off
bit 2 : Single Limit Beep Level (0b = beep when data is below line 1b = above)
bit 3 : Not Used
bit 4 : Multiple Limit Upper Segment 1 Status On/Off
bit 5 : Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Upper Segment 2 Status On/Off
bit 7 : Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
279) Status Byte 5
(0b = Off/Beep if data is BELOW line, 1b =On/Beep if data is ABOVE line)
(LSB) bit 0 : Multiple Limit Upper Segment 3 Status On/Off
74) External Reference Status (00h = Off, 01h = On)
75) External Reference Frequency (in Hz) (Highest byte)
76) External Reference Frequency (in Hz)
77) External Reference Frequency (in Hz)
78) External Reference Frequency (in Hz) (Lowest byte)
79) Signal Standard
80) Signal Standard (lower byte)
81) Channel Selection
82) Channel Selection (lower byte)
83) Frequency Scale Factor
84) Frequency Scale Factor (lower byte)
85) Frequency Range Minimum
310
(higher byte)
311
(higher byte)
312
(higher byte)
313
(Highest byte)
86) Frequency Range Minimum
87) Frequency Range Minimum
88) Frequency Range Minimum (Lowest byte)
89) Frequency Range Maximum
314
(Highest byte)
90) Frequency Range Maximum
91) Frequency Range Maximum
92) Frequency Range Maximum (Lowest byte)
93-96) GPS Position – Latitude (long integer)
315
97-100) GPS Position – Longitude (long integer)
101-102) GPS Position – Altitude (short integer)
103) Reserved
104 – 127) Signal Standard Name, 24 bytes in ASCII
128 – 150) Not Used
151) Power Meter Reading
316
(Highest byte)
152) Power Meter Reading
153) Power Meter Reading
154) Power Meter Reading (Lowest byte)
308
Value sent as ( value in dB * 1000 ), valid values are 0 to 60 dB
309
Value sent as ( value in dBm * 1000 )
310
Index into Standard List (use control byte #89 to retrieve the ASCII string name). “No Standard” sent as FFFEh
311
“No Channel” is sent as FFFEh
312
In number of Hz
313
Scaled by Frequency Scale Factor
314
Scaled by Frequency Scale Factor
315
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
316
Power sent as (power in dBm * 1000). Use two’s-complement method to decode negative power levels.
101) User Defined Pattern (convert to binary for pattern) (Highest byte)
102) User Defined Pattern
103) User Defined Pattern
104) User Defined Pattern (Lowest byte) 105 – 112) Measurement Start Time String (ASCII string: “HH:MM:SS”)
113 – 123) Measurement Stop Time String (ASCII string: “DD:HH:MM:SS”)
124 – 134) Elapsed Time String (ASCII string: “DD:HH:MM:SS”)
135 – 142) Bit Error Rate String (ASCII string in engineering format: x.xxE-xx)
143 – 642) 100 data points with 5 bytes for each data point.
1
Following 4 bytes corresponds to the Bit Error Count
Break down of the 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Not Used Not Used
643) Vpp or dBdsx (Higher byte)
644) Vpp or dBdsx (Lower byte)
645) T1 or E1 Receive Frequency in Hz (Highest byte)
646) T1 or E1 Receive Frequency in Hz
647) T1 or E1 Receive Frequency in Hz
648) T1 or E1 Receive Frequency in Hz (Lowest byte)
649 – 750) Not Used
For Channel Scanner Mode:
44) Reference Level (Highest Byte)
45) Reference Level
46) Reference Level
47) Reference Level (Lowest Byte)
48) Scale Division (Highest Byte)
49) Scale Division
50) Scale Division
51) Scale Division (Lowest Byte)
52) Start Frequency (Highest Byte)
53) Start Frequency
54) Start Frequency
55) Start Frequency (Lowest Byte)
56) Span Frequency (Highest Byte)
57) Span Frequency
58) Span Frequency
59) Span Frequency (Lowest Byte)
60) Channel Step (Highest Byte)
st
byte has information about Carrier Loss, Frame Loss, BPV and CRC
st
byte :
Carrier
Loss
Frame Loss BPV Error
CRC / EBit Error
Any Error
77
www.valuetronics.com
Page 80
61) Channel Step (Lowest Byte)
62) Channel Frequency Step (Highest Byte)
63) Channel Frequency Step
64) Channel Frequency Step
65) Channel Frequency Step (Lowest Byte)
66) Number of Channels Displayed
67) External Reference Frequency
68) Display Type Channels or Frequencies
69) Display Type Graph or Text
