Before initial operation read these instructions thoroughly, and retain for future reference.
YASUAWA
YASNACLX3 is an ultraspeeddual processorCNC for ‘turninglathes and a
combinationof two high-performance16-bit microprocessorsrunningin parallel.This manualdescribesthe specificationsfor connectingYASNACLX3
with machines,machineinterfacesand externalequipment.
Necessaryconnectionsto be providedby the machinemanufacturer
differ dependingon the type of the CNC cabinet suppliedby Yaskawa.Make
additionsor deletionsof connectionsin accordancewith the combinationfor
standardcabinetsand integratedunits.
The programmablecontrollersystem (hereaftercalled PC) is installed
The availablestandardcabinetsand the integrated
unitsare shownin Tablel,1,
cannotbe installedin the cabinetsmust be install–
ed in cabinetsmanufacturedby machinemanufac–
turers.
Table 1.1StandardCabinets and
Unit
CPU Module
CRT Operator’s Panel
Tape Reader (optional)
Feed Servo Unit
Spindle Drive Unit
“’’=’’O’s’-=
Strong Current Unit
InstalledU. Can be installedXCannot be installed
Note
Contact machine manufacturerfor custom cabinets
ENVIRONMENTAL
2.
AmbientTemperature
(1)
Durningoperation:O to
Duringstorage:
RelativeHumidity:
(2)
10 to 90% RH(non-condensing)
IntegratedUnits
Cabinet
Standard Free-
Standing Type
In
–20° C to + 60” C
Thoseunitsthat
Custom Cabinet
-,,x
.–.
❑1
I
x
CONDITIONS
45° C
‘<~
r
❑
❑
Take the followinginto considerationwhen cabinets to containthe CPU rackand otherunitsare
designed.
(1)
Makesurethatthe cabinetsare of a totallY-
enclosedtype.
spindledriveunitcan be open typecabinets
providedthe foil owingconsiderationsare
made:
(a)
An air filteris providedat the externalair
inlet.
Forcedair usedin the insideis not blown
(b)
directlyon the units,Directblowingof air
may causeoil mist or dustto settleon the
unitsand mightcausefailures.
The air dischargeoutletshouldbe positioned
(c)
wheredustand oil mist do not enter.
heat sink of the feedservoand spindledrive
unitscan be installedoutsidefor higherther–
ma] efficiency.The cabinetsshouldbe of a
totally-enclosedtypeto improvereliability.
(2)
Designthe cabinetso that the differencebetweenthe inner-airtemperatureand ambient
temperatureis less than10° C . Read par.4
for cabinetdesignto accommodateheat.
Installa fan insidetotally-enclosedcabinets
(3)
to improvethe internalcoolingefficiencyand
to preventlocalizedtemperatureincreases
by circulatingair insidethe cabinets.
The velocityof the circulatingair shouldbe
greaterthan2 ms on the surfacesof the
printedcircuitboards.Forcedair should
not blowdirectlyon the printedcircuit
boards.
Providespacingof more than 100 mm between
(4)
componentsand cabinetwalls for smoothflow
of air.
Seal the cable openings, doors,etc.completely,
(5)
The CRTunit operatesat a particularlyhigh
voltageand collectsdust in the air.Special
cautionis needed.
The cabinetfor mountingthe CRTunit requiresthe fol[owingprecautions:
Use packingmaterialon the mountingsurface
(a)
to eliminategaps.
Use packingmaterialin the cableopenings
(b)
and doors,
MagneticDeflectionof CRTDisplay
(6)
CRTdisplaysare sometimesdeflecteddue to
externalmagneticinfluences.Sourcesthat
generatemagneticfields , such as transformers,
reactors,fans,
and AC powercablesshouldbe positioned
more than 300 mm from the CRTunit.This
distanceis optimumand may varyfor each
circumstance.Determinethe component
layoutbeforehand.
The feedservounit and
The
solenoidswitchesand relays ,
Vibration:O. 5 G or less
(3)
1
3. CAB
((Jon
(7)
(a)
(b)
(8)
(9)
(lo)
. Example
NET CONSTRUCTIONDESIGN
[’d)
TO preventmalfunctiondue to noise,mount
the unitsmore than100 mm fromcablesfeedi:og 90 VDC or greater,AC powerlines,and
othercomponents.
shouldbe compliedwithduringwiring:
SeparateAC and DC cables.
Separatethe primaryand secondarysides
of transformers,line filters,etc.
The frontpanelsof the units that are exposed
to the cabinetsurfaces,such as the CRTunit,
tape reader,and PO unit shouldbe of a dustprooftype.However,do not installthem
in locationswherecuttingfluidmay directly
splashon them.
z.roundthe mountingsections.
hlountthe unitsso as to alloweasy checking,
removaland reinstallingduringmaintenance
work.
Read the instructionmanualsof the feed servo
and spindledriveunits when mountingthem.
Heatsinkshouldbe installedoutsidethe
c:abinetto reduceinternalthermalloss-es.
Thisincreasesthe possibilitiesfor a change
from an open typeto a totally-enclosedtype
and reducesthe capacityof the heat exchanger.
A
The followingprecautions
B e sureto seal completely
(b) Allowforcedair at more than 2 ms to circulate
insidethe unit,
directlyon the surfacesof the printedcircuit
boards.
Be carefulnot to blowair
VENTILA1
/DUCT
“ING
—
—
l--
(a) Good
FORCED AIR
P
BLOWN DIRECT
LY
R14D
FIN
II
I
l?recautionsfor MountingCPU Rack
(11)
Observethe followingpointsparticularly
duringmountingof the CPU rack:
Mountthe unit in the directionshownin
(a)
Fig.3.1.
UP
n
DOWN
FEED SERVO AND
SPINDLE DRIVE UNITS
n
*
(b) Poor
Fig. 3.2Mountingof Fan
(c) Providespacingof morethan 50 mm in the
uppersec~ionand 100 mm in the lowersection
of the unit for betterventilationand easier
maintenance.
Calculatethe allowableheat valuePv’that
(d)
ensuresthe temperatureincreasewithin
cabinet(AT)to be less than10° C.
pvf =k. A.~T(W)
L
10”C
L
A heat exchangeris not neededif totalheat
(e)
valuePvs allowableheat valuePv’ .
(f)
A heat exchangerhas to be installedwith the
followingheat exchangeratio(heatexchanger
capacity)qh if totalheat valuePv > allowable
heat valuePv’ .
qh = (pv-pv[)/AT
6w(m2.‘C)
L-
10”C
(w/”c)
Fig. 3.1Mountingof Units
2
4.CABINETDESIGNFOR HEAT
FACTORS
4.1SELECTIONOF HEAT EXCHANGER
Thecabinetsto containthe CPU moduleand other
unitsshouldbe of a totally–enclosedtype.The
inner-airtemperaturedifferentialinsidethe cabi–
netsshouldbe less than10° C.
may be neededinsidethe cabinetsdependingon
the heatgeneratedby the installedelectric
equipment.
Determinethe heat exchangercapac-
ity as follows:
AT :Airtemperatureriseinsidecabinet
Pv: Totalheatgeneratedby electricequip-
ment(w)
k :Cabinetheat transmission[ W/(m2.0C)]
Calculatebasedon 6W/(m2 .°C)if a
circulatingfan is installed.
A : Effectiveradiationarea of cabinet
qh: Heat exchangeratioof necessaryheat
exchanger.
1. Calculatethe total heat valuePv of the electric
equipment.
Pv = X (Heatvalueof each unit)
2. Calculatethe effectiveheat radiationarea A .
A = 2 x {W(width)
x D(depth)}+ 2 {D (depth)x H(height)}
x H(height)}+ 2 {W(width)
The surfacesthat are not exposedto external
air are ineffectiveareas.
Heat exchangers
4.2HEAT VALUES OF UNITS
4.2.1NC UNIT
Table 4.1Heat Values of NC Unit
Unit
CPU Module
NC Operator’s Panel
Tape Reader25
4. 2.2SERVOUNIT
Table 4.2Heat Value of Servo Unit
Unit TypeTotal HeatInternal Heat
CACR-Value (W)Value (W)
SR05SB
SR1OSBI
SR30SB‘
SR44BB
Note:
1. The servo unit uses two shafts, and its load factor should be 70 to
80%.
2. The internal heat value is the heat value remaining inside if the heat
fin is installed outside.
3. Heat value created by regenerativeresistance will differ depending
on the frequency of rapid feed starts and stops.
10057
110
I
220
270
Heat Value (W)
I
I
61
95
110
70
20
Regenerative
Resistance (W)
10–20
I20-40
80–120
100–140
~: INEFFECTIVEAREAS
(FLOOR)
Note: If 50 mm or less from the floor,
bottom areas are ineffective.
3
5. CABLEENTRANCE
5.1LAYOUT OF CABLE CONNECTORS
rd-
Fig. 5.1Cable Entrance
5.2CLAMPINGCABLES, AND GROUNDING
CABI.E SHIELD
Be sureto clampthecablesconnectedto the\’.4SNACLX3securelywith the cableclamping
fixturesfoundin the controlpanel.
For shieldedcables,clamp the cablesso that
the shieldis groundedsecurelyto the plateafter
strippingthe cablesheathas sho~vn in Fig.5.2.
GROU
PLATE
CABLE
SHIELD
ENCLOSURE
CABLE
CLAMP~
I
~
\
GROUNDPLATE
/
,/’
CABLE
CABLE CLAMP
-1
E
0
m
I
URE
Sote:Non-shieldedcables do not requirestripping
cable enclosurefor clamping.
Fig. 5, 2 Clampingof Shielded Cables
6. CONNECTIONDIAGRAMS
X-AXIS MOTOR
Z-AXIS MOTOR
~@SPINDLE OPTICAL ENCODER
TYPE PTR
~–-1TAPE READER
‘L._~‘oPTloNAL1
@
DIRECT-IN
4 POINTS
cable Nos.
detail.
5
F)OWERSUPPLYCONNECTION
7.
7.1
POWER SUPPLY CONNECTION TO CPU MODULE
CPU MODULE
—.
TYPE
CPS-1 ON
——.
[Sk
L_:-’:’:;’:’’’’’uTOF
——
Fig. 7.1Power Supply Connectionto
Power Unit Type CPS-I ON
POWER SUPPLY CONNECTIONTO STANDARD
7.2
CABINETS
For details,contactyourYaskawarepresentative,
R
s
G
—
SINGLE PHASE,
I 200/220VAC,
( ~~o~~fl SUPPLY CAPACITY:
POWER UNIT INSTALLED SEPARATELY
8. CONNECTINGPOWERUNIT (TYPECPS-IONI AND PC BOARD
(TYPEJANCD-PC20)TO CRT OPERATOR’SPANEL (CRT/P)
I
TYPE CPS-1ON
*NC operatorsstationwith keyboardon rightside of CRT
containsa poweron /off switch..4 specialexternalcircuit
does not have to be provided.
Note:
1. The shieldenclosuredoes not have to be groundedoutside.
2. Power on/offcan be selected
and/or
3. Nos.4 and 6 of Sh’5 must be set open.
Setiing in Main board
model JANCD-MB20
remote poweron/off(EOF)by a shortingplug.
by the panel power on/off (POF)
i!i
!‘L-..—
L–_—–-
Power
On/Off
Input
Sw 5
Panel Power
On/Off
(POF)
—.—
SW5 Setting
Remote Power
On/Off
(EOF)
100031000:1
40006
70~970~9
lo~o12loo~12
n❑
Remote Power
40006
Panel and
On/Off
Fig. 8, 1
7
9.
CONNECTIONOF MANUAL
PULSEGENERATOR(HPG)
(1)
1ST MANUALPULSEGENERATOR
TYPE
10.CONNECTIONOF INPUTSEQUENCE
10.1CONNECTION
—.
CPU MODULE
-————1
NC
POWER ON
——+4
(OPEN COLLECTOR OUTPUT)
CRT OPERATOR’S
PANEL
—.—.-
TYPE JANCD-SP20
I
I
I
,.
