Analog Devices AD5259 Datasheet

V
V
V
A
Nonvolatile, I2C-Compatible

FEATURES

Nonvolatile memory maintains wiper settings 256-position Compact MSOP-10 (3 mm × 4.9 mm) package
2
C®-compatible interface
I
pin provides increased interface flexibility
V
LOGIC
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Resistance tolerance stored in EEPROM (0.1% accuracy) Power-on EEPROM refresh time < 1ms Software write protect command Three-state Address Decode Pins AD0 and AD1 allow
9 packages per bus 100-year typical data retention at 55°C Wide operating temperature −40°C
3 V to 5 V single supply

APPLICATIONS

LCD panel V LCD panel brightness and contrast control Mechanical potentiometer replacement in new designs Programmable power supplies RF amplifier biasing Automotive electronics adjustment Gain control and offset adjustment Fiber to the home systems Electronics level settings
adjustment
COM
to +85°C
256-Position, Digital Potentiometer
AD5259

FUNCTIONAL BLOCK DIAGRAMS

RDAC
A W B
05026-001
A
W
B
05026-003
SCL
SDA
AD0 AD1
GND
V
LOGIC
GND
SCL SDA
AD0 AD1
DD
RDAC
EEPROM
DATA
8
I2C
SERIAL
INTERFACE
POWER-
ON RESET
8
CONTROL
COMMAND
DECODE LOGIC
ADDRESS
DECODE LOGIC
CONTROL LOGIC
Figure 1. Block Diagram
LOGIC
EEPROM
RDAC
I2C
SERIAL
INTERFACE
COMMAND
DECODE LOGIC
ADDRESS
DECODE LOGIC
CONTROL
LOGIC
REGISTER
AND
LEVEL
SHIFTER
Figure 2. Block Diagram Showing Level Shifters
RDAC
REGISTER
AD5259
DD

GENERAL DESCRIPTION

The AD5259 provides a compact, nonvolatile 3 mm × 4.9 mm packaged solution for 256-position adjustment applications. These devices perform the same electronic adjustment function
1
as mechanical potentiometers
or variable resistors, but with
enhanced resolution and solid-state reliability.
2
The wiper settings are controllable through an I
C-compatible digital interface that is also used to read back the wiper register and EEPROM content. Resistor tolerance is also stored within EEPROM providing an end-to-end tolerance accuracy of 0.1%. There is also a software write protection function that ensures data cannot be written to the EEPROM register.
A separate V
pin delivers increased interface flexibility. For
LOGIC
users who need multiple parts on one bus, Address Bit AD0 and Address Bit AD1 allow up to nine devices on the same bus.
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CONNECTION DIAGRAM

AD0 AD1
SD
SCL
W
1 2 3 4 5
AD5259
TOP VIEW
(Not to Scale)
Figure 3. Pinout
10
A
9
B
8
V
DD
GND
7 6
V
LOGIC
05026-002
1
The terms digital potentiometer, VR (variable resistor), and RDAC are used
interchangeably.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2005 Analog Devices, Inc. All rights reserved.
www.analog.com
AD5259
TABLE OF CONTENTS
Specifications..................................................................................... 3
Writ e M o des ................................................................................ 17
Electrical Characteristics............................................................. 3
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics............................................. 8
Test C ir c uit s ..................................................................................... 13
Theory of Operation ...................................................................... 14
Programming the Variable Resistor......................................... 14
Programming the Potentiometer Divider............................... 14
2
I
C Interface..................................................................................... 15
2
I
C Byte Formats............................................................................. 16
Generic Interface........................................................................ 16
REVISION HISTORY
Read Modes................................................................................. 17
Store/Restore Modes .................................................................. 17
Tole ran c e Re adb ack M o de s ...................................................... 18
ESD Protection of Digital Pins and Resistor Terminals........ 19
Power-Up Sequence ................................................................... 19
Layout and Power Supply Bypassing ....................................... 19
Multiple Devices on One Bus ................................................... 19
Evaluation Board ........................................................................ 19
Display Applications ...................................................................... 20
Circuitry ...................................................................................... 20
Outline Dimensions ....................................................................... 21
Ordering Guide .......................................................................... 21
2/05 — Revision 0: Initial Version
Rev. 0 | Page 2 of 24
AD5259