323
321
322
70) Signal Standard (Highest Byte)
71) Signal Standard (Lowest Byte)
72-75) GPS Position – Latitude (long integer)
324
76-79) GPS Position – Longitude (long integer)
80-81) GPS Position – Altitude (short integer)
82) Start Channel (Highest Byte)
83) Start Channel
84) Start Channel
85) Start Channel (Lowest Byte)
86 – 109) Signal Standard Name, 24bytes in ASCII
110 – 137) Reserved
138 – 257) Channel Scanner Data
325
For Interference Analyzer RSSI Mode
44) Center Frequency (Highest Byte)
45) Center Frequency
46) Center Frequency
47) Center Frequency (Lowest Byte)
48) Reference Level (Highest Byte)
49) Reference Level
50) Reference Level
51) Reference Level (Lowest Byte)
52) Scale (Highest Byte)
53) Scale
54) Scale
55) Scale (Lowest Byte)
56) RBW (Highest Byte)
57) RBW
58) RBW
59) RBW (Lowest Byte)
60) VBW (Highest Byte)
61) VBW
62) VBW
63) VBW (Lowest Byte)
64) Status Byte 1
Bit 0 - Detection Algorithm (Lowest Bit)
326
Bit 1 - Detection Algorithm
321
Frequency in MHz, OFF if 0
322
0 – Channel, 1 - Frequency
323
0 – Graph, 1 - Text
324
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
325
20 points, 6 bytes per point. First 2 bytes are channel numbers(Invalid channels sent as 0xFFFF) and 4 bytes are
values. Value sent as (value in dBm) * 1000 + 270,000
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
332
Signed long integer is used to represent latitude and longitude. Positive latitude means North hemisphere,
negative latitude means South hemisphere; Positive longitude means East hemisphere, negative longitude means
West hemisphere. Degree = int(abs(value)/1,000,000); Minute = (float)(abs(value)%1,000,000)/10,000
333
Attenuation is sent as (Att in dB * 1000)
79
www.valuetronics.com
Page 82
195 – 3402) RSSI Sweep data
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Not enough bytes transferred
225 (E1h) Memory Error: Not enough memory to store data
238 (EEh) Time-out Error
334
Get Options
Description: Queries the option(s) installed on the Site Master, returns a list as an ASCII string.
Bytes to Follow: 0 bytes
Site Master Returns: Number of bytes depends on the option(s) installed
This command is available with Option 29 and/or Option 5.
Description: Return Power Level at the RF In port. Also returns power meter settings.
Bytes to Follow: 0 bytes
Site Master Returns: 30 bytes
1) Status Byte # 1 (0b = Off, 1b = On)
(LSB) bit 0 : Unit (0b - Watt/%, 1b - dBm/dBr)
bit 2 : Relative Mode On/Off
bit 3: Offset Mode On/Off
bit 4: Zero Mode On/Off
2) RMS Averaging Status
3 - 6) Relative Mode Reference Power Level in dBm
7 - 10) Offset Mode Power Level
11 - 14) Zero Mode Power Level
– Control Byte #37 (25h)
– Control Byte #39 (27h)
bits 5-7: Not Used
335
334
Sweep Data contains 401 display points, 8 bytes per display point. The first 4 bytes are the amplitude, the next 2
bytes are the latitude increments from the start GPS position and the following 2 bytes are the longitude increments
from the Start GPSposition.
15 - 18) Absolute Power Level
19 - 22) Power
23 - 26) Center Frequency
27 - 30) Span Frequency
Notes:
Power is returned as (dBm * 1000)
Relative power is returned as (dB * 1000)
Offset is returned as (dB * 1000)
Frequencies are scaled by the frequency scale factor.
Set Power Meter Units
This command is available with Option 29 and/or Option 5.
Description: Set Power Meter units to watts or dBm.
Bytes to Follow: 1 byte
1) Units 00h = Watt (% if in relative mode)
01h = dBm (dB if in relative mode)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid Units
238 (EEh) Time-out Error
Power Meter Relative Mode On/Off
This command is available with Option 29 and/or Option 5.
Description: Enable or disable Power Meter Relative Mode.
Bytes to Follow: 1 byte
1) Relative Mode State
00h = Off
01h = On w/ trigger (use the current power level as a reference power level)
If you turn the Offset mode off, you must still send the other bytes. Bytes 2 - 5 will be ignored.