:
,*
—1
1
! -,@,
!,,,!,
——.—
CRTOPERATOR’S
PANEL
“rYPE JAN CD-SP20.
,. —.
:p~
Note:
1.
The HPG powersupplyis a constant+5 V.
?
Set ~ltil on the SP20 boardasfollo~vs dependingon
-.
the manual pulse generatol-specifications.
(Swl)(Swl)
No 1 MANUAL PULSE
GENERAToR(lHPG)
[OPEN COLLECTOR OUTPUT)
,-
,,
,,
I
‘M
I
No 1 MANUAL PULSE
GENERATOR(lHPG)
—.—--–,,
1
,,,
,,
,.
(DIFFERENTIAL OUTPUT TYPEI
1
CN3-19*1’Esp
~+
CN5- 16’ *TOLD
“4
II
-~++
CN3-IZ
CN5 -13
CN3- I
2“‘4‘
Lc\i
Eot
&
NCh4X
—
s\klx
—
NCbl
SVhl
i~=l
MAGNETIC
CONTACTOR
SERVO
POWER ON
EM ERG ENC’/
STOP INPUT
MACHINE E14D
RELEASE
OVERLOAD INPUT
(NORMALLY NOT
USED)
EXTERNAL
POWER ON
EXTERNAL
POWER OFF
1“M12‘~=412
Simultaneous
l-axIs control2-axes control
manual pulse
generatorgenerator
(:?:::::.th’s)
An open collector(cablelength5 m or less) or
3,
differentialoutput (cable length5 m or more) can
be used for HPG output.
Shieldedcables are not neededif the cable lengths
4.
are less than 1 m.
Use twisted-pairshieldedcables if the cable lengths
are more than lm and groundthe cable shield
enclosureusing a groundplate.
Twisted-paircables can be used.
Simultaneous
manual pulse
For Interfaces to
be used, contact
(
Yaskawa representative1
Fig. 9.1
8
Fig. 10.1ConnectingInput Sequenceto
Main Board (Type JAN CD-MB22)
10.2DETAILS OF SIGNALS
10.2.1NC POWER ON (NCMX)AND SERVO
POWER ON (SVMX)
(1) NCMX:Thisoutputis turnedon whenthe
logiccircuitof the controlis energized.
(2) SVMX:Thisoutputis turnedon whenthe
servounit is energized.
unit,turn on the powersupplywhenthis signal
is outputted.
(3) The powersupplyturningon sequenceis as
follows:
Closethe powersupplymain switchfor the
(a)
con.t~ol.
Eitherpushthe POWERON buttonon the NC
(b)
operator’sstation* or close the circuitbetween
EON and ECM.Then,
the servocontrolcircuitare bothenergized,
and thecircuitbetweenNCMX(NCpower
inputand output)is closed.
With an externalservounit,designthe
the servocontrolcircuitpowerinput
sequenceso that the circuitis ener–
gizedat the outputof NCMXsignals.
[
Againmake the same powerswitching(pushing
(c)
the POWERON buttonor closingthe circuit
betweenEON and ECM) . Now,the servopower
supplyis turnedon, and the circuitbetween
SVMX (servopowerinputand output)is closed.
With an externalservounit,design
the servopowercircuitpowerinput
sequenceso that the circuitis energizedat the outputof SVMXsignals.
[
Whenthe externalcircuitis readyafterthe
(d)
circuitbetweenSVMX is closed,and the control
becomesready,close the MRD (machineready)
inputof the 1/0 module.Then,RDYis dis–
playedon the CRT,and operationbecomes
possible.
With an externalservo
the logiccircuitand
1
1
10.2.2EMERGENCYSTOP(TESP)INPUT
When the circuitbetweenemergencystopinput
terminals(TESP ) is open , the controlstopstotally,
the servopowersupplyis turnedoff,and the
emergencystop output(* ESPS)of generalpurpose
1/0 moduleis opened.
10. 2.3 EXTERNALPOWERON-OFF
(EON,EOF, ECM)INPUT
The controlcan be switchedon and off by external
inputsignals, in the same way as the depressing
of the POWER ON /OFF buttonson the NC operator’s
station . When the circuitbetweenEON and ECM
is closed,the logiccircuitor servopowerof the
controlis energized.
When thecircuitbetween
EOF and ECM is opened,the logiccircuitor servo
powerof the controlis deenergized.
EO-F.ECM
CONTROL
CIRCUIT
SUPPLY
CONTROL SERVO
POWER SUPPLY
Fig. 10.3
CLOSED
OPEN
LOG [C
POWER
1,
1
External Power ON-OFF
,
1
10.2.4OVERLOAD(*TOLD)INPUT
Short-circuitT24 (CN 5- 10) if this input is not
used.(Normallythis inputis not used.)
To use controlcodes , the machineto be controlledmust be able to discriminatecodesDC1
th-t-ough DC4.CodesDC 1 - DC4 are as follows.
DC,Tape reader.-
5Y
STARTDATA BIT
BIT
Character
start
DI D2 D3 D4 D5 D6 D7
DO
Table 14, 1
Table 14.2
87654::;32
Eachdata bit is
and followedby
...
.
STOP BIT
(1 OR 2 BITS)
~
{..’
Table 14.3RS-232CInterfaceConnecting
Cable (A)
a
-FGI Frame grounding
SDSending data
RDReceiving data
RS
NC outputscontrolcodesDC1 - DC4 to startand
stop the machine,but the machinecan not output
controlcodesto controlthe NC .
the machineundercontrolis unableto process
data in time,it can controlthe CS signalsof the
NC to halt the data outputtingof the NC.
CS and RS as shownTable14.4,
Symbol
1
/.
FGI Frame grounding
SD
RD
+
NC (DB-25P)
Connections —---—-
Signal Name
Sending data4
fihenCS signalsof the NC are not used,short
Table 14.4RS-232CInterfaceConnecting
NC (DB-25P)
Signal Name
Sending data
Receiving data
~ Pin
No.
1
I 1 I ~~)FG
2
~+‘-
3
—
1!
However,when
Cable (B)
Connections \
Pin
No.
I
T
I ‘ 10
--{’ME
External
Equipment
Symbol
ClRS
I
ER
External
Equipment
~ Symbol
~, ~FG
(3) TRANSMISSIONBAUDRATE
TransmissionBaudratescan be selectedat any
ratebetween50 and 9600 Baudswithparameters.
Referto (7)in par.14.2.
(4) (;ABLELENGTH
The permissiblemaximumcable lengthvarieswith
the machineto be controlled,Referto the manual
of the machinebuilder’smanual.(Standardmaximum
cable
lengthis 15 m, )
14
DR
Data set ready
SG
Signal grounding
ER
Data terminal ready20
, Descriptionof signals
FG:Safetygrounding
SD:Transmissiondata(output)
RD :
Receiveddata(input)
-fIlI I
I 61
+’*-P
1,, ,,
L-START
fl~DR
~sTop
RS:
Requestfor sending(output)- When sending
data,NC is turnedon when startingtransmis-
sion,and turnedoff when transmissionends.
Cs:
For sending(input)- When this inputsignal
is on,NC can senddata.If the machine
undercontrolis unableto processdatain
time,it can turnoff thissignalto interrupt
the transmissionof data fromNC within2
characters,When thissignalis notused,
connectlinesas shownin Table14.4.
SG :
Signalgrounding.
Data terminalread~- Use this signalas a tape
ER :
rewindingsignalif-a tape reader–isconnect;d
to an RS-232Cinterface.
can be rewoundif this signalis ON .
NOTE
Amongthe RS-232Cinterfacesignals,the
followingare normallynot used by the NC.
DR:Data set ready
ER : Data terminalready
CD:Data receivingcarrierdetection
However,when
CHKDR(#6o2lD4),a DR (dataset ready)
interlockis added.
(6) SIGNALEXCHANGETIMING
- When NC receivesdata.
Data can be receivedin the followingsequence
on the 1/0 boardtypeJAN CD-1020of the CPU
moduleand on theSP20 boardof the CRToperator’spanel.
Thenumbersof 1/0 pointsof theseboardsare
shownin Table16.1.
Table 16.1Numbersof 1/0 Points of Boards
Baud Type
JANCD-Points
~
I /0 boardand 1/0 portsmountedon it are
shownin Table16.2.
Table 16.21/0 Board (Type JANCD-1020)and
Connectc
CN 51
CN52
CN53
Inputoutput
Mounted1/0 Ports (for Module No. 1)
Inputoutput
—
#lo13
#lolo
#loll
#lo12
Points
~ For machine panels (option)
l/O Board Type JANCD-
1020-01
#lloo
#llol
#llo2
#llo3
#llo4
#llo5
#1106
#llo7
Remarks
I1020-02 1020-03
——
# 1000
CN54
CN55
..
1/0 ports mounted
[,
# 1001
# 1002
# 1003
# 1004
# 1005
# 1006
# 1007
# 1008
# 1009
—
—
o
I
(a) OV Common
MACHINE
SIDE
ov
(b) +24VCommon
Note:
1.
“Common “ in the input circuit(for example,COM1O,
COM20,COM21 . . .
or “ OV common” for every8 or 16 input pointsas
mentionedin par . 17.3 1/0 signal interfaceand can
be selectedfreely.
By turningon the switch as shown above,5.1 mA will
be consumed.
Inputvoltagelevelsand logicsare as follows:
2.
0
~
1
total 9) can be either“+24 V common”
Set by wiringon the cable side.
19.2V min
I
0
0
Fig. 16.2Input Circuits
0
c)
17
16. 2.11/0BOARDTYPEJAN CD-1020
(HEREAFTERCALLED1020)
(Cent’d)
(2) C)utputCircuits
(a) Internal Power Supply
Note:
1. All 64 outputpointsare transistoropen-collectoroutputs.The currentwhen ON shouldbe
maximum70 mA per circuit.
2. The maximumcurrentconsumptionfor thr entireoutputcircuitincludingSP20 shouldbe O. 5A
or less if LEDs,etc. are to be drivenusinginternalpowersupply(+ 24V) .
3. The outputtransistormay breakif the input and outputconnectorare connectedincorrectly.
4. Internalpowersupply(+ 24V) not allowedto dri~,e the all outputcircuit.
Followingusagesare recommended.
Fig. 16.3Output Circuits
16. 2.21/0 BOARDTYPE JAN CD-SP20
(HEREAFTERcALLEt3sp20)
1020 BOAROslDE1020 BOARDSIDE
$fz:
Ov
O<..
MACHINE
Input
outputSP20
SP20
~ozoInternalPO\\,er Supply
~020 External Po\\er Supply
MACHINE
02.,
(b) ExternalPower Supply
)
)
(1) InputCircuits
Note:Make switchingof OV common and + 24V common by connector(CN 5
(2) OutputCircuits
18
BOARD
SP20
~,.
c,, , CO,, , ‘--”
Ego
*,, .
(a) OV Common
BOARD
SP20
—-—.
~d~~:
ov
(a) Internal Power Supply
Note:
1. All 32 outputpoints are polarizedcon tactless(transistorizedopen collector)outputs.The current
when Oh? shouldbe maximum70 m.A per circuit.
2. Normallyuse + 24V,
supply.
. + 5V output— O. 5 A max including150 mA for HPG powersupply
. Outputconnector– CN1 to CN7 (+5V)
3. The outputtransistormay breakif the connectorsfor CN4 and
1. This connectionexample shows +24 V common.
0 V common is also available.Refer to par. 16.2.1,
1/0 Board Type JANCD-I020 for connectiondetails.
2. The addressesare those for’ module No. 1. (#1002. O to
#loo3.7).
2 to 4 are the same as shown above startingwith newer
addresses.Refer to AppendixB (3) , Address Classification
for details.
The addresslayoutsfor modules No,
$1003.2
#l Oa:{3
*1 OO:3. d
U1OO3-5
s1OO3.6
20
Fig. 16.7Connectionto Address and Bit Nos.
