Resistance tolerance stored in EEPROM (0.1% accuracy)
Power-on EEPROM refresh time <1 ms
Software write protect command
Three-state Address Decode Pins AD0 and AD1 allow
9 packages per bus
100-year typical data retention at 55°C
Wide operating temperature −40°C
3 V to 5 V single supply
APPLICATIONS
LCD panel V
LCD panel brightness and contrast control
Mechanical potentiometer replacement in new designs
Programmable power supplies
RF amplifier biasing
Automotive electronics adjustment
Gain control and offset adjustment
Fiber to the home systems
Electronics level settings
adjustment
COM
to +85°C
64-Position, Digital Potentiometer
AD5258
FUNCTIONAL BLOCK DIAGRAMS
RDAC
A
W
B
05029-001
A
W
B
05029-003
SCL
SDA
AD0
AD1
GND
V
LOGIC
GND
SCL
SDA
AD0
AD1
DD
RDAC
EEPROM
DATA
6
I2C
SERIAL
INTERFACE
POWER-
ON RESET
CONTROL
6
COMMAND
DECODE LOGIC
ADDRESS
DECODE LOGIC
CONTROL LOGIC
Figure 1. Block Diagram
LOGIC
EEPROM
RDAC
I2C
SERIAL
INTERFACE
COMMAND
DECODE LOGIC
ADDRESS
DECODE LOGIC
CONTROL
LOGIC
REGISTER
AND
LEVEL
SHIFTER
Figure 2. Block Diagram Showing Level Shifters
RDAC
REGISTER
AD5258
DD
GENERAL DESCRIPTION
The AD5258 provides a compact, nonvolatile 3 mm × 4.9 mm
packaged solution for 64-position adjustment applications.
These devices perform the same electronic adjustment function
1
as mechanical potentiometers
or variable resistors, but with
enhanced resolution and solid-state reliability.
2
The wiper settings are controllable through an I
C-compatible
digital interface that is also used to read back the wiper register
and EEPROM content. Resistor tolerance is also stored within
EEPROM providing an end-to-end tolerance accuracy of 0.1%.
There is also a software write protection function that ensures
data cannot be written to the EEPROM register.
A separate V
pin delivers increased interface flexibility. For
LOGIC
users who need multiple parts on one bus, Address Bit AD0 and
Address Bit AD1 allow up to nine devices on the same bus.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
CONNECTION DIAGRAM
AD0
AD1
SD
SCL
W
1
2
3
4
5
AD5258
TOP VIEW
(Not to Scale)
Figure 3. Pinout
10
A
9
B
8
V
DD
GND
7
6
V
LOGIC
05029-002
1
The terms digital potentiometer, VR (variable resistor), and RDAC are used
SDA, AD0, AD1 VIN = 0 V or 5 V 0.01 ±1
SCL – Logic High VIN = 0 V −2.5 −1.4 +1
SCL – Logic Low VIN = 5 V 0.01 ±1
IL
5 pF
V
Rev. 0 | Page 3 of 24
AD5258
Parameter Symbol Conditions Min Typ
1
Max Unit
POWER SUPPLIES
Power Supply Range V
Positive Supply Current I
Logic Supply V
Logic Supply Current I
Programming Mode Current (EEPROM) I
Power Dissipation P
DD
DD
LOGIC
LOGIC
LOGIC(PROG)
DISS
2.7 5.5 V
0.5 2 µA
2.7 5.5 V
VIH = 5 V or VIL = 0 V 3.5 6 µA
VIH = 5 V or VIL = 0 V 35 mA
VIH = 5 V or VIL = 0 V, VDD = 5 V 20 40 µW
Power Supply Rejection Ratio PSRR VDD = +5 V ± 10%, Code = 0x20 ±0.01 ±0.06 %/%
DYNAMIC CHARACTERISTICS
Bandwidth −3 dB BW Code = 0x20
R
R
R
R
Total Harmonic Distortion THD
W
= 1 kΩ 18000 kHz
AB
= 10 kΩ 1000 kHz
AB
= 50 kΩ 190 kHz
AB
= 100 kΩ 100 kHz
AB
RAB = 10 kΩ, VA = 1 V rms, VB = 0,
0.1 %
f = 1 kHz
VW Settling Time t
S
RAB = 10 kΩ, VAB = 5 V,
500 ns
±1 LSB error band
Resistor Noise Voltage Density e
1
Typical values represent average readings at 25°C and V = 5 V.