Power Meter Zero Mode On/Off
This command is available with Option 29 and/or Option 5.
Description: Enable or disable Power Meter Zeroing Mode.
Bytes to Follow: 1 byte
1) Zero Mode Status
00h = Off
01h = On with trigger (current power level is referenced as -80 dBm)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid status
238 (EEh) Time-out Error
Power Meter RMS Averaging On/Off
This command is available with Option 29 only.
Description: Disable/enable Power Meter RMS Averaging. Enabling can be set to 3 different levels.
Bytes to Follow: 1 byte
1) RMS Averaging State
00h = Off
01h = On (Low) with trigger (current power level is referenced as -80 dBm)
02h = On (Medium)
03h = On (High)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid state
238 (EEh) Time-out Error
– Control Byte #43 (2Bh)
– Control Byte #44 (2Ch)
Power Meter Center Frequency and Span Setup
This command is available with Option 29 only.
Description: Sets the center frequency and span frequency for the Power Meter mode.
If option 6 is installed and the frequency converter module is attached, the frequencies should be scaled by the scale
factor of the module. If the module is not attached, the frequencies are sent in Hz. Use Control Word A203 to
determine whether a module is attached and the appropriate scale factor.
Bytes to Follow: 8 bytes
1) Center Frequency (Highest byte)
2) Center Frequency
3) Center Frequency
82
www.valuetronics.com
– Control Byte #45 (2Dh)
Page 85
4) Center Frequency (Lowest byte)
5) Span (Highest byte)
6) Span
7) Span
8) Span (Lowest byte)
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid frequency range
238 (EEh) Time-out Error
Trigger Sweep
Description: Causes the Site Master to perform a sweep if it is in single sweep mode.
This command works only when the Site Master is NOT in remote mode. Send this command, then wait for the
“Sweep Complete Byte” to signify the end of the sweep.
Note: The "Sweep Complete Byte" is not returned unless serial echo status is turned on using command #10.
Bytes to Follow: 0 bytes
Site Master Returns: 1 byte
1) 192 (C0h) Sweep Complete Byte (at the end of the sweep)
Trigger Sweep
Description: Causes the Site Master to perform a sweep if it is in single sweep mode.
This command works only when the Site Master is NOT in remote mode. Send this command, receive the
“Operation Complete Byte” and then wait for the “Sweep Complete Byte” to signify the end of the sweep.
Note: The "Sweep Complete Byte" is not returned unless serial echo status is turned on using command #10.
Bytes to Follow: 0 bytes
Site Master Returns: 2 bytes
1) 255 (FFh) Operation Complete Byte (when the command is received)
2) 192 (C0h) Sweep Complete Byte (at the end of the sweep)
– Control Byte #48 (30h)
– Control Word (AA30h)
Sweep Data Echo On/Off
Description: Sets the sweep data echo mode On/Off.
Sweep Data Echo Mode behaves much like the Serial Port Echo Mode (see Control Byte #10). It automatically puts
the unit into single sweep mode. At the end of each sweep cycle, the Site Master sends a Sweep Complete Byte
#192 (C0h) to the serial port. At this time, sweep data can be queried (see Control Byte #33) without having to enter
remote mode first or exit remote mode when done. Depending on the value of the second following byte, the next
sweep can be automatically triggered after the sweep data has been sent.
This mode activates once the Site Master exits from the remote mode. Sweep Data Echo status can’t be saved to or
recalled from saved setups. Cycling power resets the Sweep Data Echo status to Off.
The Sweep Data Echo Mode allows run-time handshaking between the Site Master and computer by doing the
following:
83
www.valuetronics.com
– Control Byte #49 (31h)
Page 86
1) Enter remote mode. Set Sweep Data Echo Mode On. Exit remote mode.
2) The Site Master sweeps once and then sends the Sweep Complete Byte.
3) After you receive it: Recall sweep 0 (last sweep trace in RAM).
4) If using auto triggering, repeat steps 2-3. If using manual triggering, go to step 5.
5) Send Sweep Triggering Byte #48 (30h) and wait for the next sweep cycle.
6) Repeat steps 2-5.
Note: To execute commands other than #33, you must use the traditional Enter Remote, Send Commands, Exit
Remote communication sequence.