#1002.Oto #1 003.7 on 1020Board
CONNECTION
EXAMPLE
> p
5 %
> w
$
<30–321
(
( 17 )
(48)
(~L);
PIN No.
[16)
,
Cohl.12
+
+ ~ii,
ADDRESS~[
No
#loo40
#loo41
#loo4.?
1
M1O(I4:I
#loo4.4
1
S1OOI5
$1004{5
1
31(1017
1
E:
Note:
1, This connectionexampleshows +24 V common.
0 V common is also available.Referto par.16.2.1,
I/0 Board TypeJANCD-1020for connectiondetails.
2. The addressesare those for moduleNo. 1. ( #1004. O
to #1004. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.
for details.
Fig. 16.8Connectionto Address and Bit Nos
{1--?)
Referto AppendixB (3) , AddressClassification
#1 004.0 to #1004.7on 1020Board
21
16. 3.11/020 BOARDS(Cent’d)
[1’>. ...
\a” —aL)
r
f
1
I
ADDRESSBIT
No
No
22
Note:
1. This connectionexampleshows +24 V common.
O V common is also available,
I/0 BoardTypeJAN CD-1020for connectiondetails,
Referto par.16.2.1,
2, The addressesare those for moduleNo. 1. (#1005. O
to #1006. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.Referto AppendixB (3) , AddressClassification
for details.
Fig. 16, 9 Connectionto Address and Bit Nos.
#1 005.0 to #1 006.7 on 1020Board
CONNECTION
EXAMPLE
d
,,.
<A
1
~?{16)
~~
(15)
>%
1
,,:
t’{14)
>2
r:
+24V
ADDRESSBIT
No.No.
#loo7. o
#loo7. 1
#loo72
1
#loo73
)
1
#looi’. 4
S1OO75
$1 OO7. 6
#loo7. 7
#1008O
#10081
#10082
#1008.3
~~:f41)
>?
,,’
I
,.,
...
I
~
Note:
1. This connectionexampleshows +24 V common.
O V common is also available.
1/0 BoardTypeJAN CD–1020for connectiondetails.
2, The addressesare those for module No. 1. (#10Ct7. O
to #1008. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown above startingwith newer
addresses.Referto AppendixB(3) , AddressClassification
for details,
+1
o
,.
Refertopar.16.2.1,
#10084
#10085
#10086
#1008.7
Fig. 16.10Connectionto Address and Bit Nos.
#1007.Oto #1008.7on 1020Board
16. 3.11/020 BOARDS(Cent’d)
CONNECTION
-~‘0‘0
TYPES JAN CD-1020 -01 -02, -03
por4MEcFmCNW-
ADDRESSBIT
I
J
COLI!2
Note:
1. This connectionexampleshows +24 V common.
O V common is also available,
1/0 BoardTypeJANCD-1020for connectiondetails.
2. The addressesare those for module No. 1. (#1009. O
to #1009. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.
Referto AppendixB (3) , AddressClassification
for details.
Fig. 16.11Connectionto Address and Bit Nos.
#1 009.0 to #1 009.7 on 1020Board
Referto par,16.2.1,
<0
..
r
I [39)
F
i
(9)
>%
1
(25)
i
(40)
>2
I
[41)
>>
I
(111
1,’(27)
‘1
IADDRESSBIT
-tI
1
}
t
No.
#loloo
#lolo. 1
#lolo2
#lolo3
#lolo4
Zlolo5
#lolo6
#lolo7
#lollo
#loll1
#loll. 2
No.
~~>
E [43)
>>
!13)
>2
(44)
1
(14;,
[45)
I
!
Note:
1, This
2. The addressesare those for moduleNo. 1. (#1010. O
connectionexample shows +24 V common.
0 V common is also available.Refer to par. 16.2.1,
BoardTypeJANCD-1020for connectiondetails.
1/0
to #1011. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.
for details.
Referto AppendixB (3) , AddressClassification
-11
I
Xloll3
flloll 4
Sloll, 5
S1OI16
#loll. 7
Fig. 16.12Connectionto Address and Bit Nos.
#1010.Oto #101 1.7 on 1029Board
25
16. 3.11/020 BOARDS(Contld]
i
L_
Note :
1. This coczectionexampl.she%-s -24 V cor,mon.
0 1, common is also zrvailzblc.
1/0 EwaYd T>rpc JANCI)102Ofor connectiondetails.
2, The addressesare those [or
to #l 012. 7) . The addressla>-outs for module,.Nos
2 to 4 are the sam,. ;is showri zbove sttirtingwith ne%ver
address...Refer to Appe,,clixB (3) , Addre8sClassification
for details,
Fig. 16.13Connectionto Address and Bit NOS
E1012.Oto $1012.7on 10 20 Board
Refer to.par.16.2.1,
~,”d”l~No. 1. (#1012. O
~L[13, ~o)
f“
IADDRESSBIT
No.
No
Note:
1.
This connectionexampleshows +24 V common.
O V common is also available.
I/0 BoardTypeJANCD-1020for connectiondetails.
2.
The addressesare those for module No. 1. (#1013. O
to #1013. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.Referto AppendixB(3) , AddressClassification
for details.
3.
ConnectorCN52 can be used convenientlyfor interfacewith
the spindledriveunit,
Referto par.16.2.1,
Fig. 16.14
27
16. 3.11/020 BOARDS(Cent’d)
TYPES JANCD-1020-01,-02, -03
ADDRESSBIT
NoNo
r“
+ 24 ~’
C%MN~cTORGM31
PIN No
7
:ill :12 )
CONNECTION
EXAMPLE
1~
=11 [)().1
$11 [,1 11
=11111.1
#lllJl 1
X11(11. 5
(Zfj)I
t
I
4<
1
2’)<~
I
2:])
---i
4
I4
’20)I
1
I
3
Note:
1. This connectionexampleshows +24 V common.
O V common is also available.
I/0 BoardTypeJANCD-1020for connectiondetails.
2. The addressesare those for moduleNo. 1. (#1100. O
to #1101. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shownabove startingwith newer
addresses.
for details.
Referto AppendixB , AddressClassification
Referto par,16.2,1,
Fig. 16.15Connectionto Address and Bit Nos
#1100.Oto
#1101,7on 1020Board
TYPES JANCD-1020-01.-02. -03
#llo2. 5
#11026
#llo2.7
$11030
#llo3. 2
*11035
#11036
#llo37
+1
(35}1
1~
(34)i~
I
1
(33) ~
1
’181,~
+
(16~~,
}
1’--i
(131.’
,~
(12}~
1
]
(11)’,
}
I
m
Note:
1. This connectionexampleshows +24 V common.
0 V common is also available.Referto par.16.2.1,
I/0 BoardTypeJANCD-1020for connectiondetails.
2. The addressesare those for moduleNo. 1. (#1102. O
to #1103. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown above startingwith newer
addresses.
for details.
Referto AppendixB (3) , AddressClassification
Fig. 16.16Connectionto Address and Bit Nos.
#1 102.0 to #1 103.7 on 1020Board
29
16. 3.1[/020 BOARDS(Cent’d)
Note:
1.2.This connectionexampleshows +24 V common.
O V common is also available.
1/0 BoardTypeJAN CD-1020for connectiondetails,
The addressesare those for moduleNo, 1. ( #1104. O
to #1104, 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shownabovestartingwith newer
addresses.
for details.
Referto AppendixB (3) , AddressClassification
Referto par.16.2.1,
Fig. 16.17Connectionto Address and Bit Nos.
#1 104.0 to #1104.7on 1020Board
30
F1OO5. 2
#llo53
j,
[17)
I
}
‘5)2~
‘1
#llo5. 5
t
#11056
1
Note:
1. This connectionexampleshows +24 V common.
O V common is also available.
1/0 Board TypeJANCD-1020for connectiondetails.
2. The addressesare those for module No. 1. ( #1105, O
to #1105. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwitl~ newer
addresses.
for details.
Referto AppendixB(3) , AddressClassification
‘6;4+
j,
(12)
/
Referto par.16.2.1,
Fig. 16.18Connectionto Address and Bit Nos
#1 105.0 to #1 105,7 on 1020Board
31
16. 3.1[/020 BOARDS(Cent’d)
TYPES JANCD-I020-03
32
Note:
1. This connectionexampleshows +24 V common.
O V common is also available.Referto par.16.2.1,
I/0 BoardTypeJANCD-I020 for connectiondetails,
2. The addressesare those for module No.
to #1107. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses,Referto AppendixB (3) , AddressClassification
for details.
1. (#1106. O
Fig. 16.19Connectionto Address and Bit Nos
#1106.Oto #1 107.7 on 1020Board
16. 3.2SP20 BOARDS
TYPE JANCD-SP20
C;;;;C;;N
‘IN No.
33)
2)
34)—
3)
19)
35)
4)
20)
36)
5:,
21)
+24V
ADDRESSBIT
NoNo
#looo.o
II
1J
I1
LI
#looo.1
#looo2
#looo. 3
,
Wlooo4
}
#looo. 5
t
#1000. 6
t
#looo.7
—
Ii
I
#loolo
J
*1 OO1. 1
II
22)
38‘)
7)
I1
1
Ji
1
23)—
v
COLI30
Note:
1. This connectio~exampleshows +24 V common.
0 V common is also available.Referto par.16.2.2,
I/0 BoardTypeJANCD-SP20for connectiondetails.
2. The addressesare those for module No. 1. (#1000. O
to #1001. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.
for details.
Referto AppendixB (3) , AddressClassification
1
1
1
#lool. 4
$10015
$10016
*1OO1. 7
Fig. 16.20Connectionof Address and Bit Nos
#1000.Oto #1001.7on SP 20 Board
16. 3.2SP20 BOARDS(Cent’d)
+24V
+24V
CONNECTION
EXAM PLE
11
do
o’~~
t
,<,
.,,
ADDRESS
1
I
!
1
No
#lo(12.o
#loo22
410023
$10024
S1OO2.5
#loo26
Slooz.7
#loo3o
S1OO31
S1OO3. 2
#loo33
#loo34
#loo35
s1OO3, 6
#loo37
,’ PIN NO
/b+{
:,(39)
,.
(8)*1 OO2.1
1(24)+
I
(40)
;?
,“
I
(411
1
j
(26)
1’
(421
COM 30
,
~
-1]
-i
+1
1
>>
[43)
>?
1>
(12)
>>
(28)
>?
i(44)
1
cOM 30
1
BIT
No.
Note:
1. This connectionexampleshows +24 V common.
O V common is also available.
Referto par.16.2.2,
1/0 Board Type JANCD– SP20 for connectiondetails.
2, The addressesare those for module No. 1. (#1002. O
to #1003. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.
Referto AppendixB (3), AddressClassification
for details.
Fig. 16.21Connectionof Address and Bit Nos.
002.0 to # 1003.7on SP 20 Board
#1
CONNECTION
EXAMPLE
I (13)
#
(29)
1
(45)
>>
I
(14)
>>
!
{30)
1
(46)
7
(15)
J (,,,
(47)
‘lb
(16)
I
(32)
>
i [4S)
>>
(17)
ADDRESSBIT
No.
No.
#loo4o
#loo41
#loo42
1
}
t
1
1
~loo43
%1004. 4
#loo45
#loo46
SIO047
P1OO5. o
Z1OO5. 1
X1 OO5. 2
TIOO5. 3
#10054
-7
i
+
1
<49)
1
(18)
>>
~~>( 50 )
Note:
1. This connectionexampleshows +24 V common,
O V common is also available.Referto
BoardTypeJANCD-SP20for connectiondetails,
1/0
2. The addressesare those for moduleNo. 1. (#1004. O
to #1005. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.Referto AppendixB (3) , AddressClassification
for details.
Fig, 16.22Connectionof Address and Bit Nos.
k
1
#1004.Oto #1 005.7 on SP 20 Board
#loo55
#10056
#1005.7
par. 16.2.2,
16. 3.2SP20BOARDS(Cent’d)
TYPE .JANCD-SP20
v
~~>
CONNECTION
EXAMPLE
PIN NO
I
I ,2,
(341
: (3,
1
[19!