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VDD = V
Table 1.
Parameter Symbol Conditions Min Typ
DC CHARACTERISTICS: RHEOSTAT MODE
Resistor Differential Nonlinearity R-DNL RWB, V
Resistor Integral Nonlinearity R-INL RWB, V
Nominal Resistor Tolerance ∆R Resistance Temperature Coefficient (∆RAB x 106)/(RAB x ∆T) Code = 0x00/0x80 500/15 ppm/°C Total Wiper Resistance R
DC CHARACTERISTICS: POTENTIOMETER DIVIDER MODE
Differential Nonlinearity DNL LSB
Integral Nonlinearity INL LSB
Full-Scale Error V
Zero-Scale Error V
Voltage Divider Temperature
Coefficient
RESISTOR TERMINALS
Voltage Range V Capacitance A, B C
Capacitance W C
Common-Mode Leakage I
DIGITAL INPUTS AND OUTPUTS
Input Logic High V Input Logic Low V Leakage Current I
Input Capacitance C
= 5 V ± 10%, or 3 V ± 10%; VA = VDD; VB = 0 V; −40°C < TA < +85°C; unless otherwise noted.
LOGIC
1
Max Unit
= no connect
A
LSB 5 kΩ –1 ±0.2 +1 10 kΩ −1 ±0.1 +1 50 kΩ/100 kΩ −0.5 ±0.1 +0.5
= no connect
A
LSB 5 kΩ –4 ±0.3 +4 10 kΩ −2 ±0.2 +2 50 kΩ/100 kΩ −1 ±0.4 +1
AB
WB
TA = 25°C, VDD = 5.5 V –30 +30 %
Code = 0x00 75 350
5 kΩ –1 ±0.2 +1 10 kΩ −0.5 ±0.1 +0.5 50 kΩ/100 kΩ −0.5 ±0.2 +0.5
5 kΩ –1 ±0.2 +1 10 kΩ −0.5 ±0.1 +0.5 50 kΩ/100 kΩ −0.5 ±0.1 +0.5
WFSE
Code = 0xFF LSB 5 kΩ −7 −3 0 10 kΩ −4 −1.5 0 50 kΩ/100 kΩ −1 −0.4 0
WZSE
Code = 0x00 LSB 5 kΩ 0 4 2.5 10 kΩ 0 3 1 50 kΩ/100 kΩ 0 0.5 0.2
x 106)/(VW x T) Code = 0x00/0x80 60/5 ppm/°C
(V
W
A, B, W
A, B
GND V
f = 1 MHz, measured to GND,
45 pF
DD
Code = 0x80
W
f = 1 MHz, measured to GND,
60 pF
Code = 0x80
CM
IH
IL
IL
VA = VB = VDD/2 10 nA
0.7 × VL V
+ 0.5 V
L
−0.5 0.3 × VLV
µA
SDA, AD0, AD1 VIN = 0 V or 5 V 0.01 ±1 SCL – Logic High VIN = 0 V −2.5 −1.3 +1 SCL – Logic Low VIN = 5 V 0.01 ±1
IL
5 pF
V
Rev. 0 | Page 3 of 24
AD5259
Parameter Symbol Conditions Min Typ
1
Max Unit
POWER SUPPLIES
Power Supply Range V Positive Supply Current I Logic Supply V Logic Supply Current I Programming Mode Current (EEPROM) I Power Dissipation P
DD
DD
LOGIC
LOGIC
LOGIC(PROG)
DISS
2.7 5.5 V
0.1 2 µA
2.7 5.5 V VIH = 5 V or VIL = 0 V 3 6 µA VIH = 5 V or VIL = 0 V 35 mA VIH = 5 V or VIL = 0 V, VDD = 5 V 15 40 µW
Power Supply Rejection Ratio PSRR VDD = +5 V ± 10%, Code = 0x80 ±0.005 ±0.06 %/%
DYNAMIC CHARACTERISTICS
Bandwidth −3 dB BW Code = 0x80 R R R R Total Harmonic Distortion THD
W
= 5 kΩ 2000 kHz
AB
= 10 kΩ 800 kHz
AB
= 50 kΩ 160 kHz
AB
= 100 kΩ 80 kHz
AB
RAB = 10 kΩ, VA = 1 V rms, VB = 0,
0.1 %
f = 1 kHz
VW Settling Time t
S
RAB = 10 kΩ, VAB = 5 V,
500 ns
±1 LSB error band
Resistor Noise Voltage Density e
1
Typical values represent average readings at 25°C and V = 5 V.
N_WB
DD
RWB = 5 kΩ, f = 1 kHz 9 nV/√Hz
Rev. 0 | Page 4 of 24
AD5259