Bytes to Follow: 2 bytes
1) Sweep Data Echo Status
00h : Off
01h : On
2) Next Sweep Trigger
00h : Manual
01h : Automatic
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error : Invalid sweep data echo status
238 (EEh) Time-out Error
Check Battery Status
Description: Return Smart Battery status.
Bytes to Follow: 0 bytes
Site Master Returns: 17 bytes
1-2) Battery Status flags ( Refer to Smart Battery Data Spec 5.1.2.1)
3-4) State of Charge (unsigned integer 0 to 100(%)Full)
5-6) Battery Voltage (unsigned integer 0 to 65535 in mV)
7-8) Battery Current (signed integer -32,768 to +32,7687 mA, positive = Charging)
9-10) Battery Average current (signed integer -32,768 to +32,7687 mA, positive = Charging)
11-12) Average time to empty (unsigned integer 0 to 65535 minute)
13-14) Battery Charge Cycle Count (unsigned integer 0 to 65535 cycles)
15-16) Battery Capacity at Full Charge in mA Hours (unsigned integer 0 to 65535 cycles)
17) Unit under battery power (1 = YES; 0 = NO)
Note:
The Smart Battery Data Spec can be found at http://www.sbs-forum.org/specs/index.html
– Control Byte #50 (32h)
Set SPA Minimum Sweep Time – Control Byte #53 (35h)
Description: Sets the minimum sweep time (in μs) for the spectrum analyzer when the span is 0.
Description: Automatically save the runtime setup when exiting remote mode.
This flag must be set once per power cycle of the Site Master. It returns to its default value when the unit is turned
off. The default value is (0), DO NOT automatically save the runtime setup.
Bytes to Follow: 1 byte
1) Save runtime setup On/Off
00h = Off (default)
01h = On
Site Master Returns: 1 byte
1) 255 (FFh) Operation Complete Byte
238 (EEh) Time Out Error
85
www.valuetronics.com
– Control Byte #64 (40h)
Page 88
Download Saved Setup – Control Byte #65 (41h)
Description: Returns parameters associated with the specified setup number. Since different modes have different
numbers of setup locations available, the command requires the mode be specified as well as the setup number.
Bytes to Follow: 2 bytes
1) Measurement Mode
2) Setup Number
0 = Run time setup
1 – 10 = Saved setups for Spectrum Analyzer/Transmission Measurement modes
1 – 5 = Saved setups for Power Meter mode (Option 29 Only)
255 = Default setup
Site Master Returns:
For All Modes:
1) Number of Following Bytes (Higher byte)
2) Number of Following Bytes (Lower byte)
3) Measurement Mode
5-20) Not Used
For Site Master VNA Modes:
21) Number of Data Points (Higher byte)
22) Number of Data Points (Lower byte)
23) VNA Start Frequency
24) VNA Start Frequency
25) VNA Start Frequency
26) VNA Start Frequency (Lowest byte)
27) VNA Stop Frequency
28) VNA Stop Frequency
29) VNA Stop Frequency
30) VNA Stop Frequency (Lowest byte)
31) Return Loss Scale Start (Higher byte)
32) Return Loss Scale Start (Lower byte)
33) Return Loss Scale Stop (Higher byte)
34) Return Loss Scale Stop (Lower byte)
35) SWR Scale Start (Higher byte)
36) SWR Scale Start (Lower byte)
37) SWR Scale Stop (Higher byte)
38) SWR Scale Stop (Lower byte)
39) Cable Loss Scale Start (Higher byte)
40) Cable Loss Scale Start (Lower byte)
41) Cable Loss Scale Stop (Higher byte)
42) Cable Loss Scale Stop (Lower byte)
43) DTF-RL Scale Start (Higher byte)
44) DTF-RL Scale Start (Lower byte)
45) DTF-RL Scale Stop (Higher byte)
46) DTF-RL Scale Stop (Lower byte)
336
337
338
(Highest byte)
339
(Highest byte)
341
340
342
343
336
Refer to Control Byte #3 “Select Measurement Mode” for valid measurement modes.
337
Refer to Control Byte #3 “Select Measurement Mode” for valid measurement modes.
338
Frequency is scaled by the frequency scale factor specified in bytes 465-466.
339
Frequency is scaled by the frequency scale factor specified in bytes 465-466.
340
See “Set Site Master VNA Scale” Control Byte #4 for data format.
341
See “Set Site Master VNA Scale” Control Byte #4 for data format.