>>
[
{ !35,
: (,,
121
?
!37)
>?
~ (6,
>>
(221
1381
1
COM 30
,
ADDRESSBIT
NO
#1006. O
t
#1006, 1
1
#loo62
1
#1006. 3
I
#1006. 4
$10065
I
s1OO6. 6
1
=1006. 7
$1007. 0
1
#loo7. 1
}
#loo72‘
$10073
#loo7. 4
1
W1OO75
I
No.
1,,
[23:1
~~y
Note:
1. This connectionexampleshows +24 V common.
O V common is also available.Referto par.16.2.2,
1/0 BoardTypeJANCD-SP20for connectiondetails.
2. The addressesare those for moduleNo. 1. (#1006. O
to #1007. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.Referto AppendixB (3) , AddressClassification
for details.
Fig. 16, 23Connectionof Address and Bit Nos.
#1006.Oto #l 007.7 on SP 20 Board
I
02.
I
#1007. 6
#loo7. 7
TYPE JANCD-SP20
ADDRESSBIT
No.
#l loo. o
~1 loo. 1
#l loo. 2
#l loo3
#llo(o 4
#l loo 5
—
No.
+~4v
,, ,~fv,;
~
.,.
,$,,$,<3?,
i5J
i
ZONNEeTORcN5
7<:
.
4
:<*
~$
1
t
I
t
PIN No.
(33}
:39}
‘24)<~
:40)
125)
I
i
..
!
‘8)<+
I
‘g’<~
j,
CONNECTION
EXAM PLE
d
,
*11OO6
#l loo 7
#llolo
#llol. 1
tilool 2
#llol3
#llol4
Sllol5
#llol6
#llol7
l----
{
t
[}—-----/
i1
1
1
}
1
1
1
}
-d
I
‘41)<~
[10) ~
I
(26‘<~
‘42)<~
(11) ~
‘27}<:~
:43),
I
I12)
I
128)
1~
(44)
~~
+24V
,
4I
I
d
<
f
Note:
1. This connectionexampleshows +24 V common.
0 V common is also available.Referto
1/0 BoardType JANCD-SP20for connectiondetails,
2. The addressesare those for moduleNo. 1. (#1100. O
to #1101, 7) . The addresslayoutsfor modulesNos,
2 to 4 are the same as shown abovestartingwith newer
addresses.Referto AppendixB (3), AddressClassification
for details.
Fig. 16.24Connectionof Address and Bit Nos
#1100.Oto #1101.7on SP 20 Board
par. 16.2.2,
37
SP20 BOARDS(Cent’d)
TYPE JANCD-SP20
ADDRESSBIT
NoNo
#llo21
#loo22
Z11024
S11031
#llo3. 2
Z1103. 3
+
PIN No :,
I
(30)I
1
{
1
1
I
1
!16]
1~
(32),.1
}
(48;’
I
<~
1
38
#1103. 3
I
N’ote:
1.2.This connectionexampleshows +24 V common.
O V common is also available.
1/0 BoardTypeJANCD-SP20for connectiondetails.
The addressesare those for moduleNo. 1. (#1102. O
to #1103. 7) . The addresslayoutsfor modulesNos.
2 to 4 are the same as shown abovestartingwith newer
addresses.
for details.
Referto AppendixB ( 3) , AddressClassification
(49J
..
‘i
Referto par.16.2.2,
Fig. 16.25Connectionof Address and Bit Nos.
#1 102.0 to #1 103.7 on SP 20 Board
17. CABLES
17.1LIST OF CABLES
s
ConnectorCableType
The interfacecablesare furnishedwith or without
connectors.Thosecablesshownin Table17.1
are available.
18.2.1INPUTSIGNALSFOR CYCLESTART(ST),
ST OF’ (*SP)OUTPUTSIGNALSDURINGCYCLE
STAFtT(,sTL)AND FEEDHo LD (SPL)
(1) With the controlin any of the TAPE,MEMORY,
and MD1 modes,
closed,the controlstartsautomaticoperationcontrol to executethe partprogram,and at the same
time,turn on the STL outputsignalfor cyclestart.
However,an ST inputis neglectedunderthe
followingcondition.
Whi.le the controlis in an alarmstate.(While
an alarm outputor an inputerroroutputis on. )
Wh;.le the feedhold*SP inputcontactis open.
While the externalresetERSinputcontactis
closed.
Wh.lethe RESETbuttonon theMD I & CRT
panel is beingpushed.
Wh:lle thesystemNo,switchis in anystate
exceptfor O and 4.
,-
(Z) Whenthe following state is enteredafter cycle
start,thecontrolco;pletesoperationcontrol,
and turnsoff the STL output.
, Whena partprogramhas beenexecutedby
ma:~ualdata inputin the MD I mode.
. When one blockof a partprogramhas beenexe-
cutedwith the singleblock( SBK)inputcontact
closed.
, Whsn the programend (EOP)inputcontacthas
been closedby an M commandof a part program.
(3) When the feedholdinputcontact“ *SP”is
openedduringautomaticoperation~ the automat–
icallycontrolledmotions,etc,are interrupted,
and,at the same time the cyclestartoutputSTL
is turnedoff and the feedholdoutputSPLis
turnedon.
structionis beingexecuted,the feedholdinput
is neglected,unlessthe controlis equippedwith
ThreadInterruptionfunction.
(4) When the feedholdinputcontact*SP is closed,
and cyclestartinputcontactSTis closed,tem–
hold (*SP)inp’ut cent; cts closedor open at
least for 100 ms.If the durationis shorter
than this,the input may sometimesbe neglected.
The operationof the cycle start(ST)input con-
2:
tact is reversedby parameterSTUD (#6007D6).
When the parameteris set to 1, the closingof
the contactwill start the operationof the con-
trol.
When the feedhold( *SP) input contactis opened,
3.
with the controlwaitingfo; the completio~of
the M, S, T, instruction(waitingfor FIN input),
feedhold( SPL) output is turnedon, butwhen
the M,
contactis opened,the feedhold(SPL)output
is turnedoff,and the controlentersfeedhold
state.
S, T instructioncompletion(FIN)input
18. 2.2INPUTANDOUTPUTFOR CONTROL
OPERATIONMODES(JOG,H/S,T, MDI,MEM,
EDT,AUT,MAN)
(1) OPERATIONMODE INPUT
Thefollowingsix operationmodesof the control
are selectedby the respectiveinputcontacts.
JOG:
H/S:
T:
MDI:
MEM :
EDT:Programeditingmode
Manualjog mode
Manualhandle /manual
stepfeedmode
Tapeoperationmode
Manualdata input
OP erationmode
Memoryoperationmode
}
i
Manual
operation
Automatic
operation
mode
Whenany of the inputcontactsis closed,the
correspondingoperationmodesis tunedon.
JOG:
manualjog mode input
When the JOG inputcontactis closed,and other
mode inputcontactsare opened,the controlenters
the manualjog mode,and the machineis jogged
in the respectivedirectionsin responseto the
inputof +X , —X , -Z and –Z signals.
48
H/S:
Manualhandle /manual step feed mode input
When the HIS inputcontactis closed,and other
mode inputcontactsare opened,the controlenters
the manualhandlemode(whenthe controlis
providedwith an optionalmanualpulsegenerator)
or the manualstepfeedmode,and the machine
will be manuallyfed by the manualpulsegenera–
tor or fed in steps.
MDI:Manualdata inputoperationmode input
When the MDI inputcontactis closed,and other
mode inputcontactsare opened,the controlenters
the manualdata inputmode,and partprograms
will be writtenor the machinewill be operated
throughMDI.
MEM :
Memoryoperationmode input
When the MEM inputcontactis closed,and other
mode inputcontactsare opened,the controlenters
the memoryoperationmode,and the machinewill
be controlledby partprogramsstoredin the
memory.
EDT:
Programedit mode
When the EDTinputcontactis closedand other
operationmode inputcontactsare open,the control
entersthe programedit mode,and it can store
partprogramsintothe memory,correctand
changethem.
(2) OPERATIONMODE OUTPUT
The controloutputsthe followingsignalsto inform
the currentoperationmode.
AUT :
Automaticoperationmode output
Thisoutputsignalis turnedon whenthe control
is in the T (tapeoperation), MEM (memoryoperation),
or MDI (manualdata inputoperation)mode.
MAN :
Manualoperationmode output
Thisoutputsignalis turnedon whenthe control
is in the H /S (manualhandIe /manual step operation
mode)or JOG (manualjog mode).
EDTS :
Editingoutput
Thisoutputsignalis turnedon whenthe control
is in the EDT(programediting)mode,and also
performingand editingoperation(partprogram
reading,collation,punching,and storedprogram
changingand otherprocessing).
Timingchartfor inputand outputfor control
operationmodesare shownin Fig.18.20
MEM
(lNpUT) ~
EDT
(INPUT)
AUT
(OUTPUT~
MAN1
(OUTPUT)
EDTS
(OUTPUT)
I
I
I
I
I
I
READING-IN
[
OF NC TAPE
l—L
I
I
I
I
I
I
I
I
II
I
I
I
1
Fig. 18.2
Note:
1.
When any operation-mode-inputexceptmanual
operationmode is given duringNC program
OperatiOnin the memOryOperatiOnmOdes the
controlstops the executionof the part program
afterthe executionof the currentblock.
same appliesto the partprogramoperationin
the tape and MDI modes.
2. When a manual- operation-mode-inputcontact
is closed duringthe executionof
in the memoryoperationmode,the following
changestake place.
1
\lotioncommand
a part program
The currentmotionstopsafterdeceleration,
and the programis interrupted.The remaining
programcan be restartedwhenthe automatic
operationmode is turnedon againand the cycle
start(ST)inputcontactis closed.
M, S, T command
Thesamplingoutputs(MF , SF, TF)and the
M code outputsare turnedoff,and the M, S,
T commandis regardedto havebeenexecuted
completely.
Evenwhenthe controlis returnedto the
automaticoperationmode,the interruptedM,
S, T commandis not resumed.
The aboveappliesto S2-digitcommands.
S4-digitcommandsdo not havesamplingoutput.
3.
When an automaticoperationmode or program
editingmodeinputcontactis closedduring
motion in the manual operationmode,the motion
deceleratesand stops.
4.
When any of theseoperationmodeinputcon-
tactsis closed,.that mode becomeseffective.
Underotherinputstates , the previousopera.
tion mode remainseffective.When no operation- mode-input-contactis closedafter “the
energization,or whentwo or more operation
modeinputcontactsare closed,the control
entersthe manualjog mode.
The
I
1
I
I
I
1
1-
49
18. 2.2INPUTANDOUTPUTFOR’ CONTROL
OPERATIONMODES(JOG,H/S,T, MDI,MEM,
EDT,AUT,MAN)(Cent’d)
h4EM
(INPUT)
~
(INPUT)
JOG
(INPUT)
OPERATION
MODE OF
:::fON-
~
I
I
I
MEMORY OPER-TAPE OPER-MANUAL JOG
ATION MODEATION MODE FEED
I
I
I
I
I
I
1
Fig. 18.3
l~hena manualoperationmodeinputcontactis
5.
c.osedduringthe thread–cuttingprocessin a
partprogram,theautomaticoperationmodeis
retainedwhilethe threadis beingcut.
18. 2.3
MANUALRAPIDTRAVERSESELECTION
(RP[))INPUT
1$’hen the RPDinputcontactis closedwhilethe
cont:rolis in the manual jog mode,manual feeding
in tk.e +X ,
-X,+Z and -Z directionsis performed
in the rapidtraverserate,
Afterpowersupplyis input,JOG feedrate
can be used as RPD feed rate by parameter( #6009
D3=1)untilreferencepointreturnfor eachaxis
has beenexecutedcompletely.