N_WB
DD
RWB = 5 kΩ, f = 1 kHz 9 nV/√Hz
Rev. 0 | Page 4 of 24
AD5258
TIMING CHARACTERISTICS
VDD = V
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
I2C INTERFACE TIMING CHARACTERISTICS
SCL Clock Frequency f
t
BUF
t
HD;STA
t
LOW
t
HIGH
t
SU;STA
Condition
t
HD;DAT
t
SU;DAT
tF Fall Time of Both SDA and SCL Signals t
tR Rise Time of Both SDA and SCL Signals t
t
SU;STO
EEPROM Data Storing Time t
EEPROM Data Restoring Time at Power On
EEPROM Data Restoring Time upon Restore
Command
EEPROM Data Rewritable Time
FLASH/EE MEMORY RELIABILITY
Endurance
Data Retention
1
During power-up, the output is momentarily preset to midscale before restoring EEPROM content.
2
Delay time after power-on PRESET prior to writing new EEPROM data.
3
Endurance is qualified to 100,000 cycles per JEDEC Std. 22 method A117, and is measured at –40°C, +25°C, and +85°C; typical endurance at +25°C is 700,000 cycles.
4
Retention lifetime equivalent at junction temperature (TJ) = 55°C per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV derates
with junction temperature.
= 5 V ± 10%, or 3 V ± 10%; VA = VDD; VB = 0 V; −40°C < TA < +85°C, unless otherwise noted.
LOGIC
0 400 kHz
1.3 µs
After this period, the first clock pulse is
Bus Free Time between STOP and START t
Hold Time (Repeated START) t
SCL
1
2
generated.
Low Period of SCL Clock t
High Period of SCL Clock t
Setup Time for Repeated START
Data Hold Time t
Data Setup Time t
Setup Time for STOP Condition t
1
3
4
t
5
6
7
8
9
10
EEMEM_STORE
t
EEMEM_RESTORE1
1.3 µs
0.6 µs
0.6 µs
0 0.9 µs
100 ns
300 ns
300 ns
0.6 µs
26 ms
VDD rise time dependant. Measure
without decoupling capacitors at V
GND.
t
1
2
3
4
EEMEM_RESTORE2VDD
t
EEMEM_REWRITE
100 700 kCycles
100 Years
= 5 V. 300 µs
540 µs
DD
0.6 µs
300 µs
and
t
SCL
SDA
t
8
t
t
3
2
t
9
t
8
t
1
PSP
Figure 4. I
t
9
t
t
4
2
C Interface Timing Diagram
5
6
t
7
t
10
05029-004
Rev. 0 | Page 5 of 24
AD5258
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 3.
Parameter Value
VDD to GND
VA, VB, VW to GND
I
MAX
Pulsed
1
−0.3 V to +7 V
GND − 0.3 V, V
±20 mA
+ 0.3 V
DD
Continuous ±5 mA
Digital Inputs and Output Voltage to GND 0 V to +7 V
Operating Temperature Range
Maximum Junction Temperature (T
Storage Temperature
−40°C to +85°C
) 150°C
JMAX
−65°C to +150°C
Lead Temperature (Soldering, 10 sec) 300°C
Thermal Resistance2 θJA: MSOP − 10
1
Maximum terminal current is bounded by the maximum current handling of
the switches, maximum power dissipation of the package, and maximum
applied voltage across any two of the A, B, and W terminals at a given
resistance.
2
Package power dissipation = (T
– TA)/θJA.
JMAX
200°C/W
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 6 of 24
AD5258
A
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
10
A
B
9
V
8
DD
GND
7
V
6
LOGIC
05029-008
AD0
AD1
SD
SCL
1
W
2
3
4
5
AD5258
TOP VIEW
(Not to Scale)
Figure 5. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 W W Terminal, GND ≤ VW ≤ VDD.
2 ADO
Programmable Three-State Address Bit 0 for Multiple Package Decoding. State is registered on
power-up.
3 AD1
Programmable Three-State Address Bit 1 for Multiple Package Decoding. State is registered on
power-up.
4 SDA Serial Data Input/Output.
5 SCL Serial Clock Input. Positive edge triggered.
6 V
LOGIC
Logic Power Supply.
7 GND Digital Ground.
8 V
DD
Positive Power Supply.
9 B B Terminal, GND ≤ VB ≤ VDD.
10 A A Terminal, GND ≤ VA ≤ VDD.