342
See “Set Site Master VNA Scale” Control Byte #4 for data format.
343
See “Set Site Master VNA Scale” Control Byte #4 for data format.
86
www.valuetronics.com
Page 89
47) DTF-SWR Scale Start (Higher byte)
344
48) DTF-SWR Scale Start (Lower byte)
49) DTF-SWR Scale Stop (Higher byte)
50) DTF-SWR Scale Stop (Lower byte)
51) VNA Frequency Marker 1 (Higher byte)
345
52) VNA Frequency Marker 1(Lower byte)
53) VNA Frequency Marker 2 (Higher byte)
54) VNA Frequency Marker 2 (Lower byte)
55) VNA Frequency Marker 3 (Higher byte)
56) VNA Frequency Marker 3 (Lower byte)
57) VNA Frequency Marker 4 (Higher byte)
58) VNA Frequency Marker 4 (Lower byte)
59) VNA Frequency Marker 5 (Higher byte)
60) VNA Frequency Marker 5 (Lower byte)
61) VNA Frequency Marker 6 (Higher byte)
62) VNA Frequency Marker 6 (Lower byte)
63) Return Loss Single Limit (Higher byte)
64) Return Loss Single Limit (Lower byte)
65) SWR Single Limit (Higher byte)
66) SWR Single Limit (Lower byte)
67) Cable Loss Single Limit (Higher byte)
68) Cable Loss Single Limit (Lower byte)
69) DTF-RL Single Limit (Higher byte)
70) DTF-RL Single Limit (Lower byte)
71) DTF-SWR Single Limit (Higher byte)
347
346
348
349
350
72) DTF-SWR Single Limit (Lower byte)
73) Return Loss Multiple Limit Segment # (1)
74) Return Loss Multiple Limit Segment Status (00h = Off, 01h = On )
75) Return Loss Multiple Limit Segment Start X (Highest byte)
351
76) Return Loss Multiple Limit Segment Start X
77) Return Loss Multiple Limit Segment Start X
78) Return Loss Multiple Limit Segment Start X (Lowest byte)
79) Return Loss Multiple Limit Segment Start Y (Higher byte)
80) Return Loss Multiple Limit Segment Start Y (Lowest byte)
81) Return Loss Multiple Limit Segment End X (Highest byte)
352
82) Return Loss Multiple Limit Segment End X
83) Return Loss Multiple Limit Segment End X
84) Return Loss Multiple Limit Segment End X (Lowest byte)
85) Return Loss Multiple Limit Segment End Y (Higher byte)
86) Return Loss Multiple Limit Segment End Y (Lowest byte)
87-142) Repeat bytes 63 – 76 for segments 2 – 5
143-212) Repeat bytes 63 – 132 for SWR Multiple Limit
213-282) Repeat bytes 63 – 132 for Cable Loss Multiple Limit
283-352) Repeat bytes 63 – 132 for DTF-RL Multiple Limit
344
See “Set Site Master VNA Scale” Control Byte #4 for data format.
Where # of data points can be found in bytes 2-3, start freq is in bytes 4-7, and stop freq is in bytes 8-11.
346
See Control Byte #6, “Set Site Master VNA Single Limit” for data format.
347
See Control Byte #6, “Set Site Master VNA Single Limit” for data format.
348
See Control Byte #6, “Set Site Master VNA Single Limit” for data format.
349
See Control Byte #6, “Set Site Master VNA Single Limit” for data format.
350
See Control Byte #6, “Set Site Master VNA Single Limit” for data format.
351
See Control Byte #112, “Set Site Master VNA Segmented Limit Lines” for data format. Frequency is scaled by
the frequency scale factor specified in bytes 465-466.
352
Frequency is scaled by the frequency scale factor specified in bytes 465-466.