Thisis the inputsignalfor selectingthe motion
axis for the motionby the manual pulsegenerator,
\vith a controlprovidedwith a manualpulsegener–
ator,,t~hen the HX inputcontactis closedand
the llZ inputcontactis open , the motiontakes
placealongthe X-axis.Ifhenthe HZ inputcontact
is closedand the HX inputcontactis open , the
motiontakesplacealongthe Z–axis.
Note :
1. h’hen both the HX and HZ input contacts are
closed or open,motion cannot be obtained by
the manual pulse gereator .
2. W’hen the control is providedwith a pulse generator for simultaneous2–axis control,and when
a manual step feed is intended , these input
contacts are
not used .
(2) AUTOMATICMODE HANDLEOFFSET
(HOFS)INPUT
Thisinputis for enablingmotioncontrolwith the
manual handleevenduringthe automaticoperation
mode(Tapemode,MDI mode,memorymode)with
a controlprovidedwith a manual pulsegenerator.
Lvith this input,relativedisplacementscaused
by the remountingof the workplacesduringau-
tomaticoperationcan be compensated.
Ivhen the HOFSinputcontactis closed,the
motioncontrolby the manualpulsegeneratoris
effectiveevenduringthe automaticoperationmod,? .
However,duringtheexecutionof a positioning
commandin the automaticoperationmode,machine
motioncannotbe controlledby the manualpuse
generator.
The motionaxis for the manual pulsegeneratoc
motioncontrolis selectedby the HX and HZ (manu,~l
handlefeedaxis selection)inputcontacts.~~hen
the controlis providedwith a simultaneous2-axis
manual pulsegenerator, the machinecan be movecl
simultaneouslyalongthe two axes .
Thetraveldistanceperstepof the manual
pulsegeneratoris determinedby the MP1,MP2
and MP4 (manualhandlemultiplicationfactor
setting)input.
Note:
1.
In an alarm state(.ALki or IER outputcontact
is closed) ,
handle offsetmotion is ineffective,
2.
IVhen the interruptinput(STLK)contactis
closed,manual handlemode motion is possible,
but automaticmode handleoffsetmotionis
not possible.
l~hen executingautomaticmode handleoffset
3.
motion,parameter#6022, Dt) and Dl for HOFSX
(X-axismotion)and HOFSZ(Z-axismotion)
must be set to 1,
i~hen ~arameter
4.
1, the automaticmocle handle offsetmotion can
be appliedonly to the time duringthe interpolation in the automaticoperationmodes.
Theseinputsspecifythe motiondirectionwhen
the controlis in the manualjog mode or manual
stepfeedmode.
Table 18.1Motion Direction of Axis
1 –Z
+x–x
1
o
o
o
1: Closed, O: Open
+Z
00’0
10
0
liO
00
Motion Direction of Axis
Plus direction of X-axis
0
Minus direction of X-axis
Plus direction of Z-axis
1
I
Minus direction of z-axis
Underotherinputconditions,axismotionis
impossible, and currentaxis motionis stoppedafter
deceleration.
18. 2.6 MANUALHANDLE/STEPMU LTIPLICATIOhl
FACTOR(MP1,MP2,MP4)INPUT
WThen the controlis in the manualhandle /manual
stepfeedmode,the motiondistanceper step is
determinedby theseinputsignals.
50
Table 18.2Manual Handle/StepMultiplicationFactor
z
MP1MP2MP4Manual Step Feed
00
o
100
0[1101
11
lorO
1: Closed, O: Open
Note: Only when manual handle multiplication factor is 100 pulses/step,
the control can be usad by any multiplicationThe multiplication factor
should be set parameter # 6223.
18. 2.7 FEED OVER RI DE/MA NUAL JOGGINGSPEED
SELECTION(FV1,FV2, FV 4, FV8, FV16)INPUT,
ANDFEEDOVERRIDECANCEL(OVC)INPUT
(1) Theseinputsignalsare for specifyingoverride
speedsbetweenO and200% at 10% intervalson
the programmedspeeds.In the manualjog mode,
theseinputsdeterminethe manualjog feed rates.
1. W’hen parameterFOVAB(#6020D5)is set to 1,
inputsFV1, FV2,FV4, FV8,and FV16 become
effectivewhen the contactsare open,and O
and 1 in the table for the input state and feed
overridemanual jog speedsare reversed.
2.
The manual jog feed ratescan be used as the
feed ratesfor part programby run execution
in the automaticoperationmodes.
referto 18.2.14Dry Run (D RN) Input.
For the thread-cuttingin part programexecu-
3.
tion in the automaticoperationmodes , override
is possibleonly at 100%.
(2) FEED OVERRIDECANCEL(OVC)INPUT
This is the inputfor fixingthe feedrateoverrideat 100%.
closed,
in the automaticoperationmodesis lockedat the
programmedvalue,
inputconditions.
18. 2.8 RAPIDFEE DRATEOVER RI DE(ROV1,ROV2,
ROV4)INPUT
Theseinputsare for overridingthe rapidfeed
rates
programsin the automaticoperationmodes,and
the motionspeedin the manualjog modewhen
the RT inputcontactis closed.
Theseare inputand outputsignalsfor bringing
the machineto the machinereferencepointupon
the enegizationof the control.
(1) GRIDMETHOD
Referencepointis determinedby the originpulse
( 1 pulse /revolution)of the positiondetector.After
turningon the powersupply,whenthe manual
jog mode is turnedon,
pointreturninputcontactZRN is closed,the
directionof axis motionset by parameterZRNDRX,
ZRNDRZ(#6oloDO, Dl) will resultin the reference
pointreturnmotionas shownbelow.( The same
aPPlle~to the executionof G 28 in the automatic
operationmodes.)
SPEED
I
pointonce,the returnmotion,thereafterwill be
in the positioningmotionto the determinedref–
erenc:epoint.
SPEI=D
RAPID TRAVERSE RATE
(#6280, #6281)
//
1
I
~._.ZERO POINT PULSE
When the machineis returnedto the reference
RAPID TRAVERSE
(#6280, ti6281)
and the manualreference
APPROACH SPEED 1
(~6310, #6311)
I
II
Fig. 18.4
DECEL LS SIGNAL
(*DCL, * DCZ)
,
1 /\
SPEED
1
Fig. 18.5ReferencePoint
Return Motion after First Power ON
However,
(#601. O D4, D5) are set to 1, the same reference
pointreturnmotionis obtainedalso for the2nd
ti~me onward.
when parametersMZRNHS,AZRNHS
SEQUENCE
(2) X ANDZ REFERENCEPOINTS(ZPX,ZPZ)
OUTPUT
While the machineis remainingat the reference
pointafterthe referencepointreturnmotionor
positioningto the referencepoint,the ZPX and
ZPZ outputcontactsareclosed.
positionis not withinf3 pulsesfrom the reference
pointdue to theuse of metricinputin the inch
outputsystemor viceversa,the ZPXand ZPZ
outputcontactsare not closed.
(3) 2ND REFERENCEPOINT(2ZPX,2ZPZ)
OUTPUT
When the machinehas beenpositionedto the 2nd
referencepointby the executionof the part pro–,
gram commandG30 in the automaticoperationmode,
the 2ZPX,
and remainclosedas long as the machineremanins
at this point.
by the distancefromthe referencepointas set
by parametersXZP2L,ZZP2L(#6612j#6613) .
18.2.10MANuALABSOLUTEON/OFF(ABs)
INPUT
Duringtheexecutionof partprogramsin the
automaticoperationmode,the controlstoresthe
commandvaluesin an internalcommandvalue
register(commandvaluesare displayedon the
1st CRTarea),
betweenthe storedvalueand the coordinatevalue
in the partprogram,
Since the controlmust also controlthe current
position, it controlsthe currentvaluesin the
absolutecoordinatesystem(to be displayedin
the 2nd CRTarea.Thecoordinatesystemis
definedby a coordinatesystemsettingcommand.)
This input is for determingwhetherthe current
valuein the absolutecoordinatesystemis transferred
to the commandvalueregisteror not at the start
of the executionof the respectiveblocksof part
programsin the automaticmode.
When ABS inpturelayis open:Does not transfer.
When ABSinputrelayis closed:To be trans
ferred,
used.
The motionpathaftera manualcontrolinterventionin the automaticoperationmode is changed
as followsby an ABS input.
and 2ZPZoutputrelaysare closed,
The 2nd referencepointis defined
and the displacementdistance
exceptwhencircularinterpolationis
If the actual
(1) WHEN ABSINPUTRELAYIS OPEN
The motionpathafteran interventionby manual
axial motion,is the one shiftedparallelfrom the
originalpath by the distancecoveredby the manual
motion.
z20.000 FAA;
GO1
X20,000 Z300000
—0J
Xlo.000Z40.000
X20.000
Z30.000
Xlo.000
z 20.000
Fig. 18.6
@Whenthe machineis manuallymoved
duringa block.
X20.000
z 30.000
x 10.000
z 40.000
(3) SUPPLEMENTARYDESCRIPTION
In the followingcases,the controltransferscurrent
valuein the absolutecoordinatesystem( coordinate
systemdisplayedin the CRTcurrentvalue2nd
area,or the one determinedby coordinatesystem
settinginstructions)to the commandvalueregister
unconditionally.
Aftertransferringthe currentvaluein the
absolutecoordinatesystemto the commandvalue
register,manualaxialmovementis reflectedon
the automaticaxial movementevenwhen the ABS
inputcontactis closed.
When the block@ is searchedagainby the
RESEToperationafteraxialmotionsby manual
operation,the followingmotiontakesplace.
MDI panelRESETkey—onor
x 20.000
Xlo.000
z 20.000
_Axis motion by manual operation
Fig, 18.7
(2) WHEN ABSINPUTRELAYIS CLOSED.
x 20.000
z 30.000
x 10.000
z 20.000
Fig. 18.8
x 10.000
z 40.000
“A
x 10.000
z 20.000
Fig, 18.9
18.2.11SINGLEBLOCK(SBK)INPUT
This input is for executingpart programsone block
at a time in the automaticoperationmode.With
the controlin the automaticoperationmode,and
the SBK inputcontactclosed,whenan automatic
operationcycleis started,only one blockof the
part programis executed,and the machinestops.
When the SBK inputcontactis closedduringthe
executionof a partprogram,the controlstopsthe
machineafterthe executionof the currentblock.
For detailsof the use of singleblockduring
the executionof multiplecycles,user-macroprograms,referto
LX1(TOE-C843-7. 20) . “
!!Operator!sManualfor YA SNA C
x 10.000
z 40.000
53
18.2.12OPTIONALBLOc K DELETE(BDT,
BDT2-BDT9)INPUT
This input is for determiningwhetherdata between
“ /“ and
“EOB”in a partprogramis executedor
neglectedwhenthe part programcontains“ /. “
Table 18.6
—
BDT INPUT CLOSED
Neglected Data between
“/” or “/1 “ and “EOB”
(End of block)
‘BDT 2 INPUT CLOSED“/2” and “EOB”
‘BDT 4 INPUT CLOSED
$iiEi-
BDT 8 INPUT CLOSED
“-BDT 9 INPUT CLOSED
Note,
1.Data can be neglected only when part programs are executed.
2. Whether data may be neglected or not depends on the state of
18.2,,13MAc HINE LOCK(MLK)AND
~;::::::::
When storing or processing part programs, this input has no
effect.
the optional block delete input relay when the block containing
“1” in a part program is stored in the buffer.Therefore, when
controlling the optional block delete input relay by an external
circuit with the use of the auxiliary function, take care to set the
input state before the block containing “1” is stored in the buffer,
DISPLAY
Loci<(DLK)INPUT
MACHINELOCK(MLK)INPUT
(1)
Thisis the inputfor preventingthe outputtingof
controloutputpulsesto the servounit.While the
MLK inputcontactis closed,evenwhenthe logic
circuitdistributespulsesin the automaticand
manualoperationmodes,the machinedoesnot
move.As the logiccircuitsdistributepulses,the
currentvaluedisplaychangeswiththe instruc–
tions . If the MLK contactis closedor opened
duringthe automaticoperationof the control,the
operationis not influenceduntil the startof the
nextblock,and duringmanualoperation, until
the end of the currentmotion.