TIMING CHARACTERISTICS

VDD = V
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
I2C INTERFACE TIMING CHARACTERISTICS
SCL Clock Frequency f t
BUF
t
HD;STA
t
LOW
t
HIGH
t
SU;STA
Condition
t
HD;DAT
t
SU;DAT
tF Fall Time of Both SDA and SCL Signals t tR Rise Time of Both SDA and SCL Signals t t
SU;STO
EEPROM Data Storing Time t EEPROM Data Restoring Time at Power On
EEPROM Data Restoring Time upon Restore
Command
EEPROM Data Rewritable Time
FLASH/EE MEMORY RELIABILITY
Endurance Data Retention
1
During power-up, the output is momentarily preset to midscale before restoring EEPROM content.
2
Delay time after power-on PRESET prior to writing new EEPROM data.
3
Endurance is qualified to 100,000 cycles per JEDEC Std. 22 method A117, and is measured at –40°C, +25°C, and +85°C; typical endurance at +25°C is 700,000 cycles.
4
Retention lifetime equivalent at junction temperature (TJ) = 55°C per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV derates
with junction temperature.
= 5 V ± 10%, or 3 V ± 10%; VA = VDD; VB = 0 V; −40°C < TA < +85°C; unless otherwise noted.
LOGIC
0 400 kHz
1.3 µs After this period, the first clock pulse is
Bus Free Time between STOP and START t
Hold Time (Repeated START) t
SCL
1
2
generated.
Low Period of SCL Clock t
High Period of SCL Clock t
Setup Time for Repeated START
Data Hold Time t
Data Setup Time t
Setup Time for STOP Condition t
1
1
2
3
4
3
4
t
5
6
7
8
9
10
EEMEM_STORE
t
EEMEM_RESTORE1
t
EEMEM_RESTORE2VDD
t
EEMEM_REWRITE
100 700 kCycles 100 Years
1.3 µs
0.6 µs
0.6 µs
0 0.9 µs 100 ns 300 ns 300 ns
0.6 µs 26 ms VDD rise time dependent. Measure without
decoupling capacitors at V
DD
= 5 V. 300 µs
540 µs
0.6 µs
300 µs
and GND.
t
SCL
SDA
t
8
t
t
3
2
t
9
t
8
t
1
PS P
Figure 4. I
t
9
t
t
4
2
C Interface Timing Diagram
5
6
t
7
t
10
05026-004
Rev. 0 | Page 5 of 24
AD5259

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 3.
Parameter Value
VDD to GND VA, VB, VW to GND I
MAX
Pulsed
1
0.3 V to +7 V GND 0.3 V, V
±20 mA
+ 0.3 V
DD
Continuous ±5 mA Digital Inputs and Output Voltage to GND 0 V to 7 V Operating Temperature Range
Maximum Junction Temperature (T Storage Temperature
40°C to +85°C
) 150°C
JMAX
65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Thermal Resistance2
: MSOP–10
θ
JA
1
Maximum terminal current is bounded by the maximum current handling of
the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
2
Package power dissipation = (T
– TA)/θJA.
JMAX
200°C/W
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 24
AD5259
A

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

10
A B
9
V
8
DD
GND
7
V
6
LOGIC
05026-008
AD0 AD1 SD SCL
1
W
2 3 4 5
AD5259
TOP VIEW
(Not to Scale)
Figure 5. Pin Configuration
Table 4. AD5259 Pin Function Descriptions
Pin Mnemonic Description
1 W W Terminal, GND ≤ VW ≤ VDD. 2 ADO
Programmable Three-State Address Bit 0 for Multiple Package Decoding. State is registered on power-up.
3 AD1
Programmable Three-State Address Bit 1 for Multiple Package Decoding. State is registered on
power-up. 4 SDA Serial Data Input/Output. 5 SCL Serial Clock Input. Positive edge triggered. 6 V
LOGIC
Logic Power Supply. 7 GND Digital Ground. 8 V
DD
Positive Power Supply. 9 B B Terminal, GND ≤ VB ≤ VDD. 10 A A Terminal, GND ≤ VA ≤ VDD.
Rev. 0 | Page 7 of 24
AD5259

TYPICAL PERFORMANCE CHARACTERISTICS

VDD = V
RHEOSTAT MODE INL (LSB)
= 5.5 V, RAB = 10 kΩ, TA = +25°C; unless otherwise noted.
LOGIC
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1
–0.1
–0.3
–0.5
0 256224192160128966432
2.7V
5.5V
CODE (Decimal)
Figure 6. R-INL vs. Code vs. Supply Voltage
05026-015
POTENTIOMETER MODE DNL (LSB)
0.25
0.20
0.15
0.10
0.05
–0.05
–0.10
–0.15
–0.20
–0.25
0
0 256224192160128966432
CODE (Decimal)
Figure 9. DNL vs. Code vs. Temperature
+25°C
+85°C
–40°C
05026-012
RHEOSTAT MODE DNL (LSB)
POTENTIOMETER MODE INL (LSB)
0.5
0.4
0.3
0.5
0.1
–0.1
–0.2
–0.3
–0.4
–0.5
0
0 256224192160128966432
2.7V
5.5V
CODE (Decimal)
Figure 7. R-DNL vs. Code vs. Supply Voltages
0.25
0.20
0.15
0.10
0.05
–0.05
–0.10
–0.15
–0.20
–0.25
0
0 256224192160128966432
T
A
CODE (Decimal)
Figure 8. INL vs. Code vs. Temperature
= +85°C
T
= +25°C
A
TA = –40°C
05026-017
05026-010
POTENTIOMETER MODE INL (LSB)
POTENTIOMETER MODE DNL (LSB)
0.25
0.20
0.15
0.10
0.05
–0.05
–0.10
–0.15
–0.20
–0.25
0
0 256224192160128966432
2.7V
CODE (Decimal)
Figure 10. INL vs. Supply Voltages
0.25
0.20
0.15
0.10
0.05
–0.05
–0.10
–0.15
–0.20
–0.25
2.7V
0
0 256224192160128966432
5.5V
CODE (Decimal)
Figure 11. DNL vs. Code vs. Supply Voltages
5.5V
05026-011
05026-013
Rev. 0 | Page 8 of 24
Loading...
+ 16 hidden pages