87
www.valuetronics.com
Page 90
353-422) Repeat bytes 63 – 132 for DTF-SWR Multiple Limit
423) Start Distance (Highest byte)
353
424) Start Distance
425) Start Distance
426) Start Distance (Lowest byte)
427) Stop Distance (Highest byte)
428) Stop Distance
429) Stop Distance
430) Stop Distance (Lowest byte)
431) Distance Marker 1 (Higher byte)
354
432) Distance Marker 1 (Lower byte)
433) Distance Marker 2 (Higher byte)
434) Distance Marker 2 (Lower byte)
435) Distance Marker 3 (Higher byte)
436) Distance Marker 3 (Lower byte)
437) Distance Marker 4 (Higher byte)
438) Distance Marker 4 (Lower byte)
439) Distance Marker 5 (Higher byte)
440) Distance Marker 5 (Lower byte)
441) Distance Marker 6 (Higher byte)
442) Distance Marker 6 (Lower byte)
443) Relative Propagation Velocity (Highest byte)
355
444) Relative Propagation Velocity
445) Relative Propagation Velocity
446) Relative Propagation Velocity (Lowest byte)
447) Cable Loss (Highest byte)
356
448) Cable Loss
449) Cable Loss
450) Cable Loss (Lowest byte)
451) Average Cable Loss
357
(Highest byte)
452) Average Cable Loss
453) Average Cable Loss
454) Average Cable Loss (Lowest byte)
455) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Site Master Marker 1 On/Off
bit 1 : Site Master Marker 2 On/Off
bit 2 : Site Master Marker 3 On/Off
bit 3 : Site Master Marker 4 On/Off
bit 4 : Site Master Marker 5 On/Off
bit 5 : Site Master Marker 6 On/Off
bits 6- 7 : Not Used
456) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Not Used
bit 1 : Site Master Marker 2 Delta On/Off
bit 2 : Site Master Marker 3 Delta On/Off
bit 3 : Site Master Marker 4 Delta On/Off
bits 4-7: Not Used
457) Status Byte 3: ( 0b = Off , 1b = On)
(LSB) bit 0 : Site Master Limit Type (0b = Single, 1b = Multiple)
353
Distance data uses units 1/100,000m or 1/100,000 ft
72) SPA Multiple Upper Limit 1 End X (Lowest byte)
73) SPA Multiple Upper Limit 1 End Y (Power Level) (Highest byte)
372
74) SPA Multiple Upper Limit 1 End Y (Power Level)
75) SPA Multiple Upper Limit 1 End Y (Power Level)
76) SPA Multiple Upper Limit 1 End Y (Power Level) (Lowest byte)
77-220) SPA Multiple Upper Limits 2-5, SA Multiple Lower Limits 1-5 (see bytes 61-76 for format)
221) RBW Setting (Highest byte)
373
222) RBW Setting
223) RBW Setting
224) RBW Setting (Lowest byte)
225) VBW Setting (Highest byte)
374
226) VBW Setting
366
Value sent as (value * 1000)
367
Value sent as data point on the display. Equivalent frequency = (point * span / ( # data points – 1 ) ) + start
frequency.
368
Value sent as ( value in dBm * 1000 ) + 270000
369
Scaled by Frequency Scale Factor (bytes 301-302)
370
Value sent as ( value in dBm * 1000 ) + 270000
371
Scaled by Frequency Scale Factor (bytes 301-302)
372
Value sent as ( value in dBm * 1000 ) + 270000
373
RBW frequency sent in Hz.
374
VBW frequency sent in Hz.
90
www.valuetronics.com
Page 93
227) VBW Setting
228) VBW Setting (Lowest byte)
229) OCC BW Method
230) OCC BW % Value
231) OCC BW dBc
377
375
376
232) Attenuation
233) Antenna Index (0-14)
234-249) Antenna Name (16 bytes in ASCII)
250) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Spectrum Analyzer Mode Marker 1 On/Off
bit 1 : Spectrum Analyzer Mode Marker 2 On/Off
bit 2 : Spectrum Analyzer Mode Marker 3 On/Off
bit 3 : Spectrum Analyzer Mode Marker 4 On/Off
bit 4 : Spectrum Analyzer Mode Marker 5 On/Off
bit 5 : Spectrum Analyzer Mode Marker 6 On/Off
bits 6 - 7 : Not Used
251) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : Not Used
bit 1 : Spectrum Analyzer Mode Marker 2 Delta On/Off
bit 2 : Spectrum Analyzer Mode Marker 3 Delta On/Off
bit 3 : Spectrum Analyzer Mode Marker 4 Delta On/Off
bit 4 : Pre Amp Mode (0b = Manual, 1b = Auto)