“EXTERNAL,“ and external2-axescurrentvalue
display)doesnot change.
18.2.14DRY RUN (D RN) INPUT
Thisinputis for changingthe feedratesof the
toolsduringthe executionof partprogramsin
the automaticmode to the ratesselectedby the
manualcontinuousfeedselectioninputs(FV 1, 2,
4, 8 and 16).
While the DRNinputcontactis closed,the
feedratesduringthe executionof partprograms
in the automaticmode are changedfrom the pro–
grammedonesto the onesselectedby the manual
continuousfeedselectioninputs.
While the DRNinputcontactis closed,the
feedratesin part programexecutionin the automatic
mode are the ones specifiedby the manualcontinuous
feedselectioninputsignals,insteadof the pro .
grammedone.(However,for thread
cutting,
programmedfeedratesremaineffective.)
When the DRN inputcontactis closedor opene~
duringthe automaticoperationof the control,the
followingchangetakespalce.
Duringmm/revfeeding: No changeof feedrate
for the currentblock.
Duringmm/minfeeding:Feedratechangeseven
duringthe currentblock.
NOTE
When parameterRPDDRN(#6006 D2) is set to
1.
1, while the DRN inputcontactis closed,the
feedratein positioningcommand is changedto
a manualcontinuousfeedrate.
2.
When parameterSC RDRN’ (#6019 D5S is set to
1, while the DRN inputcontactis closed,the
feedrateis changedto a manualcontinuous
feedrate.
18.2.15CURRENTVALUESTORING(PSR)INPUT
Thisinputis for storingcurrentvaluesin the
control.
When the PSTinputcontactis closed,the
controlstorescurrentvalues(CRTscreenPOS
display1st area EXTERNAL)intothe internal
memory,
and the LEDincorporatedin the OF S
key in the MDI FUNCTIONarea flickers.
Then,it performsthe followingcalculation
on the offsetswrittenby MDI,and storesthe result
in the offsetmemory.
Resettingoperation(depressingRESETkey
on MD I panel,
or closingexternalresetinput
contact)cancelsthe currentvaluestoringmode
and stopsthe flickeringof the LED.
For the detailsof the usage of the PST input,
referto 5. 2.3 MeasuredWorkpieceValueDirect
Inputin YASNACLX3Operator’sManual(TOEC843-9.20).
18.2.16PROGRAMRESTART(PRST)INPUT
Thisinputis used when a partprogramis to be
startedagainafterinterruption.
inputcontact,turn of the memorymode,and
searchthe sequenceNo. of programrestartby
the NC operator’spanel.TheM, S, T codes
presentbetweenthe leadingend of the program
and the searchedsequenceNo.are displayedon
the CRT.
For the detailsof the usage of the PST input,
referto “ 5. 2.6 ProgramRestart”in YASNACLX3
Operator’sManual(TOE-C843-9. 20) .
18.2.17EDITLOCK(I NHEDT)
This is the inputfor preventingthe changeof the
contentsof the storedpartprogram.
INHEDTinputcontactis closed,the following
operations,amongthe ones in the programedit
mode,are prohibited.
o Storingpartprogramsby the MEM DATA“IN”
key.
. The change,additionor deletionof part programs
in the m’e-mory with
“ERS”keys.
18.2.18AUXILIARY
INPUT
This is the input for omittingthe M, S , T function
in executingpartprogramsin the automatic
operationmode.
Whilethe AFLinputcontactis closed,the
controldisregardsM, S, T instructionsof pro-
gramswhen executingpart programs.However,
M codedecodedoutputs(MOOR, MOIR,M02R,
M30R ) are outputted.
Whenthe AFLinputcontactis closedor opened
duringthe executionof part programs,the change
becomeseffectivefromthe blocksubsequentto
the currentblock.
the EDITIIALT ~il llIfi S’’ -and
FUNCTIONLOCK(AFL)
Close the PRST
While the
While the SRN inputcontactis closed,manual
jog motionstopsas the machinearrivesat the
setuppoint.When the machineis at the setup
point,manualjoggingis impossibleunlessthe
SRN inputcontactis opened.
18.2.20INTERRUPTIONPOINTRETURN(CPRN)
INPUT
Thisis the inputfor positioningthe machineat
the interruptionpointby manualjoggingafter
the controlwas switchedoverfrom the automatic
operationmode to the manualoperationmode,
and subsequentlymovedawayundermanualcon–
trol.
While theCPRNinputcontactis closed,
manualjoggingmotionstopsafterarrivingat
the interruptionpoint.When the machineis at
the interruptionpoint,manualjoggingis impos sibleunlessthe CPRNinputcontactis opened.
18.2.21OVERT RAVEL(*+LX, * -LX,*+ LZ,
*-LZ)INPUTS
Theseinput signalsare for signifyingthe arrival
of the machineslidesat theirrespectivestroke
ends.When theseovertravelinput contactsare
opened! the machineslidesstop motionsas shown
in Table18.7,and close the alarm (ALM)output
contactand,at the same time,displayalarm on
the CRT .
Table 18, 7
Manual Opera-Automatic Opera-
tion Mode
“+ LXMotion stop in
Input Opened
*– LX
Input Opened— X direction
*+ LZ
lnDLIt ODened
“– LZ
Input Opened– Z direction
When an overtravelinputcontactis opened,move
the machinein the reversedirectionin the manual
operationmode (manualjoggingor manual pulse
generator)to close the contact,and then make
the alarm outputand display.
+ X direction
Motion stop in
I
Motion stop in
+ Z direction
Motion stop in
I
tion Mode
Motion stoD of all
I
axes
I
NOTE
With S4-digitinstructionsanalog outputsare output
in accordancewith the instructions,even while
the AFL inptucontactis closed.
18.2.19SETUPPOINTRETURN(S RN) INPUT
This is the input for positioningthe machineat the
setuppointby manualjogging.
NOTE
Even when the overtravelinput contactsare opened,
the M code readingoutput(MF , S code reading
outputSF ,
not turnedoff.
or T codes must be stoppedby overtravelingin–
puts,interlockthe motion \vith externalsequence.
“STLK”inputdoes not affectthe M, S , and
T commandsin both manualand automaticoperation modes.
18.2.26ALARM(ALM)AND INPUT ERRoR(IER)
OUTPUTSAND EXTERNALERRORDETECT
(E RRo, l)
lNpuTs
(1) ALARM(ALM)ANDINPUTERROR(IER)
OUTPUTS
Theseoutputsinformthat the controlis in the
alarm state.
IER :
Thisoutputis closedon detectionof an
alarmcausedby the informationfromthe part
programor the input device.(Alarmcodes“ 010’1
through“129. ‘1)
ALM : This outputis closed on detectionof any
alarm other than the above.(However, the alarm
for the fault of the logic circuitry in the control
is not included.)
Theseoutputsare openedagain whenthe cause
of the detectedalarmhas beenremovedand
RESEToperationis performed.
(2) EXTERNALERRORDETECT(ERRO,ERR1)
INPUTS
Theseinputsput the controlin the alarm state
from the outside.
ERRO:
displaysalarm code
Whenthisinputis closed,thecontrol
II180!I and is put in the alarm
state.If this input is closedduringthe execution
of the partprogramin the automaticoperation
mode,
the executionis stopson completionof
the blockbeingexecuted.
ERR1:
When thisinputis closed,thecontrol
displaysalarm code“400”and is put in the alarm
state . If this inputis closedduringthe execution
of the partprogramin the automaticoperation
mode , the tool travelis immediatelysloweddo~vn
and stopped.
Thisinputdetermineswhetherrapidthreading
pull-outis performedor not in the executionof
G92 (threadcuttingcycle)or G76 (composite
threadcuttingcycle). When CDZinputis closed,
the rapidthreadingpull–outis performed;when
this inputis open,it is not performed,
Thecontroldeterminesby the CDZ input
whetherrapidthreadingpull–outis performed
or not at the startof a threadcuttingcycle.
To open/closeCDZ inputby sucha commandas
M, add thedelaytime of the inputcircuitprocessingand set the state of CDZ inputto the
startof threadcuttingcycle.
56
(2) ERRORDETECTGN (SMZ)INPUT
Thisinputdetermineswhether“ErrorDetectOn”
conditionis addedto the end conditionsfor the
feedin the automaticoperationmode.
ItErrorDetectOn” :
Due to the servosystemdelay,duringtraveling,
thepositiondetectedby thepositiondetector
follows,
cuit witha delay.
and the detectedpositionare foundunderthe
valuesset in parametersXPSETandZPSET(#6056
and#6057),it is calledin the“ErrorDetectOn”
state.
thepositiondesignatedby thelogiccir-
Whenthe designatedposition.
When SMZ inputis closed,“ ErrorDetectOn”
conditionis addedto the feedend conditionsin
the automaticoperationmode.When this input
is open,this conditionis not added.
SMZ input doesnot affect any positioning
commands.
(With each positioningcommandexcept
G06 (ErrorDetectOff Positioning), “ErrorDetect
On” conditionis addedto the end conditions.)
Theseare outputsfor the M, S, and T commands
specifiedby the partprogramat its execution
in the automaticoperationmode.IfanyofM, S,
and T commandsis foundat the executionof the
partprogramin the automaticoperationmode,
the controloutputsit in a BCDcode according
to the valuethat followsthe detectedcommand
(M = 2 digits/3digits,S = 2 digits,T = 2 digits),
Then,afterthe elapseof the time set in
parameterMSTF(#6220) , the M, S, and T code
readingoutputsare closed.
NOTE
1!
h’ith the S4 digit
provided,disablingthe S code outputand the
S-coderead output.
M commands(M9 O throu~hM109) for logic circuit
2.
processing:With the ~ commands(T-~I~AA,
T51AAthroughT80AA,T90AA,TD~90
throughTDD95,and T UU99), the M/T code
ouput and ‘the M]T code readingoutput are not
provided.
command,analogoutputis
18.2.28X-AXISMIRRORIMAGE(MIX)INPUT
Thisinputinvertsthe X–axistravelingdirection
in the automaticoperationmode.Whenan automatic
activationis performedwithMIXinputclosed,
the X-axistravelingdirectionby the partprogram
is made oppositeto the specifieddirection.When
klIXinputis closedthenopenedduringthe executionof the partprogram, it is madevalidfor
the commandsafterthe satisfactionof the follow.
ingtwo conditions:
When an M commandfor decodedoutputand a
move commandare specifiedin the same block,
the M code outputis providedat the start of the
block,while the decodedoutputis providedafter
completionof the move command.
(3) M, S, ANDT FUNCTIONSCOMPLETION
(FIN)INPUTS
Theseinputsgive the completionof M, S, and T
commandsto the control.
WhenFINinputis
closedwhilethe M, S, and T code reading(MF,
SF, and TF) outputsare closed,they are opened.
If FINinputis openedagainaftermakingsure
of theiropening,the controlassumesthatthe
M, S, or T commandhas been completed,starting
the operationof the nextstep.
NOTE
For the S4-digitcommand,FIN input need not
1.
be closed.
2.
When FIN input is closedthen opened,the M
code outputand the M decodedoutputare all
opened,but the S code and T code outputs
remain withoutchange .
specifiedin the sameblock,the moveoperation
andtheM,S, or T operationareexecuted
simulataneously.
TO NEXT
STEP
18.2.31TRAVELON (O P1 ,2)ANDTHREAD
cuTTINGON (T Hcl ,2) OUTPUTS
(1)
TRAVELON (OP1,2)OUTPUTS
With theseoutputs,
tool is travelingduringthe executionof a part
programin the automaticoperationmode.These
outputsareclosedin anyof the followingsitua–
tions:
. Duringthe executionof a movecommand.
. In the statein whicha movecommandis discon-
tinuedby the interrupt(STLK)inputor the
FEEDHOLD(*SP)input.
(2)THREADCUTTINGON (THC1,2)OUTPUTS
With theseoutputs,the controlinformsthat threai
cuttingis beingperformedduringthe execution
of partprogramin the automaticoperationmode.