bit 5 : Pre Amp Status On/Off
bit 6 : Dynamic Attenuation On/Off
bit 7 : Normalization On/Off
252) Status Byte 3: ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Limit Type (0b = Single, 1b = Multiple)
bit 1 : SPA Single Limit Beep On/Off
bit 2 : SPA Single Limit Status On/Off
bit 3 : SPA Single Limit Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Upper Segment 1 Status On/Off
bit 5 : SPA Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Upper Segment 2 Status On/Off
bit 7 : SPA Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
253) Status Byte 4 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Multiple Limit Upper Segment 3 Status On/Off
bit 1 : SPA Multiple Limit Upper Segment 3 Beep Level ABOVE/BELOW
bit 2 : SPA Multiple Limit Upper Segment 4 Status On/Off
bit 3 : SPA Multiple Limit Upper Segment 4 Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Upper Segment 5 Status On/Off
bit 5 : SPA Multiple Limit Upper Segment 5 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Lower Segment 1 Status On/Off
bit 7 : SPA Multiple Limit Lower Segment 1 Beep Level ABOVE/BELOW
254) Status Byte 5 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : SPA Multiple Limit Lower Segment 2 Status On/Off
bit 1 : SPA Multiple Limit Lower Segment 2 Beep Level ABOVE/BELOW
bit 2 : SPA Multiple Limit Lower Segment 3 Status On/Off
375
00h = % of power, 01h = dB down
376
0 – 99%
377
0 – 120 dBc
378
Beep level is always 1b for upper segmented limit line
379
Beep level is always 0b for lower segmented limit line
378
379
91
www.valuetronics.com
Page 94
bit 3 : SPA Multiple Limit Lower Segment 3 Beep Level ABOVE/BELOW
bit 4 : SPA Multiple Limit Lower Segment 4 Status On/Off
bit 5 : SPA Multiple Limit Lower Segment 4 Beep Level ABOVE/BELOW
bit 6 : SPA Multiple Limit Lower Segment 5 Status On/Off
bit 7 : SPA Multiple Limit Lower Segment 5 Beep Level ABOVE/BELOW
255) Status Byte 6: (0b = Off, 1b = On)
(LSB) bit 0 : Antenna Factors Correction On/Off
bit 1 : Bias Tee On/Off (Option 10)
bit 2 : Amplitude Units (Linear) – 00b = Watts 01b = Volts
bits 3-4 : Amplitude Units (Log) - 00b = dBm 01b = dBV 10b = dBmV 11b = dBuV
bits 5-6 : Detection Alg (00b = pos. peak 01b = RMS Averaging 10b = neg. peak 11b =
Sampling Mode)
bit 7 : Units Type (0b = Log 1b = Linear)
256) Status Byte 7: (0b = Off, 1b = On)
(LSB) bit 0: Interference Analysis On/Off
bit 1: C/I Measurement On/Off
bit 2: RBW Coupling (1b = Auto, 0b = Manual)
bit 3: VBW Coupling (1b = Auto, 0b = Manual)
bit 4: Attenuation Coupling (1b = Auto, 0b = Manual)
bit 5: Channel Power On/Off
bit 6: Adjacent Channel Power On/Off
bit 7: Occupied BW Measurement On/Off
257) Reference Level Offset
380
(Highest byte)
258) Reference Level Offset
259) Reference Level Offset
260) Reference Level Offset (Lowest byte)
261) External Reference Frequency
262) Signal Standard
263) Signal Standard (Lower byte)
264) Channel Selection
265) Channel Selection (Lower byte)
266) Trigger Type
382
(Higher byte)
383
(Higher byte)
384
267) Interference Analysis Frequency
381
385
(Highest byte)
268) Interference Analysis Frequency
269) Interference Analysis Frequency
270) Interference Analysis Frequency (Lowest byte)
271) Trigger Position (0 – 100%)
272) Min Sweep Time (in μs) (Highest byte)
273) Min Sweep Time (in μs)
274) Min Sweep Time (in μs)
275) Min Sweep Time (in μs) (Lowest byte)
276) Video Trigger Level
386
(Highest byte)
277) Video Trigger Level
278) Video Trigger Level
279) Video Trigger Level (Lowest byte)
280) Status Byte 8
(LSB) bit 0: Reserved
bits 1-7: Not Used
380
Value sent as (value in dBm * 1000) + 270,000
381
1 byte in MHz (i.e. 20 = 20MHz)
382
Index into Standard List (use control byte #89 to retrieve the ASCII string name). “No Standard” sent as FFFEh
383
“No Channel” is sent as FFFEh
384
Trigger Type – 00h = Single, 01h = Free Run, 02h = Video, 03h = External
385
Scaled by Frequency Scale Factor (bytes 301-302)
386
Value sent as ( value in dBm * 1000 ) + 270,000
92
www.valuetronics.com
Page 95
281) Status Byte 9
(LSB) bits 0-6: Number of sweeps to average (1-25, 1 implies averaging OFF)
bit 7: Not Used
282) Status Byte 10: (0b = Off, 1b = On)
(LSB) bits 0-1: Trace Math Operation (00b = A only, 01b = A-B, 10b = A+B)
73) Multiple Upper Limit 1 End Y (Power Level) (Highest byte)
413
74) Multiple Upper Limit 1 End Y (Power Level)
75) Multiple Upper Limit 1 End Y (Power Level)
76) Multiple Upper Limit 1 End Y (Power Level) (Lowest byte)
77-220) Multiple Upper Limits 2-5, SA Multiple Lower Limits 1-5 (see bytes 61-76 for format)
221) RBW Setting (Highest byte)
414
222) RBW Setting
223) RBW Setting
224) RBW Setting (Lowest byte)
225) VBW Setting (Highest byte)
415
226) VBW Setting
227) VBW Setting
228) VBW Setting (Lowest byte)
229) Attenuation
230) Status Byte 1: ( 0b = Off , 1b = On)
(LSB) bit 0 : Marker 1 On/Off
bit 1 : Marker 2 On/Off
408
Value sent as data point on the display. Equivalent frequency = (point * span / ( # data points – 1 ) ) + start
frequency.
409
Value sent as ( value in dBm * 1000 ) + 270000
410
Scaled by Frequency Scale Factor (bytes 244-245)
411
Value sent as ( value in dBm * 1000 ) + 270000
412
Scaled by Frequency Scale Factor (bytes 244-245)
413
Value sent as ( value in dBm * 1000 ) + 270000
414
RBW frequency sent in Hz.
415
VBW frequency sent in Hz.
95
www.valuetronics.com
Page 98
bit 2 : Marker 3 On/Off
bit 3 : Marker 4 On/Off
bit 4 : Marker 5 On/Off
bit 5 : Marker 6 On/Off
bits 6 - 7 : Not Used
231) Status Byte 2: (0b = Off, 1b = On)
(LSB) bit 0 : S21 Spa Cal Status (0 – Cal OFF, 1 – Cal ON)
bit 1 : Marker 2 Delta On/Off
bit 2 : Marker 3 Delta On/Off
bit 3 : Marker 4 Delta On/Off
bit 4 : Pre Amp Mode (0b = Manual, 1b = Auto)
bit 5 : Pre Amp Status On/Off
bit 6 : Dynamic Attenuation On/Off
bit 7 : Not Used
232) Status Byte 3: ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Limit Type (0b = Single, 1b = Multiple)
bit 1 : Single Limit Beep On/Off
bit 2 : Single Limit Status On/Off
bit 3 : Single Limit Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Upper Segment 1 Status On/Off
bit 5 : Multiple Limit Upper Segment 1 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Upper Segment 2 Status On/Off
bit 7 : Multiple Limit Upper Segment 2 Beep Level ABOVE/BELOW
233) Status Byte 4 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Multiple Limit Upper Segment 3 Status On/Off
bit 1 : Multiple Limit Upper Segment 3 Beep Level ABOVE/BELOW
bit 2 : Multiple Limit Upper Segment 4 Status On/Off
bit 3 : Multiple Limit Upper Segment 4 Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Upper Segment 5 Status On/Off
bit 5 : Multiple Limit Upper Segment 5 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Lower Segment 1 Status On/Off
bit 7 : Multiple Limit Lower Segment 1 Beep Level ABOVE/BELOW
234) Status Byte 5 : ( 0b = Off/Beep if data is BELOW line ,
1b = On/Beep if data is ABOVE line)
(LSB) bit 0 : Multiple Limit Lower Segment 2 Status On/Off
bit 1 : Multiple Limit Lower Segment 2 Beep Level ABOVE/BELOW
bit 2 : Multiple Limit Lower Segment 3 Status On/Off
bit 3 : Multiple Limit Lower Segment 3 Beep Level ABOVE/BELOW
bit 4 : Multiple Limit Lower Segment 4 Status On/Off
bit 5 : Multiple Limit Lower Segment 4 Beep Level ABOVE/BELOW
bit 6 : Multiple Limit Lower Segment 5 Status On/Off
bit 7 : Multiple Limit Lower Segment 5 Beep Level ABOVE/BELOW