Theseoutputsare closedduringthreadcutting.
the controlinformsthatthe
18.2.32END-OF-PROGRAM(EOP) INPUT,REWIND
(RWD)INPUT AND REWIND ON (RwDsl,2)ouTpu-rs
(1) END-OF-PROGRAM(EOP)AND REWIND(RWD)
INPUTS
With theseoutputs,the controllerdetermineswhat
processingis to be performedat completionof
an M02 or M30 command.
Thecontrolperforms
the followingprocessing,dependingon the state
of EOP and ~WD
FIN for an M02R
inputs,whencompletioninput
or M30R commandsis openedand
Theseoutputsinformthe completionof a move
commandwhenan M, S , or T commandand the
movecommandhavebeenspecifiedin the same
blockat the executionof a part programin the
automaticoperationmode.
The blockin whichan M, S, or T command
and a movecommandare specifiedat the same
time is executed,if the M, S , or T commandis
not completedat the terminationof the move
command,positioningcompletionoutputsDEN 1
and DEN2 are closed.
When FIN inputis closedthen openedand the
M, S , or T commandis completed,the positioning
completionoutputsare opened.
Table 18.10
EOP I RWD IFunction
11
i
] The control IS at standby after rewinding part
1
[ programsand resettingprograms
The control is at standby after resetting pro-
The control !s at standby after re;indingpart
=
1: Closed, O: Open
Note:
1.2.Programresetprovidesthe same effectsas
with depressingof RESETkey on MD I panel
(ERs)input.
the NC memoryrewindoperationis not perfomed.
For detailsof the resetoperationby closing
ERS input,refer to 18.2.24“EXTERNALRESET
(ERS)INPUT.’!
When a programreset operationis perfomed,
ResetOn outputRST1and RST2are closed
for one second.
In the programreset,however,
—
(2) REWINDON (RWDS1,2)OUTPUTS
With theseoutputs,the controlinformsthat the
partprogramis beingrewound.
If the part
programis rewoundby RWD inputfor an M02 or
M30 command,RWDS1 and RWDS 2 are closedduring the rewindingoperation.
18.2.35S4-DIGITCOMMANDS(DAS,SCSI,GR1
THROUGHGR4,SINV,ANDSINVA)lNPUTS/
OUTPUTS
Thesesignalsare used to determinethe speed
of the spindlemotorwhenthe conrolis in the
stateof S Command4–DigitAnalogoutput.
NOTE
To use theseoutputs,set parameterRWDOUT
(#6007,D4) to “1. ”Otherwise,theyare not
provided.
18.2.33DISPLAYRESET(D RSX, DRSZ)INPUTS
Theseinputs set the external2-axis currentvalue
displayandthe currentvaluedisplayon the
Theseinputsare used to make the S4-digitcommand
analogoutputprovidethe outputsotherthanthe
partprogramS command.WhenSSTPinputis
closed,the spindlemotorspeedcommandoutput
basedon the spindlespeedspecifiedin the part
programis stopped.
If GRS inputis closedin this state,the voltage
to set to parameterGRSREV(#6270)is outputted.
If GSC inputis closed,the spindlemotorspeed
commandvoltageis outputtedwhichcorresponds
to the spindlespeedto be set to parameterGSCREV
(#6275)by the spindlegearrangeinput.
-,-,-.”..
-,
Iaule IO. 14
SSTPGRSGSCS4-digitCommand
InputInput
o0
Input
0
Analog Voltage
Voltage correspondingto spindle
speed commandedby NC pro-
=029.
011111
110101
1
Voltage correspondingto param-
0
I
1
I
eter GSCREV.
I
Ov
1I1IOI Parameter GRSREV setting value.
111111
O: Contact open, 1 Contact closed
Note
1,
It is possibleto make the analogoutputsfor
SSTP,GRS,and GSC inputsnegativeby the
S4-digitanalogoutputinvert(SINV)input.
2,
The period of time bet\veen the settingof SSTP,
GRS,or GSC inputand the catching-upof
the analogvoltagevalue is shorterthan 100
ms.
3.
SettingparameterSSTPAB(#6020,D4) to 1
enablesthe control to provide‘! *SSTP!!input,
Ov
18.2.37SPINDLESPEED REACHED(sAGR)INPUT
Thisinputis usedto inform , in the case of the
S4–digitcommand,thatthe spindlespeedhas
reachedthe specifiedvalueat the startof cutting
at the executionof the partprogramin the auto–
matic operationmode.
At the startof cutting
( whenswitchingfrom a positioningcommandto a
cuttingcommandtakesplace), the controldelays
the time by the valuespecifiedin parameterSAGRT
(#6224) , makes sure that SAGRinput is closed,and
startscutting.
NOTE
To performthe above operationby SAGR input,
1.
set parameterSAGRCH(#6006,D4) to “1. ”
If it is set to [IO, “ SAGRinput is ignored.
2.
In G96 mode,SAGR input is checkedeverytime
the switchingfrom a positioningcommandto
a cuttingcommandtakes place.
SAGR input
when the spindlespeed is differentbetween
the positioningstart and end times.
is checkedat the switchingonly
In G97 mode,
18.2.
38 SPINDLESPEEDOVERRIDE(SPA,SPB,
SPC,SPD ANDSPE)INPUTS
Theseinputsare used,in the case of the S4-digit
command,to overridethe S commandin a range
of 50% to 120% at the executionof the partprogram
in the automaticoperationmode,
61
18.2.38SPINDLESPEEDOVERRIDE(SPA,SPB,
SPC,SPD AND SPE)INPUTS(Cent’d)
Table 18.15
‘s F)A
SPB
InputInputInput
1
()1
1
o10
110
1
()
o0
1
1
Closed, O Open
00
o0
0
SPC
150 %
I
160 %
II
II
II
II
Override to S Command
I
1
1
70 %
80 %
90 %
100%
110%
120%
(overrideis specifiedto S commandwithin
10% to 200% rangeby parameter#6018 D1.
A’ote: The input /outputvalue is a signedbinary
16-bit.
as follows:-32767 to O to +32768,-1OVto O to
+10 v
The relationshipwith analogvoltagesis
NOTE
The primarypurposeof this functionis to
controlthe S4–digitcommand by the sequencel-
built in the control.
not be used for other purposesunless especially required.
This functionshould
18.2.40EXTERNALWORK NUMBERSEARCHA
(WN1, WN2, WN4, WN8, AND WN16)INPUTS
Thisis a functionto selectthe programby the
programnumberspecifiedby externalinputfrom
the partprogramsstoeedin the partprogram
memoryof the equipment.
start of a part programin other than memoryand
runningmodes.
when an automaticrun is activatedin the label
skip state ( “LSK”is beingdisplayedon the CRT
screen).
2.
The programnumberselectionby a reset opera-
tion is perfomedindependentlyof the running
mode.
3,
When WN 1 throughWN 16 inputsare all open,the
programnumberselectionis not performed.
4.
If the part programmemory of the controlcontains
two or more part programswhich have part program
numbers01
WN 16, the programstorednearestthe memory
beginningis selected.
5.
The programnumbersfor which this “search func-
tion is validare O
6.
If the specifiedprogramnumberis not found after
a searchoperatiori,
7.
When this work numbersearchA functionis per-
formed,FUNCTIONis automaticallychangedto
PROG.
The start of a part programis
through31 specifiedby WN 1 through
\
❑0 01 throughO ❑n 31.
error111341’ is caused.
00
1
1
1
110
011
011
11
11
1
11
18.2.41TIME COUNT(EXTC)INpu T (oPTi ONAL)
This inputmakes the controlcount the time.The
controlaccumulatesthe time in whichEXTCinput
is closedand displaysthe resultin the bottom
of “OPERATIONTIMEDISPLAY, “ whichis on page
3 of “ALM”functionon the operator’sstationCRT,
(Operatingtime display“ EXTERNAL‘t is optional.)
Thetimedisplayis resetby pressing“4”key
then ~]
operationis performed,the time displayis retained
aftersuch an operationas power–on,
18.2.42SPINDLEINDEXINGFUNCTION(Si Dl -
0
0
0
0
0
1
S1D12)lNPUT/OUTPUT
Thisinput/outputis usedperformthe spindle
indexingfunctionwhichstopsthe spindleat the
desiredpositionby controllingthe S4-digitanalog
outputby the pulsefrom the spindlepulsegenera-
tor.“
(1)INPUTSIGNALS
0 SID1 throughSID12:
Binary12-bit(O to 4095) inputsignalsto specify
the spindlestop position.Each signalcorresponds
to the pulse(4096 pulses/rev)fromthe spindle
pulsegenerator.Usually,the stopposition
correspondsto the numberof pulsesentered
by SID1 to SID12from C-phasepulse(1 pulse/
rev)of the spindlepulsegenerator,
Note:
the controlto shift the stop positionby the
numberof pulsesset from C–phasepulseto
this parameter.
‘ SIDX:
Theinputsignalto requestthe controlfor a
spindleindexingoperation.
closedwhilethe spindleis rotating,the speed
commandto performindexingis output,and the
spindleindexingoperationis started.
SIDXI(spindleindexingrestartinput)and
SIDXINC(spindlestop positiondesignateincrementalinput)are the inputsfor the repetitive
spindleindexingsequence.
to (6)INPUTSFORSPINDLEINDEXINGEXTENTIONFUNCTION.
(2) OUTPUTSIGNALS
“ SIDXO:
Thisoutputgoeson whenthe controlis per-
forminga spindleindexingoperation( during
the outputof creepspeedcommandor spindle
positioningcommand).
keyby the MDI.Untilthisreset
Use of parameterSIDREF(#6342) enables
If this inputis
Therebymakingthe
For details, refer
63
18.2.42SPINDLEINDEXINGFUNCTION(SIDlSID12)iNPu T/o UT PUT (Cent’d)
. SI13XA:
Thissignalindicatesthe completionof a spindle
indexingoperation.
positionis in the rangebetweenthe position
set in parameterSPSET(#6058)and the position
designatedby SID1 to SID12,
processvariousspindleindexingsequencemade
availableby applicationof the spindleindexing
functiondescribedpreviously.
. SI:3XI :
Spindleindexingrestartinput.If this input
is closedwithSpindleIndekingOn (SIDXO)
outputon, the controlstopsthe spindleindexingoperationand turnsthe SIDXOoutput
off.While the indexingoperationis discontinued,
the spindlespeedcommandanalogoutputbecomes
the spindleindexingstartspeedcommand.
Thisinputis usedto designatean incremental
positionof the spindleindexingpositioninput
(SID1to SID12)from its previouslydesignated
position.
The use of this inputenablesthe control
to rotatethe spindlefrom the currentindexin~
positionto the nextindexingpositionwithout
a full rotation,However,this inputis invalid
when the spindleindexingoperationis firstmade
afterrotatingthe spindlein non–indexingopera–
tion or whenthe spindleindexingoperationis
firstmade afterthe power–onoperation.
‘ Exampleof SpindleIndexingTimeChartusing
SpindleIndexingExtentionInput:
(i) Restartthe spindleindexif spindle~ndex
is not completed,thespecifiedtime afterspindle
indexing(Fig.18.19).
SPINDI
‘:E’*Z
COMPL-,,-,.
ouTPuT(stDxA)
SPINDLE INDEX
RESTART INPUT
(SIDXI)
SPINDLE INDEX
COMMAND
ANALOG OUTPUT
o
II
;1
II\/
~
,
I
CREEP SPEED
COMMAND
1
SPINDLE
INDEX
SPEED
COMMAND
Fig. 18, 19
III
II
!
1
I
66
(ii)Spindleindexingat A position180° from
the indexedpositionafterspindleindexingand
mechanicalclamp and machining.See Fig.18.20.
M CODE FOR
SPINOLE
INDEX AND
MECHANICAL
Ai4D(< DINlnl C lNlnCY 1800) AND CLAMP
SPINDLE INDEX
POSITION INPUT
(SIDI-SID12)
SPINDLE INDEX
REQUEST INPUT (SIDX)‘,,
SPINDLE INDEXI
OUTPUT (SIDXO)
SPINDLE INDEX
COMPLETIONOUTPUT
(SIDXA)
M, FUNCTION
C.OMPLETE SIGNAL(FIN)
SPINDLE ROTATION
SIGNAL (EXTERNAL
SEQUENCEPROCESSING)
SPINDLE MECHANICAL
CLAMP SIGNAL
(EXTERNAL SEQUENCE
PROCESSING)
SPINDLE MECHANICAL
CLAMP CHECK SIGNAL
(EXTERNAL SEQUENCE
PROCESSING)
PI
2,,
‘“t
\c:-
\
1
I
M CODE FOR MECHANICALUNCLAMP
1
I
[
1
I
II
I
II
SPINDLE
COMMAND,..
VOLTAGE
.J1
Note:
1. The s~indleindexingfunctionis available
only ;henthe contr;lhas the S command
4-digitanalogoutputspecification.The
polarityof S 4-digitanalog outputshould
be externallydeterminedby SINVinput.
2.
To make a spindleindexfrom the spindle
reverserotatingstate,keepSINVinput
on while the spindleindexingrequestin–
put (SIDX)is on.
3.
When an incrementalspindleindexing
operatiOnis perfOmedby turningSIDXINC
input on with SINV input beingon, the
This externalwork numbersearch functionis
valid only in the memorymode and the label
skip state.In any otherconditions,EDCL
input is invalid.
3) EXTERNALTOOLCOMPENSATIONC
Thisfunctionaddsor replacesthe tool offset( O
to f7. 999 mm or O to f 0.7999 in. ) designatedby
inputEDO to ED15 to or withthe currently
designatedtool offsetmemoryvalue.When EDAS2
11(J II
is
ment’ismade.The timingof signaltransferis
as shownin Fig.18.23.
additionis made;when it is
EDSAEDSD~
EDCL
TOOL
OFFSET
VALUE
1
\
J\
\
~/\
I
\/\
“ 1, “ replace-
(2) EXTERNALWORKNUMBERSEARCHC
Thisfunctionsearchesfor the partprogramof a
4-digitprogramnumberdesignatedby the input
signalEDO to ED15.
is as follows:
DATA
REQUEST
INPUT
[EOCL)
INPUT
COMPLETION OUTPUT
[ERENOl
~’OGRAMI
SEARCH
SEARCH
COMPLETlON OUTPUT
;;;;:’
The timingof signaltransfer
\
\
COMPLETION
Fig. 18.22
f
‘i
SEARCH WAS
NOT PERFORMED
EREND
Fig, 18,23
EDCLinputis detectedby the 8 ms scan.
.
The tool offsetnumberto be rewrittenis the
currentlydesignatedtool offsetnumber.At
the time of singleblockstop,the contentsof
the tool offsetnumberof the terminatedblock
are rewritten.
(4) EXTERNALWORKCOORDINATESYSTEM
SHIFT
When the currentlydesignatedtool offsetnumber
is “ 00” in the externaltool compensationC, this
functionadds or replacesthe value(O to ~7. 999
mm or O to f O. 7999 in. ) designatedby input EDO
to ED 15 to or withthe workcoordinatesystem
memoryvalue.
made;whenit is “ 1, “ replacementis made.
timing. of signaltransferis the same as with the
externaltool compensationC.
When EDAS2is “ O,” additionis
The
18.2,45EXTERNALDATAINPUT(ED O THROUGH
ED151, EDSA THROUGHEDSD,EDSA O THROUGH
ED S}\2,EDCL,EREND,AND ESEND)lNPUTS/
OUTPUTS
In addition,
pensationnumbersand otherinformation.Since
theyhaveno relationto the input/output,the
explanationis omitted.
thereare settingsfor registeringcom-
Generally,the externaltool compensationC
and externalwork coordinatesystemshiftfunctions
must be activatedby specifyinga givenM code
in an appropriatelocationon the part program
and turningon the date requestinputEDCLby
that M code.
18.2.46TOOLLIFE co NTROL(TLA1THROu GH
TLA16,TLTM,TLSKP,TLRST,TLCH1 AND
TLCIH2)lNPUTS/OUTPUTS
The tool life controlfunctionentersthe foliowing
into the control:
longa tool is serviceableor how many workplaces
a toc,l can cut) , the tool numbersof toolgroups
of the same typeand the compensationnumbers
to be used.
specifyingthe T codefor tool life controlin the
part program, for the controlto controlthat T
code accordingto the machiningtimeandthe
numberof workplacesentered.
Theseinputsinformthe controlof the completion
of tool replacementafterthe replacementof the
tools of the groupnumberwhoselife has terminate.
Set the tool groupnumberof tool replacement
completeto TLA1,TLA2,TLA4,TLA8,and TLA16
accordingto Table18, 23, and closeTLRSTinput.
When the replacementof the tools of the group
numberwhoselife has terminatedis all completed,
tool replacementrequestoutputsTLCH 1 and
TLCH2are opened.
Table 18.23
Input
TLAI~ TLA2I TLA4~ TLA8TLA16
11010:010101
0110’
I
0101
llo~l~olol
~ioioi-06
11
0
I
1
~
o~lo10
1101
0
1
‘1
0
11
00001
1
0
110
1. Closed,O: Open
(2) TOOLSKIPINPUT(TLSKP)
This input is used to replaceregisteredtools before
theirservicelivesterminate.
When TLSKPinputis closedin the automatic
feedholdstate(STLand SPL outputsare open),
the processingthat the servicelife of the currently
used tool has terminatedis performedwithinthe
controller.
followingT command.
1
0
o
o
I
o
0
0
0
10
Thenthe new tool is specifiedby the
110108
I
01
1
1
11’013
1
1014
11015
0
+-
0
0
0
Tool ChangeCompletion
GroupNo.
02
05
—.
0
0
0
0
117
118
119
07
09
i-o
11”
12
16
70
(3) TOOLREPLACEMENTREQUESTOUTPUTS
(TLCHIANDTLCH2)
When aprogramendor resetoperationis performed
afterthe terminationof the servicelivesof all
registeredtoolsbelongingto a toolgroupnumber,
TLCH1and TLCH2are closed.
When theseoutputsare closed,make sure of
the tool groupnumberwhichis beingdisplayed
on the CRTscreenand replacethe tools.
NOTE
When TLCH1and TLCH2are closed,the
automaticactivationin the automaticopera–
tion mde is disabled.
18.2.47SKIPINPUT
If SKIPinputis closedduringtheexecutionof
movecommandby G 31 ifi the automaticoperation
mode,the controlimmediatelystopsthe movement
and storesthe coordinatevalue whereSKIP input
changedfromopento close.
At thispoint,the
blockof G31 commandis regardedto havebeen
completed,
and the followingblockis takenup .
Thecoordinatevalueof the skippositionis
storedin the followingsettingnumbers:
#6568 ---X-axiscoordinatevalue
#6569 ---Z-axiscoordinatevalue
18.2.48COMBINEDFIXEDCYCLECUTTING
OVERRIDE(COV1,COV2,COV4,COV8,AND
CO V16) INPUTS
Theseinputsare usedto overridethe cut depth
of the stockremovalcyclespecifiedby G71 and
G72.Accordingto the stateof theseinputs, an
overrideis appliedto the cut depthspecifiedin
nII
II
Table 18.24
Input
COV1 I COV2 I COV4 I COV8 I COV16
o00000
110
o1
1
010
110
I
01010],0
0
00
100030
11010140
I
I11010150
Override
(70 )
20
011111010]60
11
00
1
o0
1
1
0
010
0
0
1
11
0
11
070
80
090
0120
0
130
NOTE
1, The block of G31 commandmovesin the
same way as GO1.
(#6019,D4) is set to “l, ” the feed rate
which is not specifiedin the part program
but is set to parameterG31F (#6232)is
provided.
2. If SKIP input is not closedafterthe com-
pletionof the block of G31 command,the
followingoperationtakes place:
When settingSKIPIN(#6004,DO) is set to
“ 1, “ the followingblockis executed.
When settingSKIPIN(#6004,DO) is set to
“ O, “ the alarm state(alarmcode “087” )is
generated.
If parameterSKPFED
010
1
0
1
0
1001180
1
00
1: Closed, O: Open
010111160
I
001170
001190
101200
71
18.2.49SERVOPOWER ON (SONPB)lNpUT
[f thisinputis closedwhenNC poweris on
( 1)
(NC]~lXis on) ,
servopowerturnson by power–
on operation.
(2) Thisinputis equi~,alentto turningon servo
powerby the poweron pushbutton.
(3) Thisinput is effective if parameter#6030 D4
= 1.If this parameteris selected,the poweron
pushbuttoncannotturn on servopower.
Shortplug(SW2)settingand 1/0 area Nos.are
s hewn below.
4
5
6
7
8
B
10 20–011020–02
Module
No.
Address
Port
# 1005
1
2
3
4
to
1009
#
#lo13
# 1021
# ;:25
# 1029
# 1037
# ;:41
# 1045
# 1053
# ::57
# 1061
f
-LX2—
13
12
11
10
9
~k
Modu
No.
II
Area No. 1-2 selected
Area No. 2-1 selected
Area No. 2-2 selected
Area No. 3-1 selected
Area No. 3-2 selected
Address
Port
# 1000
1
#
:;09
# 1013
#1016
# i:25
# 1019
# 1032
3
4
LX3——
# ::41
# 1045
# 1048
to
# 1057
g 1061
Module
No.
1
2
3
4
1020–03
Address
Port
# 1000
to
#lo13
#1016
to
1029
#
# 1032
to
1045
#
# 1048
to
# 1061
I
APPENDIXB1/0 PORT ADDRESS SETTING(Cent’d)
(b) outputPort
1001 B1002
Module
N().
Address
Port
# 1100
1
2
3
to
1107
#
#1116
to
#1123
# 1132
to
# 1139
# 1148
to
#1155
-LX 2—–
Area
No.
1–1
1–2
2–1
2–2
3–1
3–2
Address
Port
#l loo
# ;;07
#1108
*;?15
#1116
# 1124
# ;:31
#1132
# 1140
_* ;:47
SP20–02
Area
No.
1–1
1–2
2–1
2–2
3–1
3–2
I
Address
#l loo~
# ::07~,
# 1108
~Module
Port
I
1020–01
No.
2
3
4
Address
Port
# 1100
to
#llo5
.
#1116
to
#1121
#1132
to
#1137
#1148
to
#1153
—LX3
10 20–02
ModuleAddress
No.~Port
41100
1
2
3to
4
to
$1105
X1116
to
$1121
41132
41137
~ 1148
to
41153
10 20–03
Address
Port
1
2
3
4
Address
Port
#lloo
#llo7
#1116
41123
41132
$1139
$1148
I
#1155
.—.1
to
to
to
to
APPI:NDIXCSTANDARD WIRING COLORS OF YASNAC
The standardwiringcolorsof YASNACare as
follows:
ItemsWiring
Circuit
Mairl Circuit
Conirol Circuit (100 VAC)
DC Power
Circuit
DC Signal
200 VAC
100 VAC
I
+5 V>12V,24VI
I
12V
Ov
I
I
Green
Black
Yellow
Yellow
Red
Red
Black
‘ineH::.–
Gro~}nd Wire
I
Green/Yellow
82
83
YASNACLX3
CNC SYSTEM FOR TURNING APPLICATIONS
CONNECTINGMANUAL
TOKYO OFFICEOhtemachl Bldg 1-6.1 Oh!emach[ Ch[yoaa-ku, Tokyo, 100 Japan
Phone (03)3284-9111Telex YASKAWAJ33530Fax (03)3284-9034
SEOUL OFFICE8th Floor Seoul Center Bldg, 91.1, Sogong-Dong Chung-ku, Seoul, Korea 100070
Phone (02)776-7844Fax(02) 753.2639